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A popular theory has proposed that anisogamy originated through disruptive selection acting on an ances-
tral isogamous population, though recent work has emphasized the importance of other factors in its
evolution. We re-examine the disruptive selection theory, starting from an isogamous population with two
mating types and taking into account the functional relationship, g(m), between the fitness of a gamete
and its size, m, as well as the relationship, f(S ), between the fitness of a zygote and its size, S. Evolutionary
game theory is used to determine the existence and continuous stability of isogamous and anisogamous
strategies for the two mating types under various models for the two functions g(m) and f(S ). In the
ancestral unicellular state, these two functions are likely to have been similar; this leads to isogamy whether
they are sigmoidal or concave, though in the latter case allowance must be made for a minimal gamete
size. The development of multicellularity may leave g(m) relatively unchanged while f(S ) moves to the
right, leading to the evolution of anisogamy. Thus, the disruptive selection theory provides a powerful
explanation of the origin of anisogamy, though other selective forces may have been involved in the sub-
sequent specialization of micro- and macrogametes.
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1. INTRODUCTION

Isogamy is commonplace (but not universal) in unicellular
organisms, while anisogamy prevails exclusively in multi-
cellular animals and plants. Several theories exist for the
evolution of anisogamy (reviewed by Randerson & Hurst
2001a). Parker et al. (1972) proposed that males and
females originated through disruptive selection acting on
an ancestral isogamous (i.e. single sex) population. This
arises from three very simple assumptions as follows.

(i) In a primitive marine ancestor, individuals produce
a range of gamete sizes, and fusion between pairs of
gametes is at random in the sea.

(ii) Each parent has a fixed budget for reproduction, so
that there is a size–number trade-off: the number of
gametes produced is inversely proportional to their
size.

(iii) The success (e.g. viability) of the zygote increases
with its size, or provisioning, which equals the sum
of the sizes of the two fusing gametes.

In this model, the most frequent fusions would be between
the smallest (S) gametes, but the resulting zygotes would
experience low viability compared with zygotes arising
from the fusion of large gametes (O). Thus, S-producers
succeed by gaining most fusions with O gametes, and O-
producers succeed because they generate zygotes with
high viability, having more energy for development. Indi-
viduals producing intermediate-sized gametes (I), though
originally commonest, decrease in frequency relative to S-
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and O-producers, resulting in a population consisting of
proto-males and proto-females.

The condition necessary for I gametes to be lost in this
model is a very simple one, and relates to how viability
and other aspects of a zygote’s fitness, f, increases with its
size, S. Parker et al. (1972) derived their conclusions from
computer simulations, but the model has been investi-
gated from a population-genetic and a game-theoretic
viewpoint by Charlesworth (1978) and by Maynard Smith
(1978, 1982), respectively.

Disruptive selection remains a major theory for the ori-
gin of the two sexes in both the plant and animal king-
doms. It has some empirical support, based on the
transition from unicellularity to multicellularity in certain
algal groups, notably the Volvocales (Knowlton 1974; Bell
1985; Masden & Waller 1983; Randerson & Hurst
2001b), though the present mode of reproduction of Vol-
vocales does not immediately fit the assumptions of the
model (Randerson & Hurst 2001a,b).

However, Randerson & Hurst (2001a) emphasize the
importance of other factors in the evolution of anisogamy
because they claim that disruptive selection does not lead
to anisogamy unless the form of the relationship between
a zygote’s fitness and its size, f(S ), is accelerating at the
origin. They also claim that this is an unusual assumption
for which there is no empirical evidence. We have shown
elsewhere that both of these claims are incorrect (Bulmer
et al. 2002). The model of Levitan (2000; see also Vance
1973) for zygote survival in echinoids leads to a zygote
fitness function that is accelerating at the origin (see § 2b
below). Randerson & Hurst (2001a) incorrectly conclude
that the zygote fitness function under this model is zero
below some finite size, above which it is decelerating, and
they claim that anisogamy cannot evolve in this case by
disruptive selection. But the latter claim is incorrect even



2382 M. G. Bulmer and G. A. Parker The evolution of anisogamy

if the zygote fitness function were of this form since this
type of fitness function is very similar to a sigmoidal func-
tion, and both can give rise to anisogamy (Bulmer et al.
2002). In response to our criticism, Randerson & Hurst
(2002) postulate that a biologically plausible model must
assume some finite size below which zygote fitness is zero,
leading to the paradox that disruptive selection always
gives rise to anisogamy if our argument is correct. This
leads to the opposite conclusion to that of Randerson &
Hurst (2001a) that disruptive selection never gives rise to
anisogamy under plausible assumptions about the form of
the zygote fitness function. The flaw in the argument of
Randerson & Hurst (2002) is that it ignores the fact that
if there is a size limit below which zygote fitness is zero,
there must also be a size limit below which gamete fitness
is zero (see § 2d).

Our present aim is to re-examine the conditions that
lead to isogamy and anisogamy under disruptive selection
in order to resolve the confusion about the predictions of
this theory that now exists. The theory comes in two
forms. The first form starts from an isogamous population
with random mating between all gametes (Parker et al.
1972; Maynard Smith 1978). After the evolution of aniso-
gamy, the evolution of preferential mating between micro-
and macrogametes follows as a separate step (Parker
1978). The second form starts from an isogamous popu-
lation with two mating types, with fusion restricted to
gametes from individuals of opposite type (Maynard
Smith 1982; Bulmer 1994). Hoekstra (1987) has argued
that this is the correct starting point for models of the
evolution of anisogamy. It is not necessary in this scenario
to consider the evolution of preferential mating between
gametes of different size since the mating-type locus is
supposed to be linked to the gamete size locus; Charles-
worth (1978) has shown that there will be selection to sup-
press crossing-over between these loci.

We shall use evolutionary game theory to determine the
conditions for the evolution of anisogamy under a model
that assumes two mating types and takes into account the
functional relationship between the fitness of a gamete and
its size, as well as the relationship between the fitness of
a zygote and its size. We argue that the key to understand-
ing the isogamy–anisogamy dichotomy is the interaction
between these functional relationships. During the tran-
sition from uni- to multicellularity, the zygotic fitness
function moves to the right while the gametic fitness func-
tion remains roughly constant; the shift in their relative
position together with their shape determines the evol-
ution of anisogamy from isogamy.

2. THEORY AND RESULTS

(a) The model
We assume that fusions occur between gametes of ‘�’

and ‘–’ individuals (mating types). All � individuals pro-
duce n1 gametes of size m1, and – individuals produce n2

gametes of size m2, with ni = M/mi, where M is the fixed
budget for reproduction. Zygotes are of size S = m1 � m2,
and the survival to adulthood of a zygote of size S is f(S ).
The chance that a gamete of size m will survive to mate
is g(m).

Under these assumptions, the reproductive fitness of �
individuals is

Proc. R. Soc. Lond. B (2002)

w1(m1,m2) =
Mg(m1)

m1
f (m1 � m2), (2.1a)

and the reproductive fitness of – individuals is

w2(m1,m2) =
Mg(m2)

m2
f (m1 � m2). (2.1b)

We seek an evolutionarily stable strategy (ESS), (a, b), in
which a is the best response of � individuals to m2 = b and
b is the best response of – individuals to m1 = a. The con-
ditions for the existence and continuous stability of the
isogamous strategy with a = b and of the anisogamous
strategy with a � b are of particular interest.

In testing for continuous stability we assume that m1

evolves to its optimal size with m2 fixed, that m2 then
evolves to its optimal size with m1 fixed, and so on, until
the system converges either to an isogamous or an aniso-
gamous strategy. McNamara et al. (2003) develop a more
realistic but more complicated method of testing for con-
tinuous stability in which m1 and m2 coevolve continuously
with each other. The two methods are equivalent for the
class of models in equations (2.1).

(b) The Vance survival function
Vance (1973; see also Levitan 2000) proposed an

inverse exponential form for zygote survival, based on the
fact that the time taken for a larva to reach a size capable
of independent feeding (and hence unreliant on zygotic
provisioning) typically relates inversely to egg (= zygote)
size. Following Vance (1973), we assume that the survival
(and other aspects of success) of gametes and zygotes in
relation to their size can be approximated respectively as

g(m) = exp��
�

m�,

f(S) = exp��
�

S�, (2.2)

where � and � are positive parameters. This survival func-
tion is sigmoidal, accelerating from the origin until m = �/2
(S = �/2) and then decelerating. It is probably realistic for
gamete as well as for zygote survival. (Randerson & Hurst
(2001a) incorrectly infer a different zygote survival func-
tion from the work of Levitan (2000); see Bulmer et al.
(2002).)

Consider the log fitness of individuals of mating type i
(i = 1, 2),

vi = lnwi = lnM �
�

mi
�

�

m1 � m2
� lnmi. (2.3)

Then

∂vi
∂mi

=
�

m2
i

�
�

(m1 � m2)2 �
1
mi

. (2.4)

The isogamous ESS, m1 = m2 = m∗, satisfies

∂vi
∂mi |

m1 = m2 = m∗
= 0, (2.5)

whence

m∗ = � �
�

4
. (2.6)
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Figure 1. (a–c) The best response function R(m) and (d–f ) its iterate R(R(m)) under the model in equation (2.2) when � = 1.
(a,d) � = 1. (a) There is an isogamous ESS at (1.25, 1.25), which is continuously stable because the slope of the response
function is greater than –1 at this point; (d ) there is no anisogamous ESS. (b,e) � = 4. (b) There is an isogamous ESS at (2,2),
which is on the brink of continuous instability since the slope of the function at this point is –1; (e) an anisogamous is about
to be born. (c,f ) � = 10. (c) There is an isogamous ESS at (3.5, 3.5), but it is continuously unstable because the slope of the
response function at this point is less than –1; ( f ) there is an anisogamous ESS at (1.13, 8.87).

Although equation (2.6) is an ESS, it may not be continu-
ously stable (Eshel 1983; McNamara et al. 2003). An ESS
in a game with a continuous strategy set is continuously
stable or unstable according as it converges back to the
equilibrium after a small perturbation, or diverges from it.
To investigate whether the isogamous ESS is continuously
stable or unstable, consider the best response of m1 given
m2, R(m2), satisfying

∂v1

∂m1|
m1 = R(m2)

=
�

R2(m2)
�

�

(R(m2) � m2)2

�
1

R(m2)
= 0, (2.7)

whence

�(R(m2) � m2)2 � �R2(m2) =

R(m2)[(R(m2) � m2)2]. (2.8)

We expect the best response function R(m) to have a
negative slope (the larger R(m), the smaller the optimal
value of m2). If this slope is between –1 and 0, there is
undercompensation leading to continuous stability; but if
it is less than –1, there is overcompensation leading to
continuous instability. This can be demonstrated in figure
1a–c. If we take a given m on the broken line, the intersect
on the curve above or below it gives the best reply, R(m).
This value can be extrapolated to its equivalent new m
value by finding its intersect, horizontally left or right, on
the broken line. To this new m, we can obtain a new R(m),
and so on. The resulting figure is called a cobweb diagram
(Sandefur 1990). If R�(m) � –1 at m = m∗ (under-
compensation; figure 1a), the cobweb converges towards
the intersection of the curve and broken line, which is
therefore a stable equilibrium. If R�(m) � –1 (over-
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compensation; figure 1c), the cobweb diverges away from
the intersection, which is an unstable equilibrium.

Differentiating equation (2.8) with respect to m2 and
evaluating it at m2 = m∗ (using the facts that R(m∗)
= m∗ = � � �/4), we find that the slope of the best
response function at the isogamous ESS is

R� = �
�

4�
. (2.9)

This slope is always negative, as expected. It is greater
than –1, giving continuous stability, when � � 4�, but it
is less than –1, giving continuous instability, when � � 4�.
(When � � 32�, the strategy (m∗, m∗) is not even a global
ESS because the cubic equation (2.8) has three real roots
near m2 = m∗. For example, when � = 1, � = 50, so that
m∗ = 13.5, the roots of equation (2.8) at m2 = 13.5 are 1.5,
9 and 13.5; the first and third roots are maxima for the
log fitness, with v1(1.5,13.5) � v1(13.5,13.5). Thus,
m1 = 13.5 is only a locally, not a globally, best response
to m2 = 13.5.)

The anisogamous ESS (a, b) with a � b is a pair of num-
bers such that a is the best response to b and b is the best
response to a:

R(b) = a,
R(a) = b, (2.10)

so that

R(R(b)) = R(a) = b,
R(R(a)) = R(b) = a. (2.11)

This ESS (if it exists) can be found by plotting the iterated
response function, R2(m) = R(R(m)), and finding the
points, other than the isogamous ESS, at which it inter-
sects the 45° line through the origin (figure 1d–f ). It does
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not exist when the isogamous ESS is continuously stable
(figure 1d), but arises when the isogamous ESS becomes
continuously unstable (figure 1f ). This behaviour is anal-
ogous to the bifurcation of a stable equilibrium into a
stable two-point cycle in discrete time models of a single
population (May & Oster 1976; Sandefur 1990; Bulmer
1994).

It follows from the chain rule for differentiation that
(R2)� = (R�)2 at the isogamous ESS. Geometrical consider-
ations (see figure 1) show that an anisogamous ESS only
exists when (R2)� � 1, so that an anisogamous ESS only
exists when the isogamous ESS is continuously unstable.
Following the graphical procedure described in the pre-
vious paragraph, we see that if (R2)� � 1 (figure 1d), the
cobweb from any m converges towards the isogamous
ESS. But if (R2)� � 1 (figure 1f ), the cobweb from any m
smaller than the isogamous ESS (central intersect) leads
downwards towards a (lower intersect) and the cobweb
from any m greater than the isogamous ESS leads upwards
towards b (upper intersect); in figure 1c, the cobweb for
R(m) from any m would eventually alternate between a
and b. This argument can be extended in general to any
pair of survival functions.

Thus, under the Vance survival function in equation
(2.2), there is a continuously stable isogamous ESS (m∗,
m∗) with m∗ = � � �/4 (equation (2.6)) provided that
� � 4�. When � � 4� this ESS becomes continuously
unstable, so that it is unlikely to persist, but it is replaced
by the anisogamous ESS (a, b) with a � b. Numerical cal-
culations show that a = � � 	, b = � � � � 	, where 	 is a
small deviation that tends to zero as � increases. (See
the legend to figure 1f for an example.) Thus, the zygote
size under anisogamy is S = a � b = �, which is the
Smith & Fretwell (1974) optimal offspring size, satisfying
f �(S ) = f(S )/S.

In unicellular organisms, one might expect that � � �,
leading to isogamy. In the early stages of the evolution of
multicellularity, one might expect that � would stay
roughly constant, but that � would increase with the need
to provision the embryo; when it has increased more than
fourfold the scene for the evolution of anisogamy is set.

(c) The complementary exponential survival
function

The Vance function in equation (2.2) was used to illus-
trate a sigmoidal survival function. To illustrate a concave
survival function that decelerates continuously from the
origin we shall use the function

g(m) = 1 � exp��
m
��,

f(S ) = 1 � exp��
S
��. (2.12)

The behaviour of the model was investigated numerically
by writing a Mathematica program to evaluate the best
response function R(m), to find the isogamous ESS by
solving the equation R(m) = m and to determine the sys-
tem behaviour by iterating R(m) many times until it settles
down to a limit point (isogamy) or to a two-point cycle
(anisogamy). It was found that there is an isogamous ESS
at (0.58�, 0.58�) when � = � but that it is continuously
unstable because the slope of R(m) at this point is –1.14.
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Iteration of R(m) showed that the system settled down at
the anisogamous ESS (0, 1.26�). Similar behaviour was
found for all values of � tested between 0.1� and 100�.
The conclusion, that anisogamy is predicted under this
model for all parameter values, is however crucially depen-
dent on the assumption that there is no lower limit on
gamete size.

(d) The threshold model for gametic survival
A popular model for gametic survival (e.g. Maynard

Smith 1978; Bulmer 1994) is to suppose that there is a
critical minimum size 
 for survival, such that all gametes
below this size perish while all gametes above it have the
same chance of survival to mate. In equation (2.1) we
write

g(m) = 0 m � 
,
g(m) = 1 m � 
. (2.13)

Although not entirely realistic, this model permits some
general conclusions to be drawn.

First suppose that 
 = 0, so that the model becomes

wi(m1,m2) =
M
mi

f (m1 � m2). (2.14)

There will be an isogamous ESS (m∗, m∗), where the
zygote size S∗ = 2m∗ satisfies

f�(S ) =
2 f(S )
S

(2.15)

(Maynard Smith 1978, 1982). McNamara et al. (2003)
have studied this model in detail in the context of a model
of Parker (1985) for bi-parental care; they have shown that
this ESS is always continuously unstable if it is an internal
solution, so that in the current context the system moves
towards the anisogamous ESS (0, R(0)).

The isogamous gamete size m∗ nevertheless plays a cru-
cial part in determining how the system behaves when

 � 0. Suppose first that 0 � 
 � m∗. Then (m∗, m∗)
remains unchanged as a continuously unstable ESS, so
that the system will move away from it towards an aniso-
gamous ESS, presumably (
, R(
)), where R(
) = S∗ – 

can be obtained by solving for the zygote size S in

f�(S ) =
f(S )
S � 


. (2.16)

But when 
 � m∗, (m∗, m∗) ceases to be an ESS since
gametes of this size are inviable, and the system will move
to the isogamous ESS (
, 
) since R(
) = 
.

Thus, we expect to find isogamy or anisogamy
depending on whether 
 � m∗ or 
 � m∗. As an example,
suppose that f(S ) follows the Vance equation (2.2) with
parameter �, so that m∗ = �/4. When � � 4
, we expect
the isogamous ESS (
, 
). When � � 4
, we expect the
anisogamous ESS (
, b), where, from equation (2.16),

b =
�

2�1 � �1 � 4


� � � 
 , (2.17)

which tends to � – 
 for large �.
It seems unlikely that gamete survival had a sharp thres-

hold while zygote survival was spread out like the Vance
function in the primitive unicellular condition. But if this
had been the case, one might expect that 
 � 1.4�, the
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50% point of the Vance function. Thus, one would expect
that � � 4
, producing isogamy. With the evolution of
multicellularity, 
 would stay roughly constant, but �
would increase, pushing the zygote survival function to the
right, to meet the need to provision the embryo; eventually
� would exceed 4
, leading to anisogamy.

It seems likely that this argument would hold good for
other types of sigmoidal zygotic survival function. In the
primitive state in which gametes and zygotes have similar
nutritional needs, one would expect that 
 � m∗, leading
to isogamy; but with multicellularity m∗ would increase
until 
 � m∗, allowing the evolution of anisogamy.

Suppose now that f(S ) follows the complementary
exponential function in equation (2.12). The isogamous
ESS from equation (2.15) is m∗ = 0, so that only the isoga-
mous ESS (
, 
) exists for any value of 
. Anisogamy can-
not evolve under this model, however large � becomes.
However, even if this were the primitive zygotic survival
function, it is likely that the survival function would
become sigmoidal after multicellularity developed,
allowing the evolution of anisogamy, because the zygote
needs a minimal food supply to develop into a free-living
multicellular form.

Note that a function f(S ), which is zero up to some
critical point � after which it is concave, behaves in the
same way as a continuous sigmoidal function. For
example, the function

f(S ) = �1 � exp�(S � �)
� � S � �

0 S � �

(2.18)

has a value of m∗ from equation (2.15) that is greater than
�, so that it certainly leads to anisogamy when � � 
. This
is the type of function considered plausible by Rander-
son & Hurst (2001a, 2002). When it is concave from the
origin (� = 0), it leads to isogamy whatever the critical size

 for gametic survival. But when � � 0, it leads to aniso-
gamy when 
 is sufficiently small, contrary to the assertion
of Randerson & Hurst (2001a) that anisogamy never
evolves under this assumption about the zygotic fitness
function, but in line with the finding of Bulmer et al.
(2002); while it leads to isogamy for larger values of 
,
contrary to the assertion of Randerson & Hurst (2002)
that anisogamy always evolves under this assumption. It
is the relationship between the zygotic and gametic fitness
functions that determines whether or not anisogamy
evolves.

(e) An alternative model for minimal size
restrictions

A more realistic model might suppose that a gamete of
mass m has two components: an obligate part of fixed size

 comprising components such as the chromosomes that
are necessary for its existence, and a facultative part of size
m – 
 comprising components such as energy reserves that
increase survival. A zygote formed by the fusion of
gametes of sizes m1 and m2 will comprise an obligate part
of size 2
 (e.g two sets of chromosomes) that has no effect
on survival, and a facultative part of size m1 � m2 � 2

that has a direct effect on survival. The model for fitness of
the two mating types in equation (2.1) can be amended to
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Figure 2. The critical value of � above which anisogamy
evolves as a function of 
 under the model in equation
(2.20) when � = 1.

wi(m1,m2) =
Mg(mi � 
)

mi
f(m1 � m2 � 2
), (2.19)

with the understanding that the functions g and f are zero
for negative arguments.

As an example, consider the Vance survival functions in
equation (2.2), which become

g(m) = exp� �
�

m � 
�,

f(S) = exp� �
�

S � 2
�. (2.20)

By the method of § 2b, it can be shown that the isogamous
ESS, m1 = m2 = m∗, is the larger root of the quadratic equ-
ation

�� �
�

4�m∗ = (m∗ � 
)2. (2.21)

The slope of the best response function at the isogamous
ESS is

R� =
0.5m∗(2m∗ � 
)

c
,

where c = (2m∗ � 
)(4m∗ � 
)� � (m∗ � 
)(3m∗ � 
)�
� 2(m∗ � 
)(2m∗ � 
)(3m∗ � 2
) (2.22)

Numerical calculations show that this slope is always
negative, and that for fixed � and 
 it decreases, as �
increases, from a value between 0 and –1, giving isogamy,
to a value less than –1, giving anisogamy. Critical values
of � at which R� = –1, corresponding to the transition from
isogamy to anisogamy, are shown in figure 2, when size is
scaled so that � = 1. It will be seen that the critical value
of � increases almost linearly from 4 when 
 = 0 to about
22 when 
 = 2. Thus, the transition to anisogamy requires
a stronger shift to the right in the zygote survival function
under this model, at least with the Vance curves.

Finally, consider the complementary exponential sur-
vival function in equation (2.12) with

g(m) = 1 � exp��
m � 


� �,

f(S) = 1 � exp��
S � 2


� �. (2.23)

(Remember that the functions g and f are understood to
be zero for negative arguments.) Suppose first that � = �.
With 
 = 0, the isogamous ESS (0.58�, 0.58�) is continu-
ously unstable, and there is an anisogamous ESS
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(0, 1.26�), as we saw in § 2c. But for 
 � 0.01�, numerical
calculations show that the isogamous ESS is continuously
stable and the anisogamous ESS ceases to exist when
� = �. When 
 = 0.1�, the switch from isogamy to aniso-
gamy occurs at � = 13�, and when 
 = 0.5� there is stable
isogamy for all values of � tested up to 1000�.

Under this model, isogamy is expected in the ancestral
unicellular state with � � � provided that 
 � 0.01�. With
the evolution of multicellularity, one would expect f(S ) to
become sigmoidal for S � 
, in which case anisogamy will
eventually evolve for any value of 
. For example, consider
a mixed model in which g(m) has the complementary
exponential form in equation (2.23) while f(S ) has the
Vance form in equation (2.20). With 
 = 0.5�, numerical
calculations show that there is a switch from isogamy to
anisogamy at � = 5�. Similar behaviour is expected if f(S )
is zero up to 2
 � � and is concave from that point
onwards.

3. DISCUSSION

In the ancestral unicellular state the gametic and zygotic
survival functions, g(m) and f(S ), are likely to be similar
in shape and location, leading to isogamy. The develop-
ment of multicellularity may leave g(m) relatively
unchanged, but will push f(S ) to the right as the need to
provision the zygote increases, eventually leading to aniso-
gamy. This is most clearly seen when the survival func-
tions are sigmoidal, exemplified by the inverse exponential
Vance function in equation (2.2). The situation is more
complicated in the less likely case when the survival func-
tions are concave, exemplified by the complementary
exponential function in equation (2.12). The model must
then be modified to allow for a minimal gamete size to
ensure isogamy when the two survival curves are in the
same location. With the development of multicellularity,
the zygote survival curve may remain concave but will
tend to move to the right by increasing the region for
which f(S ) = 0 in equation (2.23), eventually generating
anisogamy. Alternatively, f(S ) may become sigmoidal as
it moves to the right, which will also generate anisogamy.
Thus, our present analysis shows rather generally that a
plausible unicellular ancestral state would be isogamy,
with anisogamy becoming inevitable once the two func-
tions become sufficiently differentiated, as must always
apply with increasing complexity in multicellular organiza-
tion in plants and animals.

Fungi do not fit so obviously into the disruptive selec-
tion theory, but they do not contradict it. There are vari-
ous modes of sexual reproduction (summarized in
Alexopoulos (1962)). Planogametic copulation (involving
the fusion of two naked gametes) most closely fits the
assumptions of the theory. The morphologically simplest
Chytridiomycetes are single-celled, aquatic and holocarpic
(i.e. the entire thallus is used to produce gametes), and
often have isogamous planogametes. Some Allomyces spec-
ies have a simple thallus, are eucarpic (i.e. have specialized
reproductive organs) and there is fusion of motile anisoga-
metes. The most complex Chytridiomycetes have more-
developed eucarpic thalli, and non-motile female gametes
(e.g. Monoblepharis). This trend appears to follow the pre-
dictions of the theory. Higher fungi lack motile free-
swimming gametes and have various forms of transfer of

Proc. R. Soc. Lond. B (2002)

gametic nuclei. Some forms of transfer may be analogous
to anisogamy under the disruptive selection theory. For
example, in spermatization, numerous minute, uninucle-
ate, male structures (spermatia) are produced that are
carried by insects, wind, water, etc. to female gametangia
or to unspecialized somatic hyphae, to which they attach
and transfer their contents. Other forms are not anal-
ogous. In Basidiomycetes, the basidiospores (haploid
spores resulting from meiosis) germinate to form haploid,
monokaryotic, hyphae after falling on a moist substrate.
These fungi usually possess multiple mating types, and
two haploid hyphae of different mating types fuse and pass
nuclei into each other so that one, or more typically both
mycelia become dikaryotized (the donor nuclei divide and
migrate from cell to cell forming a dikaryon in the recipi-
ent mycelium). The growing haploid hyphae are morpho-
logically similar, and in that sense could be considered
isogametes, but the selective forces are clearly very differ-
ent from those envisaged in the disruptive selection theory.

Multicellularity in plants and animals may have evolved
by the failure of the mitotic products of a single unicell to
separate after fission, a pattern that is reflected by colonial
forms that consist of a number of zooids, each having the
nucleus, shape and organization of an individual of a
related solitary species. Division of labour of the zooids
can be found in some species as the colonial habit
becomes more advanced. That changes in f(S ) would
accompany the evolutionary transition from uni- to multi-
cellularity, favouring the switch from isogamy to aniso-
gamy, was proposed by Parker et al. (1972, p. 551). The
correlation between increased complexity and anisogamy
has generally been supported by comparative studies
(Randerson & Hurst 2001a,b), beginning with Knowlton
(1974) for volvocine algae, though this correlation is less
distinct in other chlorophyte algae (Bell 1978). An exten-
sive analysis by Bell (1982) for several algal and protozoan
groups showed a clear correlation between the level of veg-
etative organization and the degree of gamete dimorphism.
The most recent analysis (Randerson & Hurst (2001b) for
the Volvocales), using modern comparative methods to
control for phylogenetic effects, also supports the disrup-
tive selection theory for the evolution of anisogamy. Both
(i) the anisogamy ratio (macro-/microgamete volume),
and (ii) the macrogamete size (see also Bell 1985),
increased with adult size, although these results were
sensitive to the mode of analysis and the phylogeny used.
Randerson & Hurst (2001b) proposed a plausible alterna-
tive explanation of their results, based on a constraint due
to the (present) mode of reproduction, but it remains to
be tested whether this is a better explanation of the
anisogamy–adult size correlation in the Volvocales than
the present theory.

The shift in f(S ) to the right of g(m) due to multicellu-
larity cannot yet be quantified explicitly, and discussion of
the relationship between the two functions must remain
speculative. Consider first the ancestral f(S ) under iso-
gamy. We envisage that this would be close to the ances-
tral g(m), though possibly not identical to it. The sexual
processes of unicells are diverse and often remarkably
complex. Occasionally, conjugation results from the
fusion of two full-sized, ordinary individuals (holo-
gametes), which later divide once or twice, giving rise to
products within the size range of normal ‘adults’ (which
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halve in size at mitotic divisions), supporting the notion
that f(S ) = g(m). Occam’s Razor indicates fusion by ‘holo-
gametic adults’ as the ancestral state, but it has to be noted
that this pattern is relatively rare. Much more commonly,
isogamous unicells produce merogametes, which are
smaller than the adult (though typically not much
smaller), by special fissions. The reason for the smaller
merogametes may well relate to the fact that they are often
formed under special conditions and specialized solely for
fusion, rather than for longer-term survival and mitotic
divisions, as would be the adult. It is difficult to determine
whether some differentiation between f(S ) and g(m) was
ancestral, or a very common secondary specialization due
to a small shift to the left by the g(m) function during the
specialization of merogametes.

Smallness and unicellularity are likely to have been
ancestral in evolution and would have had advantages in
early planktonic forms by increasing the surface area to
volume ratio. A high ratio would facilitate mineral absorp-
tion in a habitat depleted of minerals, which are lost con-
tinuously in dead organisms as they sink to the seabed.
This advantage probably still applies for planktonic plants
and probably generates selection against large gametes and
zygotes. This is a factor militating against the evolution of
both multicellularity and anisogamy in planktonic forms.
However, the fact that many unicells show anisogamy,
albeit with anisogamy ratios typically less than those of
higher organisms, demonstrates that it is not always multi-
cellularity per se that drives the switch between isogamy
and anisogamy. Quite commonly, anisogamous unicells
have hologametic macrogametes (i.e. of similar size to the
adult), which fuse with merogametes that are considerably
smaller than the adult. Two explanations for the evolution
of anisogamy in unicells may be suggested. First, the shift
of g(m) to the left of f(S ) during the specialization of mer-
ogametes suggested in the previous paragraph may have
been large enough to generate anisogamy. Second, there
may have been different g(m) functions for the two types
of gametes. Suppose that – gametes produce a pheromone
to which the � gametes respond, so that � gametes are
selected for motility; then g(m) would be shifted to the
left for � gametes compared with – gametes, since small
gametes swim faster than large ones, which would give a
preadaptation towards the evolution of anisogamy.

In multicellular organisms, it is easy to see how f(S )
would shift to the right of the ancestral state as organismal
complexity and body size increased. Larger zygotes would
require less time to reach a given adult size, and would
suffer less juvenile mortality. Higher organisms typically
have zygotes (and hence eggs) that are notably bigger than
those of unicells; typically, their zygotes could not now
survive at all if they were the size of unicellular zygotes.
At each shift of f(S ) to the right, eggs would become
adapted by the current reproductive circumstances to
function efficiently around their Smith & Fretwell (1974)
optimum (if sperm contribution is negligible), with a cor-
responding decline in f(S ) values away from this region,
accentuating the curvature of f(S ). The magnitude of the
shift will now largely reflect phylogenetic specializations,
but will generally increase with body size. For example,
although birds produce vastly bigger eggs than mammals,
bigger birds produce bigger eggs than small birds. Thus,
the exact location of f(S ) will be strongly constrained by
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phylogeny, but the underlying impetus for the shift to the
right is related to increased size and complexity.

Once gametes become dimorphic, other selective forces
are involved in the subsequent specialization of micro- and
macrogametes: sperm become very small (Parker 1982;
see the review of Randerson & Hurst (2001a)) and ova
non-motile (Parker 1979). Thus, two distinct g(m) func-
tions develop, g1(m1) for microgametes and g2(m2) for
macrogametes, even if anisogamy arose by disruptive
selection from an isogamous ancestral state with the same
g(m) function for � and – gametes.

In higher animals, g1(m1) may have shifted somewhat
to the left of the ancestral state, generating microgametes
(sperm) usually with smaller mass than the hologametes
or even the merogametes of the unicellular ancestor. An
explanation is that sexual selection and sperm competition
have driven males to eject sperm close to, or even into
females; sperm are no longer constrained by the need to
maintain themselves in the way that the hologametes of
a hypothetical isogametic unicellular ancestor would have
been. Under internal fertilization, sperm are often provi-
sioned by agents in the female tract, and under external
fertilization such as simultaneous spawning, sperm com-
petition places a premium on high sperm motility and low
survival where the two components trade-off against each
other (Ball & Parker 1996), so that sperm life may be very
short. All of these effects allow sperm to become smaller
by shifting g1(m1) to the left of our hypothetical ancestral
state. However, any such changes are likely to have been
of much smaller magnitude than comparable shifts to the
right by the function f(S ).

Once anisogamy has become established, sperm con-
tribute so little to the size of the zygote that we can equate
zygote size to ovum size, m1 � m2 � m2, in equations
(2.1). Thus, sperm are selected to maximize g1(m1)/m1;
the optimal sperm size satisfies the Smith & Fretwell
(1974) equation

[ g1(m1)]� =
g1(m1)
m1

. (3.1)

Ova are selected to maximize g2(m2)f(m2)/m2. Remember
that g2(m2) is the relationship between an ovum’s survival
probability and its size, up to the moment of fertilization.
The zygote survival function f(m2) ensures that egg size is
large for higher organisms. Coupled with the high den-
sities of sperm typically available around eggs, it is inevi-
table that high survival prospects must usually apply
before fusion. For species where good data exist (fish,
insect, birds, mammals), quite large changes in the num-
ber of sperm do not significantly affect the fertilization
probability, which is usually close to 1.0 (Ball & Parker
2000). Thus, g2(m2) is likely to be independent of quite
large changes in m2, at least in the general region of typical
ovum size, so that ova are selected to maximize f(m2)/m2;
the optimal ovum size satisfies the Smith & Fretwell
(1974) equation

f�(m2) =
f(m2)
m2

. (3.2)

Effectively, egg size becomes solely determined by
f(m2). This analysis does not apply, however, in certain
marine external fertilizers, which are often sperm-limited;
here, fusion probability increases with ovum size (Levitan
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1993), so that g2(m2) is a significantly increasing function
of m2 in the region of the optimal ovum size, which satis-
fies the Smith–Fretwell equation

[ g2(m2)f(m2)]� =
g2(m2)f(m2)

m2
. (3.3)

This gives a larger ovum size than equation (3.2).
We have argued that the origin of anisogamy is inextri-

cably linked with the evolution of the gamete and zygote
survival functions, g(m) and f(S ). It may be difficult to
make more detailed predictions until the theoretical
biology of these functions, and their differentiation during
the transition to multicellularity, becomes better
developed. The disruptive selection theory still remains a
candidate as the most powerful explanation of the origin
of anisogamy, and so a more detailed understanding of
the subsequent changes in g1(m1), g2(m2) and f(S ), might
generate further insights into one of the most important
transitions in evolution, which ultimately generated the
vast diversity of adaptations that we associate with the
two sexes.
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