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Two processes can influence the evolution of protein interaction networks: addition and elimination of
interactions between proteins, and gene duplications increasing the number of proteins and interactions.
The rates of these processes can be estimated from available Saccharomyces cerevisiae genome data and
are sufficiently high to affect network structure on short time-scales. For instance, more than 100 interac-
tions may be added to the yeast network every million years, a fraction of which adds previously unconnec-
ted proteins to the network. Highly connected proteins show a greater rate of interaction turnover than
proteins with few interactions. From these observations one can explain (without natural selection on
global network structure) the evolutionary sustenance of the most prominent network feature, the distri-
bution of the frequency P(d) of proteins with d neighbours, which is broad-tailed and consistent with a
power law, that is: P(d) � d�γ.

Keywords: molecular evolution; gene networks; scale-free networks

1. INTRODUCTION

Post-genomic biology is unravelling a wide variety of bio-
logical circuitry, ranging from metabolic networks to tran-
scriptional regulation and protein interaction networks
(Fell & Wagner 2000; Hughes et al. 2000; Jeong et al.
2000; Roberts et al. 2000; Uetz et al. 2000; Ito et al. 2001;
Wagner & Fell 2001). Once the structure of a genetic net-
work is known, interlaced questions arise about its func-
tions and evolutionary origin. Does the network’s
structure tell us anything about the network’s function?
How could natural selection have shaped its global struc-
ture? Or does natural selection act largely on smaller, local
scales and thus play only a minor part in shaping the net-
work as a whole?

Before addressing any of these questions, one has to
represent and characterize a network’s structure. Any
choice between multiple possible representations is best
guided by the nature of the information available. For the
best characterized genetic networks this information is
purely qualitative—who interacts with whom—lending
itself to the simplest possible representation, that of a
graph. Graphs are mathematical objects consisting of
nodes and edges. In a protein interaction graph, for
example, two nodes (proteins) are connected by an edge
(they are adjacent) if they interact physically. The degree or
connectivity d of a protein is the number of other proteins it
interacts with. A path between two proteins �0, νi is a
sequence of adjacent proteins �0, ν1, …, νi�1, νi leading
from �0 to �i. The number of edges in this path is called
the path length. There are many ways to characterize the
structure of graphs, including the distribution of path
lengths, the number of cyclic paths, and various measures
of clumping of nodes into clusters of highly connected
nodes (Watts 1999). The simplest possible measure is that
of the number of edges per protein, and its distribution in
the graph. For protein interaction networks, as for a var-
iety of other graphs (Albert & Barabasi 2002), this distri-
bution is broad-tailed and consistent with a power law
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(Jeong et al. 2001; Wagner 2001). That is, when choosing
a protein at random from the network, the probability
P(d) that this protein has d interaction partners is pro-
portional to P(d) � d�γ , � being some constant character-
istic of the network. The same class of distribution is
observed in metabolic network graphs (Fell & Wagner
2000; Jeong et al. 2000; Wagner & Fell 2001).

This feature of cellular networks raises questions about
its origin and purpose. Does a power-law degree distri-
bution convey any kind of advantage to an organism? If
so, then natural selection has probably favoured the sur-
vival of organisms whose cellular networks have this
degree distribution. Such a selectionist perspective has
been put forward recently (Albert et al. 2000). It is based
on the observation that power-law degree distributions can
endow a network with robustness against perturbations.
Upon removal of randomly chosen nodes from the net-
work, the mean path length in such a network is affected
less than when perturbing a network with different degree
distributions (Albert et al. 2000). Other network features
are similarly robust (Fell & Wagner 2000; Wagner & Fell
2001). For metabolic networks, a possible advantage of
small mean path lengths stems from the importance of
minimizing transition times between metabolic states in
response to environmental changes (Easterby 1986;
Schuster & Heinrich 1987; Cascante et al. 1995). Net-
works with robustly small average path lengths may adjust
more rapidly to environmental perturbations. A key pre-
diction of this selectionist explanation is that the removal
of highly connected nodes would affect an organism more
severely than that of lowly connected nodes. Data consist-
ent with this prediction exist for the yeast protein interac-
tion network (Jeong et al. 2001). However, this
observation is equally consistent with more pedestrian
explanations, such as pleiotropic effects of highly connec-
ted proteins regardless of network structure. In addition,
recent work indicates that highly connected proteins in
metabolic and protein interaction networks are not subject
to more severe evolutionary constraints, as would be
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expected under this selectionist explanation (Hahn et al.
2003). This conclusion is corroborated by a second study
of evolutionary rates in the protein interaction network,
which indicates that a highly connected protein’s surface
constraints (and not network robustness) determine its
evolutionary rate (Fraser et al. 2002).

2. A NULL HYPOTHESIS ABOUT THE ORIGIN OF
GLOBAL NETWORK STRUCTURE

Ideally one would explain the persistence of any organ-
ismal feature directly from the evolutionary processes
affecting it. To do this for the yeast protein interaction
network is the goal of this contribution. How does this
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Figure 1. The power-law degree distribution is a robust
feature of the protein interaction network independent of
experimental approach. All three panels show a double
logarithmic plot of the number of proteins ( y-axis) with a
given degree (x-axis). Data for (a) (P(d) � d�2.55 ± 0.35) and
(b) (P(d ) � d�2.43 ± 0.35) are from two large-throughput two-
hybrid experiments (Uetz et al. 2000); (c) (P(d) � d�2.67 ± 0.20)
shows non-two-hybrid data (Mewes et al. 1999), explained
in detail as follows. Data shown in (a) comprise 899
pairwise interactions among 985 yeast proteins, as reported
in (Uetz et al. 2000), and are available from http://depts.
washington.edu/sfields/projects/YPLM/Nature-plain.html
(obtained on 15 February 2000) as a list of pairwise
interactions. I converted this list into a graph whose nodes
represent proteins and whose edges correspond to protein
interactions. The resulting protein interaction graph has
n = 985 proteins that engage in k = 899 pairwise interactions.
All reported graph analyses involve exhaustive enumeration
using algorithms implemented in LEDA (Mehlhorn & Naher
1999). The data for (b) stem from an independent high-
throughput experiment (Ito et al. 2001) also using the yeast
two-hybrid assay. Its results are available from http://
genome.c.kanazawa-u.ac.jp/Y2H. From these results I
obtained in May 2001 a ‘core’ dataset of interactions
confirmed in triplicate (Ito et al. 2001). The resulting
protein interaction graph has n = 780 proteins and k = 747
interactions. To analyse protein interaction data not relying
on the two-hybrid assay, I obtained information on physical
interactions among yeast proteins from the MIPS database
(Mewes et al. 1999) at http://mips.gsf.de/proj/east/CYGD/
db/index.html. I eliminated from these data all protein
interactions confirmed by two-hybrid experiments. The
remaining k = 899 interactions involve n = 680 proteins.

network sustain a power-law degree distribution, when
processes such as mutation and gene duplication con-
stantly erode this distribution? In the face of such pertur-
bations, would natural selection on this distribution not
be essential to sustain the degree distribution?

It is often stated that any null hypothesis explaining an
organismal feature must not involve natural selection or
any optimality criterion. Natural selection is to be invoked
only if all such null hypotheses are to be rejected. To pro-
vide such a null hypothesis, I first consider the processes
that influence the structure of the yeast protein interaction
network and estimate their rates from empirical data.
Based on this information, I then attempt to explain the
degree distribution without invoking natural selection on
this distribution.

3. GLOBAL NETWORK FEATURES ARE
INDEPENDENT OF EXPERIMENTAL APPROACH

The biological interpretation of protein interaction net-
works as produced by genome-scale interaction screens
has been hampered by several factors. First, they collapse
spatial and temporal information into one freeze-frame
static image of the network. Second, and more critically,
independent large-throughput experiments with very simi-
lar experimental designs generate interaction maps with a
limited number of common interactions (Uetz et al. 2000;
Ito et al. 2001). Despite these shortcomings, protein inter-
action maps can already be used successfully to predict
the spatial expression domains and functional annotations
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of many proteins from their interaction partners
(Schwikowski et al. 2000). They thus clearly contain bio-
logically useful information.

Although great uncertainty is associated with individual
interactions identified by genome-scale experiments, glo-
bal statistical features of protein interaction networks do
not depend on the veracity of each identified interaction,
and may thus contain the most reliable information. Fig-
ure 1a,b shows the distribution P(d) for the two yeast pro-
tein interaction map reported by Uetz et al. (2000) and
Ito et al. (2001). These networks were generated by using
the yeast two-hybrid assay (Fields & Song 1989) but
otherwise different experimental designs. Although they
show limited overlap in protein interactions, their degree
distributions are identical. Importantly, they are both con-
sistent with a power law (P(d) � d�γ) with statistically
indistinguishable exponents (Uetz: � = 2.55 ± 0.35; Ito:
� = 2.43 ± 0.35). Proteins highly connected in one dataset
are also highly connected in the other (Pearson r = 0.52,
p � 10�3; Spearman rs = 0.31, p � 10�3; d.f. = 329 is the
number of proteins contained in both datasets minus one).
In addition, publicly available protein interaction data
generated with experimental approaches different from the
two-hybrid assay also generate a network with identical
power-law degree distribution (figure 1c; � = 2.67 ± 0.2).
Thus, the degree distribution of protein interaction net-
works is a global structural feature robust to the vagaries
of experimental approach.

Two separate processes can influence such global net-
work features: gene duplications generating new proteins,
and the addition and elimination of interaction between
existing proteins. I now discuss these two processes in
turn.

4. NETWORK EVOLUTION BY GENE DUPLICATION

Individual gene duplications occur at formidable rates in
eukaryotic genomes. In yeast, this rate is ca. 52 duplications
per genome and million years (8.3 × 10�3 gene�1 Myr�1

(Lynch & Conery 2000; Wagner 2001)). As many as 90%
of gene duplicates are likely to eventually get lost after
duplication (Wolfe & Shields 1997; Seoighe & Wolfe
1998), leading to an effective duplication rate closer to
8.3 × 10�4 gene�1 Myr�1. Gene conversion is not rampant
in the evolution of these duplicates (Pal et al. 2001), and
the bulk of yeast duplicate gene pairs (paralogues) have
low to moderate expression and thus low codon usage
bias. For these paralogues, the time elapsed since dupli-
cation can be roughly estimated through the accumulated
rate Ks of synonymous substitutions per synonymous site.
In yeast, a Ks = 1 corresponds to ca. 100 Myr since dupli-
cation (Wagner 2001). Although any such divergence esti-
mates (especially for Ks � 1) are imprecise, they are here
used only for a coarse grouping of gene pairs, or to elimin-
ate highly divergent pairs. Moreover, all reported results
depend only on order-of-magnitude estimates of this and
other evolutionary rates.

Do highly connected genes, genes whose products have
many protein interactions, have few duplicates in the
genome? (Duplication of such highly connected genes may
have deleterious effects on the organism, for example
owing to gene dosage effects.) If so, genome evolution
through gene duplication would be intertwined with the

Proc. R. Soc. Lond. B (2003)

degree structure of the protein interaction network. One
could not be understood without the other. However,
there is no strong association between protein degree and
the propensity of the respective gene to become duplicated
(figure 2a).

Figure 2b shows a protein P with four interactions.
When the gene encoding this protein undergoes a dupli-
cation, P and the product P∗ of the duplicate gene still
have four neighbours each, because they are identical
immediately after duplication. But the number of interac-
tions of each of their neighbours has now increased by
one. A gene duplication thus always increases—never
decreases—the degree of proteins. The proteins whose
degree increases are the interaction partners of the dupli-
cated proteins. This simple observation implies that a
power-law degree distribution could not be sustained
under the influence of gene duplications alone. In a net-
work that has such a degree distribution to begin with, the
relative frequency of proteins with one interaction partner
(which constitute the bulk of the observed network; figure
1) would slowly approach zero. The frequency of proteins
with degree two would follow, and so forth, leading to
proteins of ever-higher degree to dominate the network.
But are gene duplications even sufficiently frequent to
influence network structure on an evolutionarily relevant
time-scale? One glance at the abundance of duplicate gene
products in the network (figure 2c; 47% of genes in the
network have paralogues with Ks � 3) shows that this
influence of gene duplications must be profound.

Why, then, are there any network proteins with low
degree? Many aspects of a gene’s function (Li 1997; Force
et al. 1999a,b) tend to get lost rapidly after gene dupli-
cation. Similarly, protein interactions diverge rapidly
between such genes. Figure 2d shows a time-course of this
divergence, where paralogous genes are grouped into bins
according to their divergence (Ks), corresponding to time
since duplication. The ordinate shows the fraction f of
shared interactions between duplicates. This is the num-
ber of interactions two duplicates have in common, div-
ided by the total number of interactions of the two
duplicates. Only for the most recent duplicates (Ks � 0.5)
is this number moderately large (0.5 � f � 0.6). For more
distant duplicates f � 0.15, i.e. they share less than 15%
of interactions (figure 2d ). Two proteins chosen at ran-
dom from the network have an expected f of 1.4 × 10�3

(� = 1.2 × 10�3). The figure covers only divergences up to
Ks = 1 but more distantly related proteins show even
smaller f. The binning interval of Ks = 0.25 in the figure
was made possible by pooling data from all three datasets
(Mewes et al. 1999; Uetz et al. 2000; Ito et al. 2001).
However, each dataset individually also shows this pat-
tern: f is less than 0.1 when averaged over gene pairs with
0.5 � Ks � 3 in each of the two-hybrid datasets (Uetz et
al. 2000; Ito et al. 2001) and its average is f = 0.159 for
the network derived from non-two hybrid data (Mewes et
al. 1999).

In summary, most shared interactions between paralog-
ous genes have diverged within 50 Myr after duplication.
The prevalence of degenerative mutations after gene
duplication suggests that most of this divergence is due to
mutational loss of interactions. What is the effect of this
divergence on the evolution of the degree distribution?
Figure 3 shows a numerical analysis addressing this ques-
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Figure 2. Protein interactions and gene duplication. (a) Mean and one s.d. of the number of interactions per protein with (left
bar) and without (right bar) paralogues in the yeast genome. All yeast duplicates, regardless of divergence were used in this
analysis. (b) After a gene duplication, the (identical) products P and P∗ of a duplicate gene interact with the same proteins
(circles, proteins; lines, interactions among proteins). (c) The yeast protein interaction network contains many duplicate genes
(black circles, proteins; black lines, interactions between proteins; red lines connect paralogous proteins that are part of the
protein interaction network). (d ) Common interactions diverge rapidly after duplication. The x-axis corresponds to paralogous
gene pairs in the protein interaction network binned according to the fraction of synonymous substitutions at synonymous
sites, Ks. For each gene pair in each bin, I determined the number of shared interactions to identical third proteins, and
divided it by the total number of interactions of the two proteins. The shown fraction of shared interactions is the average of
this value over all gene pairs in a bin. Data on yeast gene duplicates were kindly provided by John Conery (Department of
Computer Science, University of Oregon) and were generated as described in Lynch & Conery (2000). Briefly, gapped Blast
(Altschul et al. 1997) was used for pairwise amino-acid sequence comparisons of all yeast open reading frames as obtained
from GenBank. All protein pairs with a Blast alignment score greater than 10�2 were retained for further analysis. Then the
following conservative approach was followed to retain only unambiguously aligned sequences. Using the protein alignment
generated by Blast as a guide, a sequence pair was scanned to the right of each alignment gap. All sequences from the end of
the gap through the first ‘anchor’ pair of matched amino acids were discarded. All subsequent sequence (exclusive of the
anchor pair of amino acids) was retained if a second pair of matching amino acids was found within less than six amino acids
from the first. This procedure was then repeated to the left of each alignment gap (see Lynch & Conery (2000) for more
detailed description and justification). The retained portion of each amino-acid sequence alignment was then used jointly with
DNA sequence information to generate nucleotide sequence alignments of genes. For each gene pair in this dataset, the
fraction Ks of synonymous (silent) substitutions per silent site, as well as the fraction Ka of replacement substitutions per
replacement site were estimated using the method of Li (1993). For the analysis in (a) all paralogous genes were used, for the
analysis in (d ) only paralogues with Ks � 1.25.

tion. In this simulation I subjected the protein interaction
network as reported in Uetz et al. (2000) to recurrent
duplication of randomly chosen genes. After each dupli-
cation, gene duplicates were allowed to lose common
interactions as observed in the data. Even after 1000 and
2000 duplications (corresponding to ca. 1.2 Gyr and
2.4 Gyr of evolution, respectively), the degree distribution
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of the network was unaffected. Thus, although gene dupli-
cations would have a profound effect on network struc-
ture, this effect disappears once subsequent interaction
divergence is taken into account. An additional case in
point is the observation that members of one gene family
are not overrepresented among interaction partners of
highly connected proteins, as would be expected if gene
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Figure 3. Duplication and divergence, taken together, do not
affect degree distribution. (a,b) A double logarithmic plot of
the degree distribution in the protein network (circles) as
reported by Uetz et al. (2000), and in the same network
after 1000 (squares) and 2000 (diamonds) gene duplications.
With an effective rate of 8.3 × 10�4 gene�1 Myr�1, ca. 1000
gene duplications are expected in the network every 1.2 Gyr.
The results stem from a numerical simulation of network
evolution, where I repeatedly duplicated individual genes
chosen at random from the network, and let interactions
diverge as follows after each duplication. (a) Asymmetric
divergence. Functional divergence between gene duplicates
generally occurs asymmetrically, i.e. one gene product
retains more molecular interactions than the other. This is
the divergence pattern observed empirically (Wagner 2002).
To emulate this scenario, I chose one of the two duplicate
genes at random, and eliminated each interaction of this
gene independently with probability 1 � f = 0.85. This
procedure ensures not only that divergence is asymmetric,
but also that an average of 15% of shared interactions
remain after the duplication, a value close to the maximum
of that observed in the empirical data (see text). The
exponents � of the degree distribution, P(d ) � d�γ are as
follows. Circles, protein interaction network (� = 2.55);
squares, after 1000 duplications (1200 Myr; � = 2.25);
diamonds, after 2000 duplications (2400 Myr; � = 2.29). The
95% CIs of these exponents are greater than 0.35 in all
three cases shown. Thus, the distributions are statistically
distinguishable. (b) Symmetric divergence. I chose and
eliminated one of the two interactions in each redundant
interaction pair of two gene duplicates (figure 2b) with
probability of one-half. After this procedure, the expected
number of retained interactions per gene is half the number
before duplication. In this sense, divergence is symmetric. I
eliminated proteins without remaining interactions after this
procedure. Circles, protein interaction network (� = 2.55);
squares, after 1000 duplications (1200 Myr; � = 2.58);
diamonds, after 2000 duplications (2400 Myr; � = 2.82).
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duplication substantially influenced network evolution
(Berg et al. 2003). The task of accounting for a persistent
network structure thus reduces to explaining this structure
from the second major evolutionary process influencing it.

5. EVOLUTION BY ADDITION AND DELETION OF
INTERACTIONS

Addition and elimination of physical interactions
between proteins is caused by mutations that change pro-
tein surfaces, be it point mutations, insertions or deletions.
The products of such mutations may then be retained by
natural selection or genetic drift. Here is the most
important question about this process: is the rate of inter-
action turnover sufficiently high to influence network
structure? To be sure, interactions appear to get lost rap-
idly after gene duplications (figure 2d). However, because
organisms tolerate many degenerative mutations after
gene duplications, such a high rate of interaction loss may
not be representative of any ‘background’ rate of interac-
tion turnover independent of gene duplication. Can this
rate be estimated? The following is such an estimate,
based on the rate at which interactions are added to the
network. It relies on the observation that new protein
interactions occasionally evolve between the products of
paralogous genes.

I will discuss this estimate in detail for one of the
reported networks (Uetz et al. 2000), and then summarize
the results for the other two (Mewes et al. 1999; Ito et al.
2001). In this network, there are 15 paralogous gene pairs
(Ks � 3) whose products interact with each other (‘cross-
interactors’). Several of these gene pairs also show self-
interactions of their members, as might occur if a protein
forms homodimers. Figure 4 shows how self- and cross-
interactions can evolve after gene duplications. First, a
gene product may have been a self-interactor before dupli-
cation. In this case, observed self-interactions and cross-
interactions are remnants of the self-interaction before
duplication. Second, a cross-interaction may have evolved
de novo after the duplication. Which of the observed 15
cross-interactions have formed de novo? The left-hand col-
umn of numbers in figure 4b shows the number of paralo-
gues in yeast with Ks � 3 that have the indicated
combination of self-interactions and cross-interactions.
There are at least two conspicuous features of the data.
First, both proteins show self-interaction for only one out
of 19 paralogous pairs. The one gene pair with both self-
interactions and a cross-interaction is an old duplicate
with Ks � 1, raising the possibility that its three interac-
tions may have evolved in the more than 100 Myr passed
since the duplication. Second, for 10 out of 15 paralogous
pairs with cross-interactions, neither duplicate shows self-
interactions. Thus, there is an abundance of paralogous
gene pairs whose features are more easily explained if
cross-interactions between duplicates evolve de novo. But
what if most of the listed duplicates originated from self-
interacting proteins, and natural selection has since prefer-
entially eliminated self-interactions? The following
suggests otherwise. The propensity to undergo duplication
is similar for self-interacting and all other proteins (37%
versus 43% of these proteins have paralogues). The frac-
tion of self-interacting proteins in the network is small,
less than 4.5%. If selection eliminated self-interactions
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Figure 4. Evolution of new interactions. (a) Interactions
between duplicate genes may evolve along two different
routes. First, a gene product may have been a self-interactor
before duplication. In this case, observed self-interactions
and interactions between duplicates are a remnant of self-
interaction before duplication. Second, the interactions may
have evolved de novo after the duplication. (b) Number of
paralogous gene pairs observed in the yeast protein
interaction networks with the indicated combination of self-
and cross-interaction. The left and middle columns represent
data from Uetz et al. (2000) and Ito et al. (2001),
respectively. The right-hand column represents non-two-
hybrid data (Mewes et al. 1999). Notice the abundance of
duplicates without self-interactions and the few gene pairs
where both genes are self-interacting. The total number of
nodes in each of these networks, including nodes that show
only self-interactions is (from left to right) 999, 971 and
680. Within each of the five classes of gene pair shown,
multiple pairs belonging to the same gene family were
eliminated before analysis. Each gene family is thus
represented here by only one gene pair, to eliminate
statistical bias due to large gene families, in contrast to an
earlier analysis based on a smaller dataset (Wagner 2001).

preferentially after duplication, then the fraction of para-
logues with self-interactions should be even smaller. But
this is not the case. On the contrary, 47% of the duplicate
proteins shown in figure 4b (left column) display at least
one self-interaction.

Based on these observations, I assume that cross-
interactions have evolved since the duplication for all but
the protein pairs where both partners also show self-
interactions. There are 14 gene duplicates that fit this bill,
among a total of 79 gene duplicates with: (i) Ks � 3; (ii)
both duplicates being part of the network; and (iii) each
gene family with more than two members represented by
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only one member pair. Item (iii) eliminates bias due to
including paralogues from one gene family more than once.
This leads to an estimate of (14/79)(1/300) = 5.9 × 10�4

newly formed interactions per protein pair and per
�Ks = 0.01 (ca. 1 Myr). The factor 300 in the above
relation accounts for the fact that all genes with Ks � 3 were
used. Extrapolating to the total of 4.99 × 105 total protein
pairs (n(n � 1)/2 for n = 999) in this network, one would
expect (5.9 × 10�4)(4.99 × 105) = 294.5 added interactions
per million years. Although it cannot be said with certainty
that this rate is uniform, it is important that the rate does
not appear accelerated immediately after duplication: only
two of the 14 observed cross-interactions between para-
logues involve paralogues with Ks � 0.5.

The rate at which interactions are formed is similar for
the network reported by Ito et al. (2001). Fifteen cross-
interacting duplicates among 58 paralogues yield an esti-
mated rate of 8.6 × 10�4 new interactions per protein pair
per �Ks = 0.01, or a total of 270 newly formed interactions
among the 3.14 × 105 possible protein pairs per million
years. For the non-two-hybrid data (Mewes et al. 1999),
there are 12 cross-interacting duplicates among a total of
83, leading to 4.8 × 10�4 newly formed interactions per
protein pair per million years, or a total of 108 newly for-
med interactions per million years for the 2.26 × 105 pro-
tein pairs in the network. Again, the observed cross-
interactions between paralogues do involve only one and
zero paralogues with Ks � 0.5, respectively, indicating that
the rate of interaction gain is not elevated shortly after
duplication.

These data, however crude, show that the rate at which
new interactions are added to the network is remarkably
high, upward of 100 added interactions per million years.
It also has another important implication. Assume that
there was a drastic imbalance between the rate, c	, at
which new interactions are added and the rate, c�, at
which interactions are eliminated. If, say c	 : c� = 2 : 1, a
network might sustain a net gain of more than 50 interac-
tions per million years, leading to a doubling of the num-
ber of interactions within 20 Myr. Conversely, if
c	 : c� = 1 : 2, the number of interactions would drop by
one half in less than 10 Myr. Thus, the number of interac-
tions per node would either vanish or explode within an
evolutionarily short amount of time. There is no evidence
for such drastic change. For example, the protein interac-
tion map for the prokaryote Helicobactor pylori, established
with a variation of the experimental design generating two
of the maps analysed here, indicates that proteins do not
have vastly different numbers of interactions in these two
organisms (Fromont-Racine et al. 1997; Rain et al. 2001).
This indicates that the rates of interaction gain and loss
must be approximately equal (c	 � c�).

6. POWER-LAW DEGREE DISTRIBUTION THROUGH
LOCAL RULES

Interaction turnover without gene duplication is suf-
ficiently rapid to influence network structure drastically.
The next question is whether it alone can sustain a broad-
tailed degree distribution consistent with a power law. A
variety of models have been proposed in which addition
and deletion of edges can generate power-law degree dis-
tributions (reviewed by Albert & Barabasi 2002). None
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Figure 5. Preferential attachment in protein interaction
networks. The abscissa shows the degree d of the protein.
The ordinate shows the likelihood Pd that a protein of
degree d has evolved new interactions. To obtain Pd for each
d, I considered all paralogous gene pairs in the data pooled
from two two-hybrid studies (Uetz et al. 2000) and non-two-
hybrid data from the MIPS database (Mewes et al. 1999)
with (i) Ks � 3, (ii) cross-interactions between the
paralogues, and (iii) no self-interactions. To avoid statistical
bias, only one pair of genes from each multigene family is
included in the analysis. Among these paralogues, I
determined the number Id of those proteins that had d
interactions to proteins different from its paralogous partner.
To account for the fact that proteins of different degree
occur at different frequencies in the network, I then divided
this number by the relative frequency fd of proteins of degree
d in the network, and normalized the resulting quantity to
obtain Pd , i.e. Pd = (Id/fd)/Σd (Id/fd). There is a strong,
approximately linear association between protein degree and
the likelihood of evolving new interactions. Pearson r = 0.90;
p � 0.05; n = 10.

of them relies on any global selection principle favouring
networks with power-law degree distributions over other
networks. Put differently, in all studied models power-law
degree distributions emerge only through local addition
and deletion of nodes and edges. Merely two general prin-
ciples are sufficient to obtain networks with power-law
degree distributions (Albert & Barabasi 2002). First,
nodes must be added to a network, even if only occasion-
ally. Second, new interactions must be more likely to
involve highly connected nodes than nodes with few con-
nections. The latter principle is also referred to as prefer-
ential attachment (‘the rich get richer’) (Barabasi & Albert
1999). Are these two essential features observed for pro-
tein interaction networks?

The first question is whether new nodes get occasionally
added to the network. When considering both non-two-
hybrid and two-hybrid data together, one finds 32 edges
among non-self-interacting paralogues with Ks � 3,
involving 21 proteins that have no other interactions. This
is an indication that a substantial fraction of edge
additions may add previously unconnected proteins, an
observation that also holds for each of the available data-
sets separately (results not shown).

Second, do new interactions between proteins already
in the network preferentially involve highly connected pro-
teins? Figure 5 relates the degree of a protein to the likeli-
hood that the protein obtains a new interactions. (It is
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again based on cross-interacting paralogues with Ks � 3.)
Although the data are not sufficient to make precise esti-
mates of a proportionality constant, they show a strong
and nearly linear correlation between the degree of a pro-
tein, and the likelihood of acquired new interactions. Pref-
erential attachment does occur in protein interaction
networks.

In summary, two key prerequisites to obtain power-law
degree distributions through local interaction rules—node
addition and preferential attachment—are met for protein
interaction networks. With these prerequisites, it is not
difficult to construct a network evolution model approach-
ing a broad-tailed degree distribution. The following
example model is an extension of previous work by Doro-
govtsev and collaborators (Dorogovtsev & Mendes 2000;
Albert & Barabasi 2002). It assumes that interactions are
added between network proteins (at a rate c	e), that inter-
actions are added between network proteins and proteins
not in the network (at a rate c	n), and that interactions
are eliminated from the network (at a rate c�). Consistent
with preferential attachment, edges are preferentially
added or eliminated with a probability linearly pro-
portional to the degree d of proteins they are attached to.
The model does not include gene duplications, because
these do not distort the degree distribution (figure 3). Fol-
lowing the analysis of Dorogovtsev & Mendes (2000) and
Albert & Barabasi (2002), the expected degree d(s,t) at
time t of a protein that has been added at time s to the
network evolves in this model according to

∂d(s,t)
∂t = (c	n 	 2c	e 	 2c�)

d(s,t)

� t

0

d(s,t)du

.

For sufficiently large time t a power-law degree distri-
bution P(d) = d�γ with � � 2 emerges. (More specifically,
� = 2 	 c	n/[c	n 	 2c	e � 2c�].) Thus, a simple local
model including only empirically observed events suffices
to explain the network’s power-law degree distribution.
One important catch to any such model is that its results
hold only in the limit of infinite time or infinite network
size. However, all biological networks are small, fluctuate
in size and have evolved for a finite amount of time. It is
thus best to also analyse network evolution numerically,
using the empirically observed evolutionary rates. Figure 6
shows results of a simulation that starts out with a protein
interaction network as observed (Uetz et al. 2000), and
shows the evolution of the degree distribution over 15 000
edge additions and deletions, a manifold turnover of the
ca. 1000 interactions in the reported network. The ordi-
nate shows the power-law exponent � and its 95%
confidence interval (CI). The insets show the degree dis-
tribution after 0, 5000 and 10 000 edge additions/
deletions. Within the limits of statistical resolution, this
distribution is invariant.

In summary, gene duplications do not alter network
structure drastically. This is because duplicated protein–
protein interactions diverge so rapidly and thoroughly that
global network structure is left unchanged even after many
gene duplications. Interaction turnover, however, is a
more serious force. But taken together, the following
observations can explain the sustenance of the power-law
degree distribution: (i) the rate of interaction addition and
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Figure 6. Power-law degree distribution through local rules. Shown are results from a stochastic simulation of network
evolution, beginning with the network as reported by Uetz et al. (2000). The ordinate shows the power-law exponent � and its
95% CI, as obtained from a linear regression analysis. The insets show the complete degree distribution after 0, 5000 and
10 000 edge additions/deletions. Within the limits of statistical resolution, this distribution is invariant over the 15 000 added
and deleted interactions shown on the abscissa (50 140 Myr of evolution). Because the network as reported contains fewer
than 1000 interactions, a turnover of 15 000 interactions means that each and every interaction is turned over many times. At
each time-step shown, an interaction was added between network proteins with probability c	e = 0.3, a protein was added to
the network (via one interaction to a network protein) with probability c	n = 0.7, and an interaction was eliminated with
probability c� = 1. These parameter values imply that the rate at which interactions are added and eliminated is approximately
equal, and that a fraction of new edge additions also involves the addition of new nodes, as observed empirically. Beyond
these requirements, the empirical data do not provide sufficient resolution to estimate these relative rates precisely. They were
thus chosen such that the overall number of proteins remains roughly constant over the time interval shown. To ensure that
network evolution follows the rule of preferential attachment I used the following procedure. To add an interaction between
network proteins, I first determined the sum s of all degrees of network proteins. Two non-adjacent network proteins u and v
were then chosen at random. I then chose a random number r uniformly distributed on the interval (0,1). If r � d(v)/s, where
d(v) is the degree of v then I established an interaction between u and v. If not, I repeated the process of choosing v and
generating r until r � d(v)/s and a new interaction could be established. This ensures that newly added edges connect
preferentially to highly connected nodes. To add a new node to the network, I followed an identical procedure, except that I
did not choose the node u from within the network, but generated it as an isolated node. Finally, to eliminate interactions, I
simply chose one interaction at random and eliminated it. If this resulted in a node to be isolated, I eliminated this node as
well. Because edges are more likely to be attached to highly connected nodes, this ensures that interactions are preferentially
eliminated from highly connected nodes. The regression analysis in the plot was done only if none of the frequencies of
proteins with 1 � d � 5 was zero. In all other cases, data are shown as missing in the plot.

deletion must be nearly balanced; (ii) interaction turnover
affects preferentially highly connected proteins; and (iii)
some added interactions add new proteins to the network.
Natural selection on the degree distribution is not neces-
sary.

7. CAVEATS

First, available protein interaction data are of limited
quality. However, the pertinent global network structure
is robust to variations in experimental technique (figure
1). Second, considerable uncertainty is involved in esti-
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mating synonymous divergence of duplicate genes,
especially for Ks � 1. However, all divergence estimates
are here used only to eliminate the most highly diverged
genes, or to group duplicates into coarse age classes, never
to base an argument on precise divergence dates. Third,
although gene duplications may dominate genome evol-
ution at short and intermediate time-scales, exon or
domain shuffling may have dominated early in the evol-
ution of life. Because we have very little quantitative rate
information about these latter processes, it is prudent to
constrain the conclusions presented here to the intermedi-
ate time-scale of several hundred million years for which
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data on evolutionary rates are available. Models that
explicitly incorporate domain rearrangements may be
more appropriate for larger time-scales (Rzhetsky &
Gomez 2001). Fourth, one cannot say with certainty that
divergence of interactions after gene duplications evolves
only loss of interactions. However, circumstantial evi-
dence indicates that degenerative mutations are rampant
after gene duplications (Li 1997; Wagner 1998; Lynch &
Conery 2000). Such mutations would lead to an elevated
rate at which interactions are lost. In addition, if most
divergence after gene duplications were due to newly
acquired interactions, the interaction density of the net-
work would increase drastically over time. There is no
indication for such an explosion of interaction density.
This argument also speaks to the fifth caveat, which is that
the rate at which interactions are added to the network
might be vastly different for paralagous genes and for non-
paralogous genes. In this regard, it is important to note
that almost all of the observed cross-interactions between
paralogues involve old paralogues. This indicates that
recently duplicated genes do not acquire new interactions
at increased rates, and that estimated rates of interaction
addition are valid for very distant paralogous genes and
probably also for non-paralogous genes. Finally, there are
uncertainties related to the few events on which some rate
estimates are based. It is important to note that this limi-
tation will not be overcome by improved data. It is mostly
due to the limited number of gene duplicates in the
(completely sequenced) yeast genome. I have thus taken
care not to base any conclusions on a precise rate estimate
and used rate information only qualitatively, such as to
suggest that the rate of interaction turnover must be high
enough to influence global network structure. A corollary
to the limited resolution of the data is that the precise rates
of node addition and interaction turnover may never be
known. However, the ratios of these values used for the
model are consistent with a key observation, that the rate
of interaction addition must roughly balance that of inter-
action deletion, and that adding interactions often leads
to adding proteins to the network. Although limited data
resolution is likely to preclude any further statement, the
observed processes are sufficient to sustain a power law
distribution involving only local rules. They can explain
network evolution without natural selection on global net-
work structure.

8. A QUESTION AS OLD AS BIOLOGY

Whether the structure of an organismal feature can pro-
vide information about some aspect of its function is a
question as old as biology itself. It applies to every level
of organization, from the arrangement of vertebrate bones
to the conformation of proteins. It is key to philosophical
debates central to biology, such as that between selec-
tionists and neutralists. With the question’s long history
also come many cautionary tales. They range from Aris-
totle’s infamous identification of the brain with a blood-
cooling device, to the just-so stories rampant in evolution-
ary biology.

Caution is thus necessary when postulating that natural
selection on a global feature of a cellular network sustains
this very feature. To be sure, a direct experimental test of
this postulate for the power-law degree distribution seems

Proc. R. Soc. Lond. B (2003)

nearly impossible, as it requires generating a whole net-
work with a different degree distribution and observing
its performance in a living organism. However, indirect
evidence can be obtained. Consider the example of meta-
bolic networks. Abiotic chemical reaction networks, net-
works that have never been under the influence of natural
selection, also show a power-law degree distribution
(Gleiss et al. 2001). This observation indicates that such
a distribution may be inherent to any chemical reaction
network. Consequently, it substantially weakens the selec-
tionist case proposing that a broad-tailed degree distri-
bution relates to (evolved) mutational robustness (Jeong
et al. 2000). The approach I took here was to explain net-
work evolution from empirical observations and local rules
without invoking natural selection on the degree distri-
bution itself. It is, however, necessary to be aware that
natural selection may be involved in many other ways. It
may be involved in the addition and deletion of individual
interactions, and thus act on a local scale. It may be
responsible for the approximately balanced rate of interac-
tion addition and deletion observed from the data. And it
may have shaped the many other global features of this
network. Identifying selection’s role in shaping global net-
work structures will doubtlessly provide a fruitful avenue
towards identifying aspects of network function. But it is
equally fraught with a danger that misled countless stu-
dents of organisms all the way back to Aristotle.
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