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Interaction between seasonal density-dependence
structures and length of the seasons explain the
geographical structure of the dynamics of voles
in Hokkaido: an example of seasonal forcing
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The grey-sided vole (Clethrionomys rufocanus) is distributed over the entire island of Hokkaido, Japan,
across which it exhibits multi-annual density cycles in only parts of the island (the north-eastern part);
in the remaining part of the island, only seasonal density changes occur. Using annual sampling of 189
grey-sided vole populations, we deduced the geographical structure in their second-order density depen-
dence. Building upon our earlier suggestion, we deduce the seasonal density-dependent structure for these
populations. Strong direct and delayed density dependence is found to occur during winter, whereas no
density dependence is seen during the summer period. The direct density dependence during winter may
be seen as a result of food being limited during that season: the delayed density dependence during the
winter is consistent with vole-specialized predators (e.g. the least weasel) responding to vole densities so
as to have a negative effect on the net growth rate of voles in the following year. We conclude that the
observed geographical structure of the population dynamics may be properly seen as a result of the length
of the summer in interaction with the differential seasonal density-dependent structure. Altogether, this
indicates that the geographical pattern in multi-annual density dynamics in the grey-sided vole may be a
result of seasonal forcing.

Keywords: Clethrionomys rufocanus; state-space modelling; geographical gradient; winter food shortages;
predation; predator-swamping

1. INTRODUCTION

Rodent species exhibiting periodic multi-annual density
cycles typically do so only in parts of their distribution
range (Hansson 1971; Hansson & Henttonen 1985, 1988,
1998; Stenseth 1999). For example, populations of the
grey-sided vole, Clethrionomys rufocanus (named by Sunde-
vall 1846) in northern and eastern parts of Hokkaido,
Japan, exhibit multi-annual periodic density fluctuations
superimposed upon a seasonal dynamic pattern, with
population growth during summer and decline during
winter (Saitoh 1987; Stenseth et al. 1996; Bjørnstad et al.
1998, 1999; Saitoh et al. 1998, 1999, 2002). In the south-
ern and western parts of Hokkaido, populations of the
species exhibit only seasonal dynamics.

Several mechanisms have been suggested to explain the
geographical variability in dynamics of small rodents: dif-
ferences in the predator guild (e.g. Hansson & Henttonen
1988; Hanski et al. 1991; Bjørnstad et al. 1995; Turchin &
Hanski 1997; Korpimäki et al. 2002), primary productivity
(e.g. Jedrzejewski & Jedrzejewska 1996) and/or in climatic
conditions (such as seasonality and extent of snow-cover
(e.g. Hansson & Henttonen 1985; Hansson 1987;
Bjørnstad et al. 1998; Hansen et al. 1999)). Expanding on
the latter idea, Åström et al. (1996) (see also Kot &
Schaffer 1984; Rinaldi et al. 1993; Grenfell & Finkenstädt
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1998; Lindström et al. 2001) suggested that different
density-dependent structures within each of the seasons
might represent a mechanism leading to multi-annual per-
iodic cycles only in parts of a species’ range of distribution.
The proposition that the relative length of the seasons
determines whether a population is cyclic or not is referred
to as ‘seasonal forcing’.

In this paper, we demonstrate that the estimated annual
density dependencies exhibit a clear geographical struc-
ture, and that this geographical structure might be a result
of the relative length of the summer season at different
locations within Hokkaido. On this basis, we empirically
strengthen the conclusion of Stenseth et al. (1998) that
shortening the summer length will change the annual
dynamics from no multi-annual density cycles to multi-
annual density cycles. Here, we expand and improve on
the earlier analysis reported by Stenseth et al. (1998) in
four respects.

(i) We use estimates for the direct and delayed density
dependencies obtained through a statistical model
incorporating sampling variance. For this purpose,
we explicitly model the sampling process by
adopting a state-space modelling approach (cf.
Fahrmeir & Tutz 1994) and by so doing reducing
biases inherent in the more classical autoregressive
approach (see Ludwig & Walters 1981; Redding-
ius & den Boer 1989; Rothery 1998; Shenk et al.
1998).
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(ii) We document the geographical structure of the pat-
tern of density-dependent dynamics, using geo-
graphical coordinates as predictors of the density-
dependent coefficients in the autoregressive model.

(iii) We use a seasonal decomposition of the annual
dynamics being improved compared with that used
by Stenseth et al. (1998). By so doing, the estimated
direct density dependencies during summer and
winter are directly comparable.

(iv) We deduce (empirically) an index for the length of
the summer season being a descriptor of the geo-
graphical structure of the annual direct and delayed
density dependencies. This quantity (�) is then used
as an index for decomposing the seasonal structure
of the annual density dependencies.

Although our focus on the seasonal density-dependent
structure is similar, the approach taken in this paper is
different from that of Hansen et al. (1999), Merritt et al.
(2001) and Stenseth et al. (2002), who used data on both
spring and autumn densities to assess the seasonal density-
dependent structure of the same species. Whereas Hansen
et al. (1999) and Stenseth et al. (2002) made the tacit
assumption of the spring and autumn sampling coinciding
with the termination of the winter and the summer sea-
sons, we do in this study let the annual density-dependent
structure ‘tell us’ how the year is most appropriately to be
divided into two phases (which we will call ‘seasons’ and
refer to as ‘summer’ and ‘winter’).

2. THE STUDY AREA AND THE VOLE DATA

Hokkaido is the northernmost island (41°24� –45°31� N,
139°46� –145°49� E) of Japan and covers an area of
78 073 km2. This island neighbours the Asian continent
and is surrounded by the Sea of Okhotsk, the Pacific and
the Sea of Japan (figure 1). A southern warm current pre-
vails in the Sea of Japan along the western shore of Hok-
kaido, whereas a northern cold current prevails in the
Pacific along the northern and eastern shores. Mountain
ridges run north–south through the middle of the island
and in the southwestern part there is another mountain
ridge. Except for the southwestern peninsula harbouring
temperate deciduous forests, most of the natural forests in
Hokkaido are characterized by a transition type of forest
between the temperate and the subarctic zones (Tatewaki
1958). The dominant tree genera are Abies, Acer, Betula,
Picea and Quercus.

Hokkaido represents the easternmost part of the grey-
sided voles’ distribution, ranging from its westernmost
edge in Fennoscandia (see Kaneko et al. 1998). The grey-
sided vole (C. rufocanus) represents a pest on plantations
of larch (Larix leptolepis) and todo-fir (Abies sachalinensis).
Since 1954, the Forestry Agency of the Japanese Govern-
ment has carried out censuses of vole populations for
management purposes in forests all over Hokkaido. The
forests managed by the Forestry Agency cover 28 400 km2

(21 500 km2 of natural forests and 6900 km2 of planted
forests—1992 figures). These forests were, in 1992, man-
aged by 76 district offices, which were further divided into
several ranger offices, giving a total of 433 ranger offices.

Rodent censuses were carried out by the individual
ranger office, which also represented our basic unit of
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analysis; personnel at the ranger offices were regularly
trained for performing the censuses, including species
identification (see Kaneko et al. 1998). The censuses were
carried out three times a year (spring (May or June), sum-
mer (July or August) and autumn (September or
October)) on a 0.5 ha (50 m × 100 m) plot, where 50 snap
traps were set at 10 m intervals for five or three nights.
Each ranger office censused two to six separate grids. Cen-
sus grids were located in fixed pre-selected habitats
(planted forest and natural forests neighbouring a plan-
tation, which together constituted a unit). We have, in this
paper, omitted data from planted forests in order to
exclude the influences of pest control using poisonous
baits. The census grids were occasionally relocated within
the area of a given ranger office. (For further details, see
Bjørnstad et al. (1996); Stenseth et al. (1996) and Saitoh
et al. (1997).)

The grey-sided vole is the most common rodent species
in Hokkaido (Ota 1958, 1984; see also Stenseth et al.
1996). Three other microtine and murine rodent species
are recorded as an integral part of the census: Clethriono-
mys rutilus (named by Pallas 1779), Apodemus speciosus
(named by Temminck 1844) and A. argenteus (named by
Temminck 1844). In addition, C. rex (named by Imaizumi
1971), A. peninsulae (named by Thomas 1907) and shrews
(Sorex spp.) are occasionally caught. Clethrionomys is easily
distinguished from other rodents. Distinguishing C.
rufocanus from its congeners may be difficult. However,
the abundance of C. rutilus and C. rex is typically fairly
low in Hokkaido (Ota 1984; Saitoh & Nakatsu 1997),
minimizing the possible effect of any misclassification.

The summer season is the main reproductive period
(breeding usually starts at around snow melt (April/May)
and continues until September/October). Winter repro-
duction is negligible in the grey-sided vole in Hokkaido
(Ota 1984; Kaneko et al. 1998). However, voles are still
active in winter under the snow cover. Their main food
item during the winter is the leaves of bamboo grasses
(Sasa spp.) (Ueda et al. 1966), which are quite abundant
but nutritionally rather poor. Hokkaido is rich in predators
such as snakes, birds and mammals (Henttonen et al.
1992); however, their activity under snow cover is rather
restricted for most of these species, one exception being
the least weasel (Mustela nivalis), which is the most
important predator under snow cover (e.g. Hansson &
Henttonen 1985; Hansson 1987).

In the present paper, we use, following what is typically
done (e.g. Stenseth et al. 1998), only the autumn data.
We used the total number of caught grey-sided voles,
together with the corresponding trapping efforts, as our
basic data. Trapping effort is defined by multiplying the
number of traps by the number of nights and the number
of census plots. For example, when three night censuses
were carried out at three grids in a ranger office, the trap-
ping efforts by the ranger office at the census was 450
(50 × 3 × 3). Trapping effort in year t is given as Tt.

The studied populations include both multi-annual cyc-
lic (groups 2, 3 and 5; see figure 1) and multi-annual non-
cyclic (groups 1, 4, 7, 6 and 8) populations (e.g. Bjørnstad
et al. 1998). Each site was assigned geographical coordi-
nates ( gwe and gsn, where gwe and gsn are defined as the
location in the west–east and the south–north directions,
respectively, single coordinate units of which correspond
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Figure 1. Map of the study area, Hokkaido, being the northern-most island of Japan. The 189 studied populations have been
grouped according to topographical characteristics (see Saitoh et al. (1998) for details).

to 2 km, and the southeastern part of Hokkaido having
the lowest point) and the height above sea level (h, being
measured in units such that 1 corresponds to 10 m).

3. METHODS OF ANALYSIS

(a) The ecological annual model
We explicitly incorporate sampling variance when esti-

mating the density-dependent structure by adopting a
state-space modelling approach (e.g. Fahrmeir & Tutz
1994; Meyer & Millar 1999a,b; de Valpine & Hastings
2002). Below, we outline the underlying ecological model.
The statistical model linking the observations to the eco-
logical variables in this ecological model—this paper’s first
major improvement over Stenseth et al. (1998)—is
presented in Appendix A.

Defining �1 as the direct density dependence and �2 as
the delayed density dependence, a log-linear autoregress-
ive second-order model in which xt = loge(Nt) (where the
log-abundances are centred around their respective long-
term means and Nt always is assumed to correspond to
the non-zero true population size at time t) is given by (e.g.
Royama 1992; Stenseth 1999):

xt = �1xt�1 � �2xt�2 � �t, (3.1)

where �t is a normally distributed (time-independent)
stochastic quantity describing the process variance with
mean equal to zero and fixed variance given by �2.

(b) The geographical structure in the density-
dependent dynamics

In order to uncover the geographical structure of the
pattern of density-dependent dynamics, multiple linear
regression was performed for the direct (�1) and delayed

Proc. R. Soc. Lond. B (2002)

(�2) annual density-dependent coefficients, using the
populations’ geographical location (gwe, gsn and h) as
predictors—the second major improvement over Stenseth
et al. (1998)—starting from the full model �i = pi,0 �
pi,1gwe � pi,2gsn � pi,3h � pi,4gwegsn � pi,5gweh � pi,6gsnh � error
(i = 1 and 2), where pi,j are parameters to be determined
by the data. This model assumes that the annual auto-
regressive coefficients change linearly, (for a given
longitude) going eastwards as well as (for a given latitude)
going northwards; these linearly increasing rates of change
will be different for different longitudes and altitudes as
well as for increasing altitude. The best models for �1 and
�2 were obtained separately through backwards selection
(Kleinbaum et al. 1988).

(c) A seasonal model: re-parameterizing the
annual model and seasonal forcing

Stenseth et al. (1998) re-parameterized the model given
by equation (3.1) by assuming that the summer and winter
components of the specific annual net growth rate, R
(defined implicitly as Nt = Nt�1R, where Nt is the popu-
lation size in the autumn of year t), could be split into two
components, one for the summer (Rsummer, including both
reproduction and survival) and another one for the winter
(Rwinter, including only survival); that is: R = RsummerRwinter.
Let further � be the length of the summer (� = 1 corre-
sponds to all summer; � = 0 corresponds to all winter).

Stenseth et al. (1998) assumed spring densities to be
mapped onto autumn densities and obtained the follow-
ing model: Nt = const × Nt�1 exp[(�as1xt�1 � as2xt�2)�] exp
[(�aw1xt�1 � aw2xt�2)(1 � �)], where Nt is the density cor-
responding to xt [i.e. xt = log(Nt)], and ‘const’ is some sca-
ling parameter of no interest to us in the present context.
In this formulation, we then have Rsummer proportional to
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exp[(�as1xt�1 � as2xt�2)�] and Rwinter proportional to exp
[(�aw1xt�1 � aw2xt�2)(1 � �)]. A weakness of this re-
parameterization is, however, that the winter and summer
direct density dependencies (as1 and aw1) are not directly
comparable. (The second-order term is assumed to pick
up the longer lags due, for example, to specialized
predation.)

To avoid this deficiency, we assume some unknown
spring density (Mt, with ut = log(Mt)): this paper’s third
major improvement over Stenseth et al. (1998). In this
new formulation, let Rsummer depend on the density during
the previous spring (rather than the previous autumn) and
some delayed effect incorporated by the autumn density
two years before (just as in the earlier model). With such
a formulation of the summer dynamics, the autumn den-
sity will now be given as Nt = C1 Mt exp[(�as1ut
� as2xt�2)�], where C1 is a scaling parameter. After some
algebra, the new annual model (with seasonal
components) can be given as a delay function of aut-
umn densities:

Nt = Nt�1 RsummerRwinter, (3.2a)

where

Rsummer = C1 exp[(�as1 [log(C2) � (1 � aw1 � aw1�)xt�1

� aw2(1 � �)xt�2] � as2xt�2)�] (3.2b)

and

Rwinter = C2 exp[(�aw1xt�1 � aw2xt�2)(1 � �)]. (3.2c)

‘Seasonal forcing’ is interpreted within this model as the
length of the season (�) being a bifurcation parameter
determining whether the dynamics is cyclic or non-cyclic.
Below, we show that this is in fact the case (see figure 2).
Based on equations (3.2b) and (3.2c), the annual density
dependencies in equation (3.1) may be given by the sea-
sonal density-dependent components (direct density
dependence during summer (as1) and during winter (aw1),
and delayed density dependence during summer (as2) and
during winter (aw2)), and the season length (�) is found,
after some algebra, to be

�1 = 1 � aw1 � (�as1 � as1aw1 � aw1)� � as1aw2�2, (3.3)

�2 = �aw2 � (as1aw1 � as2 � aw2)� � as1aw1�2. (3.4)

(The corresponding expressions (3.3) and (3.4) for the
re-parameterization originally given by Stenseth
et al. (1998) are �1 = 1 � aw1 � (aw1 � as1)� and
�2 = �aw2 � (aw2 � as2)�, respectively. The analysis
described in Appendix B was performed using this original
re-parameterization; the results are presented in electronic
Appendix A, tables 4 and 5, available on The Royal
Society’s Publications Web site.) We used equations (3.3)
and (3.4) to estimate the parameters as1, as2, aw1 and aw2

by nonlinear regression through bootstrapping (see
Appendix B).

(d) Deducing an index, �, for the relative length
of the summer season

The hypotheses regarding seasonal forcing discussed by
Stenseth et al. (1998) relies on us having a reliable meas-
ure of the relative length of the breeding season �. How-
ever, accurate and direct estimates for the relative length
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of the summer season are difficult to obtain, not least
because it varies from year to year. Ideally, we would need
some overall measure characterizing the typical season
length for any given site.

One possible solution to this problem is further to
develop the measure used by Stenseth et al. (1998); that
is, a model assuming the relative length of the breeding
season, �, to be directly related to the warmth index, WI,
given as �(Temp � 5), where the sum is taken over the
months for which the average monthly temperature,
‘Temp’, is equal to or above 5 °C (see Kira 1949, 1971).
Stenseth et al. (1998) demonstrated a close relationship
between WI and the geographical scores gwe and gsn, and
therefore used a �-index defined on the basis of such geo-
graphical scores.

A more empirically (data-based) method of obtaining
an assessment of the overall relative length of the seasons
(the approach used in this paper) is to ask whether the
geographical structure observed in the annual density-
dependent structure (see § 4a) can be modelled using the
geographical scores to describe the length of the summer
season, �. This is this paper’s fourth major improvement
over Stenseth et al. (1998).

The following relationship is assumed to represent a
proxy measure for the relative length of the summer
breeding season, � (motivated by the statistical results
relating to the analyses of the geographical structure of
the annual density-dependent structure, where gwe, gsn and
gwegsn enter as significant predictors; see table 1):

� = exp(F)/[1 � exp(F)], (3.5)

with

F = (b0 � b1gwe � b2gsn � b3gwegsn), (3.6)

where the parameters b0, b1, b2 and b3 are to be determined
on the basis of data (see Appendix B). This logit-based
function will, as required, vary between zero and unity.
We expect that the estimated parameters of equation (3.6)
yield a large � for the southwestern part of the island
(where the summer breeding season is longest, being heav-
ily influenced by warmer sea currents (e.g. Saitoh et al.
1998)). We further expect that � decreases going north-
wards and eastwards (towards regions that are increasingly
influenced by the colder wind and sea currents (e.g. Saitoh
et al. 1998)).

4. RESULTS

(a) The ecological annual model
Using state-space modelling, 189 pairs of estimates for

direct annual density dependence (�1) and delayed annual
density dependence (�2) have been obtained. (The
obtained numerical results are presented in the electronic
Appendix, table 3; see also figure 2a.) It is worth observing
that there is a linear downward ‘trend’ from the upper-
right corner towards the centre of the triangle (the blue
line in figure 2a). It should also be noticed that if we only
use the estimates from groups 1 and 2 (as originally used
by Stenseth et al. (1996); populations, estimates and lines
marked red in figures 1 and 2a), there is a counter clock-
wise ‘movement’ in the statistical parameter space, just as
observed by Stenseth et al. (1996); this indicates that the
earlier demonstrated counter-clockwise ‘movement’ is
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Table 1. The geographical structure in the annual density dependence.
(The table shows the estimated parameters of the linear regression of (a) direct and (b) delayed density dependence on gwe, gsn

and h. (Best models obtained through backwards selection from the full model �i = pi,0 � pi,1gwe � pi,2gsn � pi,3h � pi,4gwegsn �
pi,5gweh � pi,6gsnh.) Confidence intervals (CIs) are based on estimates ± 1.96 s.e.)

parameters estimate s.e. lower 95% CI upper 95% CI t-value p-value

(a) (�1) (residual error = 0.284; d.f. = 185; r2 = 0.271; F3,185 = 22.94; p = 1.14 × 10�12; n = 189)
p1,0 (intercept) 0.779 0.101 0.580 0.977 7.698 	0.0001
p1,1 (gwe) �0.005 74 0.001 47 �0.008 61 �0.002 86 �3.906 0.0001
p1,2 (gsn) �0.004 04 0.001 08 �0.006 16 �0.001 91 �3.726 0.0003
p1,4 (gwe gsn) 3.18 × 10�5 1.31 × 10�5 6.15 × 10�6 5.75 × 10�5 2.431 0.016

(b) (�2) (residual error = 0.265; d.f. = 187; r2 = 0.0599; F1,187 = 11.91; p = 0.000 691; n = 189)
p2,0 (intercept) 0.000 194 0.0455 �0.0889 0.0893 0.004 27 0.997
p2,1 (gwe) �0.001 63 0.000 471 �0.002 55 �0.000 702 �3.451 0.000 69

Table 2. Estimating the seasonal density dependence from the relationships between the annual density-dependent structure and
the relative length of the summer, �.
(The table shows the estimated parameters for (a) direct and (b) delayed density dependence for winter (aw1, aw2) and summer
(as1, as2) growth. Positive values indicated negative density dependence. The standard errors are based on 1000 bootstrap samples
and confidence intervals (CIs) are based on estimates ± 1.96 s.e. CIs based on 2.5 and 97.5 percentiles deviated less than 0.02
from the CIs reported here. In the electronic Appendix, table 4, we present the corresponding parameter estimates when it is
assumed that spring densities may appropriately be mapped on to autumn densities.)

parameters estimate s.e. lower 95% CI upper 95% CI t-value p-value

(a) (�1)
aw1 1.637 0.0365 1.565 1.709 44.795 0.0000
as1 �0.402 0.227 �0.846 0.0417 1.776 0.0758

(b) (�2)
aw2 0.351 0.100 0.154 0.547 3.501 0.0005
as2 �0.166 0.135 �0.430 0.0988 1.228 0.220

only seen in the very northern part of the island and is
overshadowed by the downward trend when all sites are
used. In view of the much larger dataset used in the
present paper, we are convinced that the linear ‘trend’ in
the parameter space seems the more appropriate descrip-
tion of the dynamics on the island.

(b) The geographical structure in the density-
dependent dynamics

Regressing the direct (�1) and delayed (�2) density
dependencies on the geographical coordinates, it is seen
that two of the three geographical location parameters (the
position along the west–east axis, gwe, and the position
along the south–north axis, gsn) had significant effect on
�1, while only the position along the west–east axis ( gwe)
is a significant predictor of �2 (see table 1). An interaction
between the effects of gwe and gsn is observed in the model
for �1. Applying the Akaike’s Information Criterion (AIC)
(see Burnham & Anderson 1998) instead of the backwards
selection results in retention of both gsn and the interaction
between gwe and gsn in the best model for �2, but none of
these models is profoundly different from the others.

Using the �1 and �2 as dependent variables and the geo-
graphical location as independent variables (according to
the models summarized in table 1), we may predict the
‘movement’ in the (�1,�2) parameter space. This is
depicted in figure 2b. As can be seen, the process of sea-
sonal forcing emerges: as we move from the southwestern
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part of the island with long summers towards the north-
eastern part of the island with short summers, the dynam-
ics changes directionally from non-cyclic to cyclic (multi-
annual) dynamics.

(c) The index, �, for the relative length of the
summer season

The optimization for finding the best estimates for the
parameters (b0, b1, b2 and b3) of the model predicting the
relative length of the seasons, � (i.e. equations (3.5) and
(3.6)), is given in figure 4. Notice that the altitude, h, does
not enter into the best linear regression models as given
in table 1. This result justifies that we use only the geo-
graphical coordinates gwe and gsn in the model for �. With
optimal parameter values, equation (3.6) reads F =
0.998 � 0.011 � gwe � 0.0059 � gsn � 4.5 × 10�5 × gwegsn.
A graph of the resulting relative season length, � across
geographical space is presented in figure 5. The corre-
sponding predicted trajectory in the (�1, �2) parameter
space is depicted in figure 2c. Again, the seasonal forcing
is apparent: decreasing the length of the summer season
(�) changes the dynamics from multi-annual stable to
multi-annual cyclic populations. Notice, however, that the
lines in figure 2b are longer than the lines in figure 2c,
although both are supposed to model the transition from
the southwestern part of Hokkaido to the northeastern
part of the island. This is likely to be due to some of the
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Figure 2. (a) The estimated direct (�1) and delayed (�2)
annual density dependencies (see equation (3.1)) for all 189
populations. Two cubic smoothing splines (d.f. = 3) have
been fitted: a blue line for all data and a red line for data
from groups 1 and 2 (corresponding data-points are
coloured red). (b) The movement within the (�1, �2)
parameter space, along a straight line from the southwest
(gwe = 0, gsn = 24.7) to the northeast (gwe = 200, gsn = 179.1)
using the statistically derived model given in table 1. (The
�1 and �2 density dependencies are as predicted from the
statistical analysis using the predictors gsn and gwe in models
obtained by backwards selection (blue line) or using AIC
(red line)). (c) The corresponding movement within the
same parameter space using the �-model (see table 2). The
contour lines under the parabola within the triangles indicate
the period length of the cycle corresponding to the
autoregressive parameters; the period increases as going from
left to right in the figure.
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Figure 3. Graphical representation of the annual model
(equation (3.1)). The true population abundances are linked
to the observations through an observation model (equations
(A 1)–(A 3)). The arrows represent prior conditional
dependence (stochastic relationship) between nodes (i.e. data
observations or unknown parameters in the model).
Observed nodes are represented by square boxes and
unknown quantities by ellipses. Any node with an arrow
emanating from it pointing to some particular node v is
referred to as ‘parent’ of v. There is one ‘sheet’ for each year
t. Quantities without the index t is common for all years.

variance having been accounted for by the �-model for the
length of the summer season (see Appendix B).

(d) The seasonal model: decomposing the annual
density-dependent structure

The seasonal density parameters are shown in table 2.
As can be seen, there is a significant direct density depen-
dence during the winter (�aw1 = –1.64; CI: �1.71,
�1.57). During summer, there seems to be a somewhat
uncertain positive density dependence (�as1 = 0.4; CI:
�0.04, 0.85); however, it is clearly weaker than that dur-
ing the winter season. There is a weak, but statistically
significant delayed density-dependent component during
the winter (�aw2 = �0.35; CI: �0.55, �0.15) but not dur-
ing summer (�as2 = 0.17; CI: �0.10, 0.43). The simplify-
ing assumption (made by Stenseth et al. (1996)) that
spring densities are mapped onto autumn densities results
in similar conclusions, except that summer growth is not
found to be directly density-dependent, but strong and
significantly positively delayed density-dependent, the lat-
ter of which is most probably an artefact of the simplifying
assumption made by Stenseth et al. (1998) (see electronic
Appendix A, tables 4 and 5).

5. DISCUSSION

In this study, we have demonstrated that the relative
length of the seasons is a key factor in determining the
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Figure 4. The value of the optimization criterion (vertical
axis) for different values of b2 and b3. For each point in (b2–
b3) parameter space, the values of as1, as2, aw1 and aw2

(equations (3.3) and (3.4)) have been found by nonlinear
regression. The optimization criterion is the average of the
two r 2 values.

geographical density-dependent structure, as well as a key
factor in determining whether a population is cyclic or not
(i.e. seasonal forcing). By doing so, we have demonstrated
that the multi-annual density cycles seen in the grey-sided
vole in Hokkaido may be regarded as an example of sea-
sonal forcing (cf. Åström et al. 1996; Stenseth et al. 1998).
Specifically, we have demonstrated that, for the found sea-
sonal density-dependent structure, shortening the length
of the summer is sufficient to generate cycles (when start-
ing with a non-cyclic population).

Our results indicate that there is strong direct as well
as delayed density dependence during winter. The direct
density dependence deduced for the winter period may be
seen as a result of depletion of the winter food supply.
The delayed density dependence observed for the winter
may further be seen as a direct result of specialized vole
predators, such as the least weasel: the higher the vole
density is during the winter two years earlier, the more the
least weasel will be able to build up its own populations,
which subsequently will result in a delayed effect two years
later (e.g. Hanski et al. 1991).

The interpretation of the positive direct density depen-
dence deduced for the summer period is slightly uncertain.
This may, however, be a result of predator swamping (e.g.
Ims 1990a,b): given high spring densities of voles, pred-
ators may not be able to respond sufficiently fast to have
an impact on the vole population. Obviously, further
empirical studies are needed in order to pursue this further.

Understanding what factors generate the deduced sea-
sonal density-dependent structures remains a challenge,
requiring in-depth experimental work. Care is certainly
required when interpreting statistical results of this kind.
Indeed, based on results reported by Kaitala & Ranta
(2001) and Jonzén et al. (2002), the deduced statistical
lag-model(s) may be due to both density-dependent pro-
cesses (which we have assumed) as well as density-
independent processes (which we have ignored).
However, irrespective of which interpretation we choose
to adopt, the dynamic effect of changing season length
(i.e. seasonal forcing) remains: the shorter the summer
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length becomes, the more likely it is that multi-annual
cycles will occur.
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APPENDIX A: THE STATISTICAL OBSERVATION
MODEL

The expected number of voles caught during a trapping
session is related to the abundance of voles at the site and
the trapping effort. Let the number of voles caught at a
given site in year t to be given by zt. The ecological annual
process given by equation (3.1) is, as a first approxi-
mation, assumed to be linked to the observed number of
voles caught through a Poisson model

P(zt = z|xt) = exp(�
t)
z
t /z!, (A 1)

where the Poisson mean (assumed to be proportional to
the trapping effort and the population abundance) is
defined as


t = qTtexp(� � xt). (A 2)

The trapping effort Tt is a known quantity (see § 2) and
xt denotes the unknown log-abundance (centred around
�) for any year t. The parameter � represents the mean
of the log-transformed (true) population abundances.
From the nature of the data, we cannot estimate the aver-
age level � of the (true) population, nor the ‘trappability’
of the species in the given environment, q. However, we
can estimate the product of the average level and the
trappability, defined as exp(�) = q exp(�). This yields the
following parameterization


t = Ttexp(� � xt). (A 3)

A graphical representation of the quantities in the
annual model and their relationship is given in figure 3.
(It is worth noticing that with this approach there is no
need to add a constant in order to avoid taking logs of
zeros (cf. Stenseth et al. 1996).)

A complete Bayesian model consists of the joint prior
distribution for all unobservables (�1, �2, �, 
, �, and the
log-abundance for each year t (x1, x2,…, xN)) as well as
the joint distribution of the observables (the abundance
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Figure 5. The values of � as a function of geographical location (coordinates gwe and gsn), as predicted from the optimum
values of b2 and b3 (equations (3.6), (B 4) and (B 5)). (a) The predicted � from the present analysis. The average of the two
r2 values was used as optimization criterion. (b) Same as (a), but shown as contour lines. (c) and (d ) correspond to (a) and
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gwegsn; in the case of (c) and (d), equation (3.6) is given by F = 0.999 � 0.011 � gwe � 0.0060 � gsn � 4.6 × 10�5 × gwegsn.

data (z1, z2,…, zN) and the trapping effort (T1, T2,…,
TN)). By conditioning on the data, the posterior distri-
bution (i.e. the conditional probability of the unobservable
quantities of interest, given the observed data) is calcu-
lated (by successive application of Bayes’ theorem (e.g.
Gelman et al. 1995)). The posterior distribution may usu-
ally not be obtained analytically but can be computed
using Markov Chain Monte Carlo methods, like, for
example, Gibbs sampling (Gilks et al. 1996). Bayesian
inference is easily utilizable through the software package
BUGS (Bayesian inference using Gibbs sampling
(Spiegelhalter et al. 1999)). A Bayesian analysis (through
the use of BUGS) is flexible and also easier to carry out
than the more classical approach of using maximum-
likelihood estimation (Meyer & Millar 1999a,b; Tufto et
al. 2000).

To fully specify our model, a prior distribution has to
be defined for all parameters that are not directly con-
ditioned on other quantity or observed data (i.e. nodes in
the graph without any ‘parents’; �1, �2, � and �). Only
vague (i.e. essentially flat) prior distributions were used
(�1 � N(0,100), �2 � N(0,100), � � N(0,100) and 1/�2

� gamma distribution (0.001, 0.001)), meaning that the
prior assumes essentially nothing about the parameters
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relative to what is learned from the sample. We performed
90 000 iterations of the Gibbs sampler, using WinBUGS
(the BUGS version for Windows; http://www.mrc-bsu.
cam.ac.uk/bugs/) v. 1.2, after a ‘burn-in’ of 10 000 iter-
ations. (Using a few arbitrary selected series, preliminary
analyses (applying the extensive convergence statistics
available in the coda software of Best et al. (1995)) sug-
gested that the ‘burn-in’ period and the sample size were
appropriate.) Convergence was assessed through the runs
of multiple chains, and for each run comparing estimates
from the first and second half of the chains. Moreover,
autocorrelations within the chains seemed to be reason-
ably low (indicating that the mixing of the Gibbs sampler
is not too slow; e.g. Raftery & Lewis 1992). Posterior
means of �1 and �2 were taken as the estimates of annual
direct and delayed density dependencies (see electronic
Appendix A, table 3) and utilized in further analyses
(using a frequentist approach).

APPENDIX B: DETERMINING THE PARAMETERS
OF EQUATION (3.6)

We assume that �, the length of the breeding season, is
a logistic function of the geographical location:
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�i =
8.5
12

=
exp( f(gwe,i,gsn,i))

1 � exp( f(gwe,i,gsn,i))
, (B 1)

where f(gwe,1,gsn,1) = b0 � b1gwe,1 � b2gsn,1 � b3gwe,1gsn,1.
To determine b0, b1, b2 and b3 of equation (B 1), we

start by assuming that �, the length of the breeding season,
is �1 = 8.5 months in the southwest (gwe,1 = 4.3,
gsn,1 = 11.3) and �2 = 4.5 months in the northeast
(gwe,2 = 157.87, gsn,2 = 146.54) (e.g. Kaneko et al. 1998).
Neither the locations of the geographical reference points
nor the assumed season length at these points are critical
assumptions; they are merely chosen to achieve an easier
interpretation of the results in biological terms. These
assumptions are expressed as

b0 � b1gwe,1 � b2gsn,1 � b3gwe,1gsn,1 = ln� �1

1 � �1
� = logit(�1)

= 0.8873, (B 2)

b0 � b1gwe,2 � b2gsn,2 � b3gwe,2gsn,2 = ln� �2

1 � �2
� = logit(�2)

= �0.5108. (B 3)

After some algebra, we can express b1 in terms of b2 and
b3, and b0 in terms of b1, b2 and b3:

b1 =
�0.5108 � 0.8873 � b2(gsn,1 � gsn,2) � b3(gwe,1gsn,1 � gwe,2gsn,2)

gwe,2 � gwe,1
,

(B 4)

b0 = 0.8873 � b1gwe,1 � b2gsn,1 � b3gwe,1gsn,1. (B 5)

We determined b0, b1, b2 and b3 by searching through a
large number of b2–b3 combinations. For each combi-
nation, we computed b0 and b1, then computed � for each
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location, after which we used nonlinear regression to
determine the values of the parameters as1, as2, aw1 and
aw2 providing the best fit of equations (3.3) and (3.4) to
the data. Finally, we chose the b2�b3 combination with
the highest average r2-value. We estimated the standard
errors and confidence intervals (CIs) of as1, as2, aw1 and
aw2 based on 1000 bootstrap samples of �1, �2 and �,
where � was computed from the chosen optimal b2–b3

combination.
The optimization with respect to b2 and b3, jointly with

finding the parameters as1, as2, aw1 and aw2 by nonlinear
regression, is depicted in figure 4, and the resulting �-
function across the geographical space of Hokkaido is
depicted in figure 5. The distributions of the bootstrapped
estimates of as1, as2, aw1 and aw2 are shown in figure 6.

We have confirmed (results not shown) that the same
geographical pattern as found in this paper arises if the
original index of Stenseth et al. (1998), as well as modifi-
cations thereof, are used.
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