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From HIV infection to AIDS: a dynamically induced

percolation transition?
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The origin of the unusual incubation period distribution in the development of AIDS is largely unresolved.
A key factor in understanding the observed distribution of latency periods, as well as the occurrence of
infected individuals not developing AIDS at all, is the dynamics of the long-lasting struggle between HIV
and the immune system. Using a computer simulation, we study the diversification of viral genomes under
mutation and the selective pressure of the immune system. In non-HIV infections, vast spreading of viral
genomes in genome space usually does not take place. In the case of an HIV infection, this may occur,
as the virus successively weakens the immune system by the depletion of CD4* cells. In a sequence space
framework, this leads to a dynamically induced percolation transition, corresponding to the onset of AIDS.
As a result, we obtain a prolonged shape of the incubation period distribution, as well as a finite fraction
of non-progressors that do not develop AIDS, comparing well with results from recent clinical research.
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1. INTRODUCTION

It is a well-known empirical fact that incubation times of
most diseases obey a lognormal distribution that is often
referred to as ‘Sartwell’s model’ (Sartwell 1966). More
recently, the underlying dynamics that generates the incu-
bation period distribution, as well as mechanisms that lead
to deviations from the common distribution, have gained
attention (Philippe 2000). One of the most prominent
examples of a deviation from the lognormal case is the
distribution of waiting times between HIV infection
(seroconversion) and the onset of AIDS, which is sup-
ported by datasets from various studies (CASCADE Col-
laboration 2000a,b; Robert Koch Institut 1998). The
divergence from lognormality—extraordinarily long incu-
bation times and the occurrence of non-progressors
(patients not developing AIDS)—indicate more complex
generating dynamics than observed in other infectious
diseases. While much effort has been spent on para-
metric estimates of the incubation period distribution
(Dangerfield & Roberts 1999), here we study possible
mechanisms of the underlying dynamics. Any such
attempt has to take into account the HIV-specific negative
feedback to the host’s immune system. While the immune
system develops an ordinary epitope-specific answer to
HIV, HIV targets the replication machinery of CD4*
immune cells, which are depleted when viruses proliferate.
As a result, the host’s resistance against antigens is glo-
bally weakened.

In earlier differential equation approaches, the onset of
AIDS has been associated with the passage of an antigenic
diversity threshold (Nowak ez al. 1991). More recently,
progress has been made to overcome the limitations of
analytical models with respect to topological effects in the
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shape space of receptors and in physical space. Inspired
by early models (Pandey & Stauffer 1990), cellular
automaton models have been defined and investigated
that show the typical separation between the time-scales
of primary infection and the onset of AIDS (Hershberg ez
al. 2001; Zorzenon dos Santos & Coutinho 2001).

In this article, we take an alternative approach and com-
bine cellular automata with a sequence space framework
in order to model typical characteristics of the time-course
of HIV infection. In the following sections, we first define
a framework to represent ordinary infections within the
scope of percolation theory. From there we extend the
model to describe the special case of HIV infection and
discuss the distribution of incubation periods. Numerical
simulations are complemented by a stochastic model for
the origin of the variety in incubation period distributions.
Finally, we discuss our findings in the context of empirical
data on HIV survival. Here, we extend the scope of earlier
models, making estimates on the behaviour of the incubation
period distribution beyond the range of empirical data.

2. PERCOLATION MODEL OF INFECTION

In the course of an infection, one generally observes a
diversification of viral genomes due to mutation and the
selective pressure of the immune system. These coevol-
utionary dynamics can be modelled within a sequence
space framework (Perelson & Weisbuch 1997; Kamp &
Bornholdt 2002). Representing viral genomes by strings
of length #, built up from an alphabet of length A, we can
describe their diversification as a spread in sequence
space. Analogously, let us assign a sequence to the
respective immune receptor matching the viral strain. As
any string in sequence space is assumed to represent a
viral epitope, as well as its complementary immune recep-
tor, it is characterized by a viral and an immunological
state variable. A mathematical framework to describe the
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dynamics in such a space can be found in percolation
theory (Stauffer & Aharony 1992) and in theories for epi-
demic spreading, i.e. SIR models (Hethcote 2000; Mor-
eno et al. 2001), which are equivalent to bond percolation
(Grassberger 1983). However, while those models apply
cellular automata to the interaction of organisms, we here
apply the mathematical concept to modelling populations
of immune cells and viruses within one organism. Adopt-
ing the notation of SIR models, we call a site in sequence
space susceptible, if it in principle can harbour a virus. It
is denoted as infected if the system contains a virus with
an epitope motif represented by the site’s string. If a viral
sequence meets an immune response, it is removed and
the system is immunized against it. In both this case and
in the case in which a site is in principle inaccessible for
a virus, it is called recovered (or removed). Apart from
this, two immunological states are distinguished. An
immune receptor shape may or may not be present within
the immune repertoire. We set up a system in which a
site is inaccessible for viral sequences with probability D,
accounting for the fact that the viral genome is not arbi-
trary. In addition, we introduce a probability of immuno-
logical presence at a site in sequence space p;(z), with
p:s(0) = p,. This means that for sufficiently large systems
the initial density of recovered sites is R(0) =D,
+ po — Dyp,- Also, taking into account the densities of
susceptible sites S(z) and of infected sites p, (z), one obtains
the relationship

S@ +p,@®+R®=1 Ve 2.1)

The replication of viral and immunological entities is
afflicted with copy fidelities g, < 1 and g¢;, < 1, denoting
the respective probability of correct duplication of a
sequence’s digit. As a result, the system shows viral (and
in response immunological) spread in sequence space.
Introducing some viral strains into a so far unaffected sys-
tem leads to dynamics that is modelled within the cellular
automaton approach by iterating the following steps.

(1) Choose a random site.
(i) If the site represents an active immune receptor:

(a) mutate any bit with probability 1 — ¢,

(b) if a new immunological strain is generated and
the mutant matches an infected site, reset the
site’s viral status to recovered and occupy that
site with an immune receptor.

(iii) If the site is infected:

(a) mutate any bit with probability 1 — ¢,

(b) if a new strain is generated and corresponds to
a susceptible site the site gets infected.

A viral strain generates a specific mutant strain at
Hamming distance d (which is the number of differing
digits) with probability (1 — ¢,)%? ¥\ — 1)9, which will
survive as long as it meets a susceptible site. Equally, an
immunological mutant strain is originated with prob-
ability (1 — ¢;)% " %A — 1)? under the condition that it
coincides with an infected site. Otherwise, we assume that
the immunological mutant is not sufficiently amplified to
establish a new strain.

This scenario corresponds to bond percolation in a fully
connected graph with an occupation probability decaying
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exponentially with the Hamming distance from the source
of infection. Such a system shows two regimes of qualitat-
ively different behaviour. Below a percolation threshold,
the source of infection will stay negligible in size compared
with the system size, such that in the limit of infinite sys-
tem size R(e°) = R(0). Above the percolation threshold, a
virus will spread all over the system before it gets defeated.
Accordingly R(«) > R(0).

To determine the threshold conditions within a mean
field approach (‘fully mixed’ approximation), we intro-
duce the following system of differential equations

ds
Fi —(1 = g)p,S; (2.2)
d v
=== e, + (1= DSp. 23)
dpis
4 (1 = g)pypiss (2.9)
dR
e (1 — g)pips- (2.5)

Following arguments very similar to those in Moreno ez
al. (2001), one gets a fixed point equation for the fraction
of recovered sites R, = R(«) in the stationary state:

1-45
R.=1-(~Dy~p+ Do)\ m—p 55
- R.. — Dy + Dyp,
(2.6)
Apart from the trivial solution R, =D, + p, — Dyp,

= R(0), which means that no virus enters the system or at
least cannot gain macroscopic areas in sequence space,
above the percolation threshold a second solution of the
fixed point equation can be found. This is equivalent to
the fact that percolation occurs if the following inequality
holds (Moreno et al. 2001):

1_ n
QV> Po .
1—¢¢ 1- R0

(2.7)

The theoretical findings have been confirmed by com-
puter simulations with various sets of parameters. In the
example of D, = 0.5, ¢, = ¢;, = 0.95, n =15, A = 2 the simu-
lations lead to a critical immunological density p§ = 0.32
comparing well with the theoretical value from equation
(2.7) p§ =1/3.

Obviously, the immune system generally operates below
the percolation threshold, as an adequate immune
response can defeat a viral attack before strains spread all
over sequence space. Nonetheless, it is reasonable to
assume that the immune system operates near the perco-
lation threshold, as unnecessarily high immune receptor
densities p, involve competitive disadvantages.

3. PERCOLATION TRANSITION FROM HIV
INFECTION TO AIDS

We are now in the position to extend our model to
include HIV dynamics. An HIV model has to take care of
characteristic peculiarities of HIV infections, i.e. the
destruction of the immune system by the virus. We con-
sider this by extending the algorithm of § 2 by the
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Figure 1. Density of viral strains p,(z) in sequence space
under evolution of the system (D,= 0.5, po=0.325,
¢v=¢qis=0.95, n=15, A =2, p=0.0001).
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Figure 2. Density of immunologically active sites pi(z) in
sequence space (Do= 0.5, po=0.325, ¢,=¢q;s=0.95, n=15,
A =2, p=0.0001). Note the analogy to the decline in CD4*
cells under HIV infection.

following rule: at any iteration step each viral strain is
given a chance to meet a random immunological clone
with probability p,(z), which thereafter is destroyed with
probability p. If the affected site in principle is accessible
for a viral strain the viral status changes back to suscep-
tible. We initialize the system near, but below, the perco-
lation threshold, which is the natural state of an immune
system that has not yet suffered from an attack by HIV.
As the system’s qualitative behaviour shows insensitivity to
the specific choice of parameters, we choose the parameter
settings: D, = 0.5, p, = 0.325, ¢, =¢,,=0.95, n=15, A = 2.

Figures 1 and 2 show simulation results for p = 0.0001,
exhibiting characteristics typical to the course of disease
from HIV infection to the onset of AIDS. One observes a
drift of viral epitopes due to immune pressure as found in
HIV-infected individuals (Wei ez al. 1995; Barouch ez al.
2002). Moreover, the simulations show fluctuations in the
total number of actual strains, eventually sharply increas-
ing, which corresponds to the onset of AIDS (Nowak ez
al. 1991). Likewise, it is an empirical fact that the disease
progresses with a depletion of CD4" cells (Vergis &
Mellors 2000), which can be assumed to be accompanied
by a loss in diversity of the immune repertoire, as shown in
figure 2. In this picture, the immune system is successively
weakened while fighting the viral attack and ultimately
breaks down when the virus begins to percolate in
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sequence space. The virus dynamically drives the system
from a subcritical regime above the percolation threshold.

It will be interesting to investigate the distribution of
waiting times until percolation among systems only dif-
fering in their random initialization, which corresponds to
the incubation period distribution. To understand the
generated distribution from a theoretical point of view, we
have to take care of the stochastic nature of p, as seen in
figure 1. As described in Appendix A, we assume p, to
follow a generalized geometric Brownian motion with
time-dependent growth rate r(z). This process p, has a
lower absorbing boundary for p,(z) = 27" and converts into
exponential growth after having passed an upper point of
no return p¢. The first passage time distribution with
respect to the upper boundary corresponds to the incu-
bation period distributions under investigation. It is
derived in Appendix A and is discussed in the context of
simulation results and empirical HIV data in the follow-
ing section.

4. RESULTS AND DISCUSSION

The virgin system is infected within a ball that includes,
for n =15, 15 one- and

%)
2
two-bit mutants leading to

15
p.(0) =2*15<1 + ( )

=~ 0.0012.

15
+<2>>(1 — Dy — py + Dypy)

A lower absorbing boundary of p, is given by 27!° as less
than one viral strain cannot exist. Further evaluation of
the simulations yields estimates of p¢ = 0.002 where the
virus begins to percolate. Taking this together, we will be
able to analyse the simulation results from the point of
view of first passage time distributions (see Appendix A).

We have run simulations for various choices of p mim-
icking viruses with different aggressiveness towards the
immune system. For p as large as 0.005, we hardly see
any time-period of struggle between the immune system
and the virus leading to an immediate exponential growth
of p,. The system shows very short incubation periods and
a vanishing probability of viral defeat. The distribution of
incubation periods can then be approximated by a simple
inverse Gaussian distribution. Decreasing p leads to longer
incubation periods that correspond to periods of combat
between virus and immune system as observed in figure 1.

For further discussions, we focus on simulations with
p=0.0001 as they show a distribution of incubation per-
iods that are in best accordance with real data on HIV
incubation periods.

Figure 3 offers a comparison of a survival function gen-
erated by our cellular automaton model with the respect-
ive data describing the probability that an HIV-positive
patient has not yet developed AIDS at time ¢ after sero-
conversion (Robert Koch Institut 1998). Note that the
survival curve fits for patients not treated with highly
active antiretroviral therapy (CASCADE Collaboration
2000a,b). It shows that the model reproduces the main
characteristics of the real system. In particular, the simula-
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Figure 3. Comparison of the probability for HIV-positive
patients of not yet having developed AIDS with a survival
distribution generated by our simulations (after adequate
renormalization of the time axis, Dy= 0.5, p,=0.325,
¢v=¢is=0.95, n=15, A =2, p=0.0001, p,(0) =0.0012,
ps=0.002). Solid line, HIV survival data; dotted line,
simulation results.

tions predict the occurrence of long-term survivors as
observed in reality and link it to a dynamical percolation
mechanism. We would like to emphasize that, in this
framework, a quantitative comparison of our model para-
meters with experimental data is not very meaningful.
However, any parameter setting that corresponds to a sys-
tem that is initially below the percolation threshold and
that is attacked with moderate aggressiveness (moderate
values of p) will show the same qualitative behaviour. This
demonstrates the robustness of our model and ensures its
applicability to larger sequence spaces than those simu-
lated here.

To analyse the data in the light of a first passage time
distribution, we have to specify the functional form of the
viral growth rate r(z). Unlike the case of a very aggressive
virus (large p), a constant growth rate r(z) = u > 0 does
not fit the simulation results for viruses that are only mod-
erately destructive (small p). Therefore, let us approximate
r(z) underlying the simulations by an expansion in powers
of ras r(t) = + yr.

This is exemplified by figure 4, where the incubation
period distributions corresponding to the survival curves
shown in figure 3 are approximated by a first passage time
distribution with = 0.064, y= —0.0092 and o2 = 0.0091.
It corresponds to the picture that the viral species is able
initially to establish new strains, but that its opportunities
for spreading in sequence space are successively dimin-
ished. In many cases, the virus nevertheless is able to per-
colate sequence space if its suppression takes effect too
slowly. This happens in a non-deterministic manner due
to stochastic fluctuations corresponding to ¢? >0 and
generates the observed incubation period distribution.
Limitations of the linear approximation become obvious
with increasing z, but can easily be handled when con-
sidering further terms in the expansion of r(z).

Describing the behaviour of incubation periods within
our model, we can summarize that one observes an
increase in waiting times before percolation and an
enlarged fraction of cases where viral strains go extinct
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Figure 4. Comparison of the incubation period distributions
corresponding to figure 3 with the theoretical model with
r(®) =0.064 — 0.0092z, 02=0.0091. Open circles, HIV
incubation period distribution; dotted line, simulation
results; solid line, fit of theoretical distribution.

with decreasing p, i.e. less aggressive viral strains. This
finds clear correspondence in real HIV statistics. p is a
measure of the vulnerability of the immune system under
the attack of HIV. This virus is capable of destructive pen-
etration into T-helper cells (CD4" cells), not only by
membrane fusion mediated by CD4, but also it generally
needs an additional co-receptor, which is referred to as
CCR5. As almost all HIV strains rely on this mechanism
for replication in T cells, individuals who show a homo-
zygous mutation leading to a non-expression of the CCR5
receptor have proven to be resistant against HIV infection
(Lu er al. 1997). This is well in accordance with our
model, which, for p =0, predicts that no percolation will
occur. More recently it has also been shown that, in indi-
viduals with heterozygous genotypes, a slower progression
to AIDS can be observed. Moreover, those patients have
a reduced risk in maintaining the HIV infection and
developing AIDS (Marmor ez al. 2001). Therefore, a
reduction of CCRS5 receptors on CD4™" cells, making viral
fusion more difficult, already improves the chance for pro-
longed or even total survival. This fits well with the predic-
tions of the model for a decrease in p.

Recent progress in vaccine research (Amara ez al. 2001;
Lifson & Martin 2002; Shiver ez al. 2002) further supports
the model. From the model’s point of view, vaccination
corresponds to a local increase in the immune receptors’
density p,. This drives the system far below the perco-
lation threshold and, accordingly, HIV will hardly manage
to spread in sequence space.

In conclusion, non-trivial aspects of HIV/AIDS
phenomenology are predicted within a dynamical cellular
automaton model. Prolonged survival, as well as a finite
fraction of non-progressors, can be traced back to an
enhanced stability below the percolation transition in this
framework. Consequently, from the percolation model’s
point of view, vaccination and receptor blocking are
encouraged as efficient strategies to overcome an HIV
infection.

C.K. thanks the Stiftung der Deutschen Wirtschaft for finan-
cial support.
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APPENDIX A: FIRST PASSAGE TIME
DISTRIBUTIONS FOR GEOMETRIC BROWNIAN
MOTION BETWEEN TWO ABSORBING
BOUNDARIES

Facing the stochastic nature of p,(z), we choose an
ansatz in the regime before the percolation transition that
expects a time-dependent viral growth rate r(z) of p,(z)
superposed by noise. Within the Stratonovich interpret-
ation (@ksendal 1998), the underlying stochastic differen-
tial equation leads to

p(0) = p(0)eR0 B0, @A

12

R() =J r(¢)dr',

0

(A2)

with B,(0,0%) denoting Brownian motion where mean is 0
and variance is ¢?z. Accordingly, p, is described by geo-
metric Brownian motion that is locked between two
absorbing boundaries at 27" (less than one strain cannot
exist) and an upper critical concentration p{ that leads to
percolation of the virus. This can be translated to Brown-
ian motion B,(R(z),0?) (mean R(z) and variance ¢?z) with
B, =0 and limited by

The Fokker—Planck equation for the probability density
p(x,t) associated with B,(R(z),0?) is solved by an adequate
superposition of Gaussians considering the boundary con-
ditions p(x,0) =6(0) for all x € [a,6], p(—a,t) =0 and
p(bsr) =0 for all ¢ (reflection principle, mirror charge
solution) (Honerkamp 1993). From this, one can derive
the probability flow ¥(x,z) corresponding to B,(R(2),0?)
(Gardiner 1983; Honerkamp 1993). ¥(b,z) represents the
contribution of the probability flow being absorbed at the
boundary b > 0 at time z. Accordingly, it is the first pass-
age time distribution of the process p,(z) with respect to
the upper boundary p¢, requiring that it has not passed
the lower absorbing boundary at 27" To quantify ¥(b,z),
one obtains, after lengthy but canonical calculations,

F(a,b,0%1) ( _ [6— R(l)]2>

b,t) =

(1) \/2 ) 2021

e I e
gt o2t

(M 1 e (M .
P ot P o

Obviously, in the case of only one absorbing boundary
(and r(2) = u, R(z) = ur) we get the inverse Gaussian distri-
bution as a well-known solution for this special problem
(Feller 1968; Redner 2001). A parameter setting of
D,=0.5, p,=0.325, ¢, =¢;,=0.95, n=15, A =2,

(A3)

a— »

+ b| ex — b.

15 15
pv(0)=2’15<1+<1 +<2>>(1_D0_P0+D0P0)

=~ 0.0012, as discussed in § 4, leads to a=3.7 and
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b=0.51. In the range of observation considered in § 4,
one finds F(a,b,0%t) = b corresponding to the substitution
of the lower boundary 27" by zero, justifying this semi-
continuous approximation.
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