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Scaling laws for capillary vessels of mammals
at rest and in exercise
Thomas H. Dawson
United States Naval Academy, 590 Holloway Road, Annapolis, MD 21402, USA (dawson@usna.edu)

A general derivation is presented for the scaling laws governing the size and number of capillary blood
vessels in mammals. The derivation is based on the assumption of three idealized similarity principles
known to apply, at least approximately, to resting mammals: (i) size-invariant blood pressure; (ii) size-
invariant fraction of blood in the capillaries; and (iii) size-invariant oxygen consumption and uptake, per
unit of body mass, during each heart cycle. Results indicate that the radius and length of capillaries, and
the number that are open and active in the resting state, should scale with mammal mass to the powers
1/12, 5/24 and 5/8, respectively, consistent with earlier work by the author. Measurements are presented
supporting the results. Physiological changes accompanying strenuous exercise are accounted for by a
change in the scaling law for capillary number, from scaling exponent 5/8 to 3/4.
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1. INTRODUCTION

The discovery of the minute blood vessels connecting the
arterial and venous sides of the circulation is attributable
to Marcello Malpighi who first identified them in 1661
with the aid of the newly invented microscope. The exist-
ence of the capillaries, as they are now called, was antici-
pated some 30 years earlier by William Harvey in the form
of ‘porosities of the flesh’ associated with his general
theory of blood circulation. Since that time, the capillaries
have become recognized as essential elements in the life
process through which all exchanges take place between
the blood and the tissues.

In spite of the long-recognized importance of the capil-
laries to the cardiovascular system of humans, in parti-
cular, and mammals in general, very little progress was
made in understanding their physiology until the early part
of the 20th century when August Krogh reported exten-
sive experimental studies on the system. This work
addressed the number and distribution of capillaries in
muscles and the manner of oxygen transfer from capil-
laries to surrounding tissue (Krogh 1919). The work also
revealed the existence of both active and inactive capil-
laries in resting muscle tissue and illustrated the fact that
the latter could become active during exercise (Krogh
1920). Later fundamental work of interest here includes:
Pappenheimer et al. (1951) on the manner of fluid transfer
across capillary walls; Schmidt-Nielsen & Larimer (1958)
on measurements of scale variation of the oxygen pressure
in the blood of mammals and its relation to oxygen trans-
fer from the capillaries; Schmidt-Nielsen & Pennycuik
(1961) and Hoppeler et al. (1981) on measurements of
scale variation in capillary density in the muscle tissue of
mammals; and Gehr et al. (1981) on measurements of
scale variation in the volume and surface area of the pul-
monary capillaries of mammals.

Consistent with the subject of the present paper, the
latter measurements of capillary volume and area indicate
orderly variation in capillary size as attention is shifted
from the human to other mammals. The author (Dawson
1991) discussed these measurements and such variations
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some years ago in connection with the scaling laws and
design aspects of the cardiovascular system. Unfortu-
nately, however, that work has not received wide atten-
tion. Indeed, in recent works by West et al. (1997) and
Banavar et al. (1999) on cardiovascular function, a con-
trary assumption was made that the capillary dimensions
do not vary with mammal size. The matter has been
addressed further (Dawson 1998, 2001) in terms of gen-
eral design considerations of the cardiovascular system,
but additional clarification is needed, including the con-
sideration of recent work by Dodds et al. (2001) on poss-
ible transitions in scaling laws associated with small and
large mammals. An extension of the earlier work is also
required in view of the increased understanding of the
exercise state of mammals provided by the works of Baud-
inette (1978), Taylor et al. (1981), Weibel et al. (1991),
Bishop (1997, 1999) and Darveau et al. (2002), among
others. The present work accordingly involves a recon-
sideration of the capillary system of mammals and pro-
vides a new general derivation of the scaling laws for
capillary size and number, together with a critical assess-
ment of the assumptions and new results on capillary
physiology associated with both resting and exercise states.

2. EXISTENCE OF SIMILARITY AND SCALING
LAWS

First, consider the fundamental basis for possible sca-
ling laws governing capillary characteristics on both the
systemic and the pulmonary sides of the circulation. The
resting state of mammals is considered, and the entire vas-
cular system is envisioned on the systemic side, with all
its branching from the aorta to the large and small arteries
and onward to the many capillaries spread throughout the
body and open to blood flow. Likewise, the vascular sys-
tem on the pulmonary side is considered, with its various
branchings from the pulmonary arteries to the capillary
beds of the lungs. The characteristic radius of these capil-
laries, for any specific mammal, is denoted by RC , their
characteristic length by LC and their characteristic operat-
ive number in the resting state by NC . It is the scaling of
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these quantities with mammal mass M that is of interest
in the present work, together with any modification of the
characteristic number that may be needed as a result of
strenuous exercise and the opening of additional capil-
laries in muscle tissue.

Whether such scaling laws exist at all depends, of
course, on whether sufficient similarity exists in the capil-
lary systems of mammals to allow correlation of properties
from one mammal size to another. Evidence that this is
the case has already been given in connection with the
author’s earlier work and with the measurements of Gehr
et al. (1981) on the volume and surface area of the pul-
monary capillaries. Further evidence can be found in the
various other physiological measurements on resting
mammals that have been carried out. For example, early
experimental work by Rubner (1883) on dogs indicated
that their resting oxygen consumption rates varied in an
orderly manner, being proportional to body mass raised
to the power 2/3. Work by Kleiber (1932) and Brody &
Procter (1932) on mammals in the mouse to elephant
range indicated a similar orderly variation, but with mam-
mal mass raised to a power closer to 3/4. In addition,
measurements by Rihl (1926) and Clark (1927) indicated
that the resting heart rate of mammals varies with mam-
mal mass raised to a power of approximately 21/4, and
measurements by Woodbury & Hamilton (1937) and
Gregg et al. (1937) demonstrated that the systolic and
diastolic blood pressures of resting mammals are essen-
tially independent of mammal size. Holt et al. (1968)
showed, moreover, that resting cardiac output varies with
mammal mass raised to a power of approximately 3/4, and
measurements by Schmidt-Nielsen & Larimer (1958)
revealed that oxygen partial pressure in the blood of mam-
mals varies approximately with mammal mass to the
power 21/12. These many results therefore indicate that
appreciable similarity exists in the measured physiological
variables of resting mammals, as well as in the underlying
capillary processes responsible for them.

The extent of the similarity that actually exists among
mammals has, in fact, become a subject of increased inter-
est in recent times. Dodds et al. (2001) have studied the
scaling law for the oxygen consumption rate of resting
mammals in considerable detail and have shown, consist-
ent with the earlier work of Bartels (1982) and Heusner
(1991), that existing datasets show a transition in power-
law representation at a mammal mass of ca. 10 kg. For
data from mammals with body masses below this level, a
scaling law with mammal mass raised to a power of
approximately 2/3 appears preferable, while for the combi-
nation of these data with those for larger mammals, a
power of approximately 3/4 is indicated. The work is
important in that it indicates the possibility of some basic
physiological differences between small and large mam-
mals. It also suggests that the latter 3/4 relation may not
be a fundamental feature of the physiology of mammals,
but instead simply a convenient representation for oxygen
consumption rate over a wide range of mammal sizes.
Weibel (2002) has provided additional insight into the
matter of power-law description of oxygen consumption
rate.

At present, it is not known whether differences between
small and large mammals can be identified in power-law
representations of physiological variables associated
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Table 1. Idealized scaling relations for resting mammals,
where variable Y is proportional to (mammal mass)b.

variable Y symbol exponent ba

oxygen consumption rate VÇ O2
3/4

heart rate v 21/4
blood pressure — 0
cardiac output QB 3/4
oxygen partial pressure in blood PO 21/12

a Details and references noted in text. Additional references
are Schmidt-Nielsen (1984) and Dawson (1991).

directly with capillary size or number. It may be that the
transition described above is associated only with the pro-
cess of oxygen transfer across the capillary walls and that
the capillaries’ characteristics themselves are independent
of any such divided representation. The matter is of obvi-
ous importance to a general understanding of capillary
physiology and will be addressed in the present paper.

In respect of the overall representation of physiological
measurements by single empirical scaling relations, it has
long been recognized that they are experimental generaliz-
ations and that predictions for any specific mammal are
likely to be somewhat deficient when compared with the
actual measurement for that mammal. The idea in such
representations is not so much the precise prediction of
values for particular mammals, as these can be determined
better from measurements, but rather the establishment
of idealized relations, illustrative of the general similarity
indicated by the measurements, and amenable ultimately,
it is hoped, to a theoretical description in terms of broadly
applicable physiological processes. In this sense then, the
traditional scaling laws for oxygen consumption rate, heart
rate and the many others identified earlier, can serve as a
useful reference for theoretical investigation and for more
detailed consideration of any departure from these broad
general concepts. This is the view adopted in the
present work.

The scaling relations of importance in the present inves-
tigation of capillaries are listed in table 1, with the under-
standing that they denote idealized (nominal)
representations for mammals ranging in size from the
mouse to the elephant and that they provide a convenient
baseline for further discussion of observed differences
between theory and measurement.

The nominal value of 3/4 for resting oxygen consump-
tion rate in table 1 may be compared with the value of
0.74 found by Kleiber (1932); the nominal value of 21/4
for resting heart rate may be compared with the value of
20.27 found by Clark (1927); and the nominal value of
3/4 for cardiac output may be compared with the value of
0.78 found by Holt et al. (1968). Likewise, the nominal
value of 21/12 for oxygen partial pressure in the blood
may be compared with the value of 20.06 found by
Schmidt-Nielsen & Larimer (1958) and the modified
value of 20.09 found by Dawson (1991).

3. DERIVATION OF SCALING LAWS AND CRITICAL
REVIEW

It is notable that the net flow of blood through all the
systemic and pulmonary capillaries of the body must equal
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that from the heart, that is to say, it must equal the cardiac
output, QB , from the left and right ventricles, respectively.
Notable also is the generally accepted fact (table 1) that
blood pressures in mammals in the resting state are essen-
tially invariant with respect to mammal size. The pressure
associated with pushing the blood through the entire set
of capillaries can therefore also be expected to be invariant
with respect to mammal size. This condition is assumed
here.

The famous Poiseuille equation for viscous flow in small
tubes (Poiseuille 1846) provides a connection between
pressure, cardiac output and capillary dimensions. The
relation, developed originally with capillary blood flow in
mind, requires the driving pressure DP for flow in a single
capillary vessel of length LC and radius RC to be pro-
portional to blood viscosity m according to the relation
DP = 8mLCVC /R2

C where VC denotes the average blood
velocity in the vessel. For a number of identical parallel
vessels NC , the velocity VC is equal to the total average
blood flow QB divided by the net sectional area NCpR2

C

so that the relation is DP = 8mLCQB /NCpR4
C .

The viscosity of the blood may be assumed to be inde-
pendent of mammal size, in agreement with laboratory
measurements of Amin & Sirs (1985) on the blood of
mammals ranging in size from rabbit to horse. The pro-
portional relation for the condition of size-independent
driving pressure DP is then expressible in the form of the
similarity relation DP ~ LC QB /NCR4

C ~ M0, where the
symbol ~ denotes proportionality under change of scale
and M denotes mammal mass. Moreover, the cardiac out-
put of resting mammals varies with mammal mass to the
nominal power 3/4, so that this relation is expressible
finally as

LCM3 /4 ~ NCR4
C . (3.1)

Next, consider the fraction of total blood that is in the
capillaries of the body and assume that this fraction is the
same for all mammals. Total blood volume in mammals is
known to be proportional to mammal mass (Brody 1945),
therefore this similarity condition provides the relation
NCLCR2

C /M ~ M0, which may be written as

NCLCR2
C ~ M. (3.2)

As to the physical basis for this last relation, the exten-
sive measurements of capillary volume in the lungs by
Gehr et al. (1981) may be considered. In a group of
African mammals they discovered that the volume of the
pulmonary capillaries varied with mammal mass to the
power 0.97. For these and other more familiar mammals,
ranging in size from shrew to cow, they determined that
the variation was directly proportional to mammal mass.
The difference between the two cases is not significant,
and equation (3.2) may be considered representative of
these measurements. Interestingly, a reanalysis of the data
in connection with the present work shows that, for mam-
mals with body mass no greater than 10.1 kg, the capillary
volume varies with mammal mass to the power
1.007 ± 0.022 (n = 22, r2 = 0.991; ± values indicate stan-
dard errors) while for all the mammals in the study the
power is found to be 1.015 ± 0.014 (n = 37, r2 = 0.993).
Accordingly, no significant difference between small and
large mammals is revealed by these measurements.
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Next, consider the final relation needed to establish the
scaling laws for the capillaries. Here, the conditions (table
1) used are that the rate of oxygen consumption (and also
uptake) of resting mammals VÇ O 2

varies, like cardiac out-
put, as mammal mass to the nominal power 3/4, and that
the heart rate v of resting mammals varies with mammal
mass to the nominal power 21/4. The similarity relation
VÇ O 2

/Mv ~ M0 can then easily be seen to apply. This con-
dition states that the oxygen consumption (and uptake)
per unit of body mass during a heart cycle is invariant with
respect to mammal size.

In order to relate this last condition to capillary dimen-
sions, it should be noted that the oxygen consumption rate
must equal the rate at which it is transferred through the
capillary walls. This latter process is one of diffusion
(Krogh 1919), and it can therefore be expected to follow
the general law requiring rate of transfer to be pro-
portional to the product of the differential oxygen partial
pressure PO 2 P 9O and the capillary area 2pRCLC and to
be inversely proportional to the capillary-wall thickness,
say HC . Here, PO denotes the oxygen partial pressure in
the blood and P 9O the pressure immediately outside the
capillary.

The differential oxygen partial pressure P O 2 P 9O can
be expressed as PO (1 2 P 9O /PO ), but unfortunately no
information exists on the variation of the ratio of these
two pressures P 9O /P O with change in mammal size. It can
be expected, however, that any percentage change in one
pressure from change in scale will be accompanied by a
similar, or near similar, change in the other. The ratio
P 9O /P O will therefore be assumed to be constant for all
mammals. It may be noted, however, that variation in
the ratio could provide a source for the divided represen-
tation of the oxygen consumption rate indicated in
measurements for small and large mammals, as noted by
Dodds et al. (2001) and discussed earlier. The matter
will be addressed further in a later section of this paper.
Assuming, for the present, that the ratio is constant and
considering all systemic or pulmonary capillaries of
the body, we may then write the proportional relation
for the rate of oxygen consumption, or uptake, as
VÇ O 2

~ NCPO RC LC /HC .
The question now is what to do with the capillary

thickness in this last relation? Again, as in the case of the
above pressure ratio, there are no explicit measurements
to guide the answer. There are two simple possibilities:
either it is size invariant, or it varies directly as the radius
varies. Support for the latter over the former is found in
the condition (for rupture prevention) that the mechan-
ical stress in the capillary wall from blood pressure is size
invariant in accordance with the Laplace formula for
stress (net blood pressure times radius divided by wall
thickness). Thus, accepting this condition, the oxygen
condition may be written as VÇ O 2

~ NC P OLC , and the size-
invariant condition as NCP O LC /Mv ~ M0. Oxygen partial
pressure in the blood is known, from measurement, to
vary with mammal mass to the nominal power 21/12
(Dawson 1991). The final relation is then expressible as
NCM21 /1 2LC ~ Mv ~ M3 /4 or

NCLC ~ M5 /6. (3.3)

The scaling laws can now be established for the dimen-
sions and number of capillary vessels using the above three
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conditions. From equations (3.2) and (3.3) it can easily
be seen that M5 /6R2

C ~ M, so that R2
C must be proportional

to M1 /6 and hence the radius RC must be proportional to
M1 /1 2. Equations (3.2) and (3.3) alone therefore deter-
mine the scaling laws for capillary radius RC and net length
NCLC . In order to determine the separate scaling laws for
capillary length and number, equation (3.1) may be multi-
plied by LC and written as L2

CM3 /4 ~ NCLCR4
C . Utilizing

equation (3.2), this may also be written as
L2

CM3 /4 ~ MR2
C . Using the previously established condition

for RC , we thus find that the capillary length LC must be
proportional to mammal mass to the power 5/24. Finally,
equation (3.3) therefore illustrates that capillary number
NC must be proportional to mammal mass to the power
5/8. Collating these results, we thus have the scaling laws
for the capillary dimensions and number expressible as

RC ~ M1 /1 2, LC ~ M5 /2 4, NC ~ M5 /8. (3.4)

These relations are in agreement with those of the
author’s earlier work (Dawson 1991, 2001). They have
been derived here in a relatively direct manner, using the
idealized properties of mammals tabulated in table 1 and
additional assumptions as critically discussed.

4. EXPERIMENTAL DEMONSTRATION

In this section, the experimental demonstration of the
scaling laws of equation (3.4) is considered. The dis-
cussion is partly one of review, since the author (Dawson
1991, 2001) has already discussed the matter in consider-
able detail. The assumption is that the scaling laws for
characteristic capillary dimensions and number apply to
all capillaries within any well-defined part of a mammal
where consistent measurements can be made.

For example, if the radius of the capillaries in a certain
organ of a human, with a body mass of 70 kg, is found
to equal 0.0040 mm, then we would expect the radius of
corresponding capillaries in an elephant, with a body mass
of 3000 kg, to be 0.0055 mm, as determined by the pro-
duct 0.004 (3000/70)1 /1 2 from the first relation of equation
(3.4). Similarly, if the number of capillaries in an organ
of the human is estimated to equal a certain value, this
number may also be scaled to the elephant using the third
relation in equation (3.4). Of course, in this last example,
the capillaries in question must be only those active in the
resting state, since resting conditions are assumed in the
development of equation (3.4). All capillaries in the kid-
neys and lungs, for example, are active in the resting state,
in contrast with the various muscles of the body, which
generally have both active and inactive capillaries during
resting.

First, the capillary number NC is considered and reliable
measurements sought for confirmation of the 5/8 power
law of equation (3.4) for this variable. Fortunately, as
noted earlier (Dawson 1991), such data are available from
the extensive study of the fundamental nephron units of
the kidneys by Kunkel (1930). These units consist of a
cluster of capillaries, encased in the renal capsule, through
which fluid is discharged, and also additional capillaries
through which it is partially reabsorbed. In the human,
there are approximately one million such units in each kid-
ney. Assuming a similar architecture of the units among
mammals, with the same total number of capillaries per
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Figure 1. Illustration of variation of capillary radius with
mammal mass and comparison with 1/12 power law. Data
are determined from those of Kunkel (1930) by assuming a
capillary radius equal to 2% of the diameter of the renal
capsule.

unit, the number of units should scale with mammal size
exactly as the scaling law of equation (3.4) for the number
of capillaries. Detailed measurements of nephra number
by Kunkel for mammals ranging in size from mouse to ox
were analysed by Adolph (1949) and the number was
found to scale with mammal mass to the power 0.62, in
excellent agreement with the power 5/8 (0.625) required
by equation (3.4). A reanalysis of the measurements in
connection with the present work reveals a power of
0.617 ± 0.021 (n = 17, r2 = 0.983), thus confirming the
close agreement with the theory.

Also, because of the flexibility of the lengths of the capil-
laries relative to their diameters, the size (or diameter) of
the renal capsules should scale with the radius of the capil-
laries. Measurements of the diameters of the renal cap-
sules by Kunkel were also analysed by Adolph and found
to vary with mammal mass to the power 0.08. This is in
excellent agreement with the power 1/12 (0.083) required
by equation (3.4) for the capillary radius. A reanalysis of
the data for the present work indicates, in fact, a power
of 0.083 ± 0.013 (n = 15, r2 = 0.752) consistent with the
earlier result of Adolph.

These data have not been discussed previously in this
connection, and the implied variation of capillary radius
with mammal mass is thus shown explicitly in figure 1.
Here, use has been made of Kunkel’s measurements,
assuming a capillary radius of 2% of the diameter of the
renal capsule, consistent with a capillary radius of ca.
0.004 mm for the human. Predictions from the 1/12
power law from equation (3.4), with the proportional
coefficient (0.002 86) determined from the data, are also
shown. The overall agreement is remarkably good.

Next, consider measurements demonstrating the scaling
law for the capillary length LC . Direct measurements are
unavailable. However, indirect measurements of the pro-
duct NCLC are available from data on fluid discharge
across capillary walls. In particular, fluid output must, like
oxygen transfer discussed in § 3, vary as the product of
driving pressure and net capillary length NCLC , at least for
a capillary-wall thickness proportional to radius under
scale change. In this case, however, the driving pressure
is the difference between the scale-invariant blood press-
ure and the (assumed) scale-invariant pressure external to
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Figure 2. Measurements of Gehr et al. (1981) for net surface
area of pulmonary capillaries compared with predictions
from scaling theory.

the capillary (Pappenheimer et al. 1951). Fluid output is
therefore expected to scale simply as the product NCLC ,
that is, as mammal mass to the power 5/6 (0.83) according
to equation (3.4). As noted previously (Dawson 1991),
this value is in excellent agreement with classic measure-
ments for the mouse to elephant range, which showed
urine output of mammals to vary as mammal mass to the
power 0.82 (Adolph 1943, 1949). Reanalysis of the data
for the present work provides the power 0.819 ± 0.040
(n = 12, r2 = 0.977), thus confirming the excellent agree-
ment indicated.

Experimental support for the scaling relations (equation
(3.4)) is now considered for the pulmonary side of the
circulation. The basic measurements to be considered are
those for the net capillary surface area of mammals. This
area should scale as the product NCLC RC scales, that is,
as mammal mass to the power 11/12 (0.92) according to
equation (3.4). This value is in excellent agreement with
extensive measurements reported by Gehr et al. (1981).
In particular, for a group of African mammals they report
a scaling value of 0.92, and for these and more familiar
mammals, they report a scaling value of 0.95.

The latter results of Gehr et al. (1981) are from the
same investigation as the measurements of capillary vol-
ume quoted in § 3 in connection with equation (3.2). As
in the case of the volume measurements, no significant
difference is found between the scalings of the capillary
surface area for smaller and larger mammals. Analysis car-
ried out for the present work indicates that for mammals
used in the study with a body mass no greater than
10.1 kg, the scaling power is 0.920 ± 0.023 (n = 22,
r2 = 0.988) and for all mammals considered in the study
the power is 0.946 ± 0.013 (n = 37, r2 = 0.993). In figure
2, data are compared with predictions from the theory
requiring proportional variation with mammal mass raised
to the power 11/12. The proportional coefficient (2.98)
was determined from the data. The agreement is seen to
be remarkably good over the entire range of mammals
considered, from the shrew of mass 0.0026 kg to the cow
of mass 700 kg.

A major conclusion from the results illustrated in figure
2, and the earlier results noted for capillary volume for the
same range of mammals, is that no transitions exist in the
power-law representations of capillary dimensions and
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Table 2. Comparisons of theory with measurement for scaling
powers b in the relation Y ~ (mammal mass)b for quantity Y.

quantity y b theory b measurementa

capillary number 0.625 0.62
capillary radius 0.083 0.08
fluid transfer 0.833 0.82
capillary surface 0.917 0.92–0.95
capillary volume 1.000 0.97–1.00
oxygen transfer 0.750 0.74

a Details and references noted in text.

number. The entire discussion of this section also demon-
strates that the theoretical scaling laws of equation (3.4)
provide impressive agreement with measurements over a
wide range of mammal sizes.

The scaling laws associated with capillary dimensions
and number are summarized in table 2, together with pre-
dictions and comparisons with the measurements just dis-
cussed. Also included are the scaling results for oxygen
transfer rate and capillary volume, as referred to in the
derivation of equation (3.4).

5. POSSIBLE SOURCE FOR THE TRANSITION IN
THE OXYGEN CONSUMPTION RATE LAW

In using the 3/4 power law for oxygen consumption rate
VÇ O 2

of resting mammals in the derivation (see § 3) of the
scaling laws for capillary dimensions and operative num-
ber, we may, in fact, be considering an average relation
for both small and large mammals. In the relation
VÇ O 2

~ NCPO (1 2 P 9O /PO )LC , stated in § 3 in connection
with the development of equation (3.3), an average on the
left side implies an average on the right side. The success-
ful scaling laws of equation (3.4) were derived by using
the 3/4 power law for oxygen consumption rate and an
assumed scale invariance for the pressure factor (1 2
P 9O /PO ), as associated with the oxygen pressures PO and
P 9O inside and immediately outside a capillary, respect-
ively. The latter may, of course, be interpreted as replacing
the oxygen consumption rate and pressure factor in the
relation by their average (or smoothed) variations.

Suppose now that the relation is reconsidered using the
successful scaling laws for capillary length LC , number NC

and oxygen pressure PO , but with the factor (1 2 P 9O /P O )
now considered variable and the oxygen consumption rate
unspecified. The following relation can be given:

VÇ O 2
~ NCPO (1 2 P 9O /PO )LC ~ (1 2 P 9O /PO )M3 /4. (5.1)

It can be seen from this result that the 2/3 power law
for smaller mammals, indicated by Dodds et al. (2001) in
the dataset of Heusner (1991), could simply arise from
the factor (1 2 P 9O /PO ) having an actual variation with
mammal mass to the power 20.08. By contrast, for large
mammals, the variation would need to be different, with
mammal mass to the power 10.13, in order to provide
the 0.88 power law indicated by Dodds et al. (2001) for
larger mammals in the same dataset.

Insofar as the scaling laws for capillary variation are con-
cerned, the situation may therefore be as follows: the use
of the ‘average’ 3/4 power law for oxygen consumption
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rate for a wide range of mammal sizes and the assumption
of an average scale-invariant value for the pressure factor
(1 2 P 9O /P O ) leads to the same correct scaling laws for
capillary dimensions and number as would be found from
the use of ‘actual’ laws of oxygen consumption rate for
small and large mammals, together with the ‘actual’ vari-
ations in the pressure factor for the small and large mam-
mals.

These observations are speculative, but they indicate
how the divided power-law representations described
recently by Dodds et al. (2001) for oxygen consumption
rate could arise from the physiology of the oxygen transfer
across the capillaries, without having a corresponding div-
ided representation in the power-law description for the
capillary characteristics. The latter is of course consistent
with results found here. The entire matter requires further
experimental study.

6. CHANGES WITH STRENUOUS EXERCISE

It can be seen from the present work that the scaling
laws for capillary dimensions and active number (in the
resting state) are based on resting, or near resting, con-
ditions. For a number of years, it was generally thought
that scaling relations for mammals were the same for both
resting and exercise states. This could be the case if
physiological variables such as oxygen consumption rate
and heart rate increased by the same factor in all mammals
during strenuous exercise. Based on work by Baudinette
(1978), Taylor et al. (1981), Weibel et al. (1991) and
Bishop (1997, 1999), among others, this is now known to
be untrue.

In particular, the oxygen consumption rate and cardiac
output of mammals (bat to steer range) in strenuous exer-
cise have recently been shown by Bishop (1997, 1999) to
vary closely with mammal mass raised to the power 0.88,
in contrast with the corresponding value of 0.73 for the
rest state. In this same work, the heart rate was estimated
to vary with mammal mass to the approximate power
20.12, in contrast with the approximate power of 20.27
for the resting state. These results are in general agree-
ment with the earlier work of Baudinette (1978) and
Weibel et al. (1991) on scaling of heart rate and oxygen
consumption rate during intense exercise.

In respect of the actual conditions existing for mammals
in strenuous exercise, the recent work by Darveau et al.
(2002) and the discussion by Weibel (2002) have emphas-
ized the weighted average involved in the oxygen law from
various physiological processes, and have provided insight
into the increased scaling exponent that applies for the
exercise state. It remains to relate this change under exer-
cise to the broader characteristics of the capillary system,
as provided by the general scaling theory. This may, in
fact, be done by retaining the scaling laws for capillary
radius and length, as determined from the resting state,
and adjusting the scaling law for the number of capillaries
in mammals.

It is, of course, well known from the work of Krogh
(1920) that additional capillaries are opened to blood flow
during exercise. It is, indeed, this very control mechanism
that allows increased blood and oxygen to be delivered to
organs in need during exercise. In this regard, therefore,
the design of the capillary system is governed by the
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intense-exercise conditions, as it is these conditions that
determine the number of reserve capillaries required for
service during exercise. The matter is in general agreement
with the concept of symmorphosis (Taylor & Weibel 1981;
Weibel et al. 1991; Hoppeler & Weibel 1998), that
nothing more is provided in the design of mammals than
is needed for their purposes.

In order to determine the number of capillaries open
and operating during strenuous exercise, we may return
to the three broad similarity principles used in establishing
equations (3.1) and (3.3) for the resting state. One
relation has to be relaxed with the new requirement on
capillary number, and this evidently must be that associa-
ted with equation (3.2), expressing the scale-invariant
fraction of total blood volume in the capillaries. In this
relation, the capillary radius and length are fixed by the
resting conditions, and hence only the capillary number
can be varied. When it is varied, as in the present case,
the only alternative is to relax the condition.

Disregarding equation (3.2), it is still possible to exam-
ine the remaining two similarity conditions. The first, on
which equation (3.1) is based, is the requirement that the
blood pressure needed to push blood through the entire
capillary network must be independent of mammal size.
As noted in § 3, this is a critical condition regarding stress
and failure of capillary walls and is likely to be maintained
during strenuous exercise. The earlier general relation
expressing this condition, namely LCQB /NCR4

C ~ M0, now
takes the form

M5 /2 4QB (max) ~ N 9C M4 /1 2, (6.1)

where N 9C denotes the modified capillary number for
strenuous exercise, and where the relations in equation
(3.4) for the resting state have been used for capillary
radius RC and length LC . From earlier remarks, the cardiac
output QB (max) is known to vary with mammal mass
to the power 0.88 (Bishop 1997, 1999). Equation (6.1)
accordingly requires that the capillary number N 9C for the
exercise state vary with mammal mass to the power 0.75,
that is that N 9C ~ M3 /4.

The relation for the net oxygen transfer rate, as used in
§ 3 in rest conditions, is now expressible as

VÇ O 2
(max) ~ PO N 9CLC , (6.2)

and this provides the relation VÇ O 2
(max) ~ M0 .8 8, in agree-

ment with measurements for the exercise state. Here, oxy-
gen partial pressure PO is required to vary with mammal
mass to the power 21/12, as in the rest case, and capillary
length LC is required to vary according to the second
relation in equation (3.4), also based on rest conditions.

The remaining similarity condition on which equation
(3.3) is based, namely, the condition that the oxygen con-
sumption, or uptake, per unit of body mass during a heart
cycle is independent of mammal size, is satisfied by this
last result and the previously noted variation of maximum
heart rate with mammal mass to the power 20.12, that
is, VÇ O 2

(max)/Mv(max) ~ M0.
Thus, the two fundamental similarity relations, on

which equations (3.1) and (3.3) are based, remain valid
during intense exercise. The basic similarity equation
(3.2) ceases, of course, to apply under exercise conditions;
that is, the fraction of blood in the capillaries is no longer
invariant during strenuous exercise, but rather increases



Scaling laws for capillary vessels T. H. Dawson 761

with increasing mammal size. The increase, moreover, is
proportional to the ratio of revised to original capillary
number N 9C/NC , which varies as mammal mass to the
power 0.13.

7. CONSIDERATION OF CAPILLARY DENSITY

In addition to the above considerations for capillary
number, it is interesting to consider capillary density,
which typically involves the number of capillaries per unit
of area in muscle tissue. The subject was originally studied
by Krogh (1919) who demonstrated, using measurements
from muscles of the horse, dog and guinea-pig, that capil-
lary density increases with decreasing mammal size. More
recently, Schmidt-Nielsen & Pennycuik (1961) and Hop-
peler et al. (1981) have performed further detailed
measurements for a wider range of mammals and have
reached the same general result, although with some quali-
fications.

Some idealized observations may be made with respect
to the present theory. Assuming the mass of any particular
muscle varies directly with mammal mass M, its sectional
area will vary as M2 /3 for a similar shape. The total number
of capillaries in the section will then be expressible in pro-
portional terms as the product of the capillary density, say
g, and this variation, that is, as gM2 /3. In addition, the
length of the muscle will vary as M1 /3, and the number of
independent sections in the muscle will be proportional to
the ratio of this length to the capillary length LC , that is
M1 /3/M5 /2 4, where the scaling law for capillary length is
that given by the second relation in equation (3.4). Using
these results, the total number of capillaries in the muscle,
say N, is expressible as gM2 /3M1 /3/M5 /2 4, that is, as

N ~ gM1 9 /24. (7.1)

From equation (7.1) the expected capillary density for
the resting number of total capillaries in the muscle can
be considered. Thus, setting N ~ NC ~ M5 /8 from equ-
ation (3.4) gives g ~ M21 /6. This is an interesting result
and is equivalent to requiring that capillary spacing in the
muscle be proportional to capillary radius RC . The latter
was assumed independently of equation (7.1) in the
author’s earlier work (Dawson 1991) and shown to apply
to measurements of capillary density of the masseter mus-
cle reported by Schmidt-Nielsen & Pennycuik (1961).
The conclusion, as evident from the extended work here,
is that these measurements were probably mainly con-
cerned with the capillaries that are open and active in the
resting state.

In addition to measurements of the masseter muscle,
Schmidt-Nielsen & Pennycuik (1961) reported capillary
density values for the gastrocnemius muscle. The
measurements were divided into those for red and white
muscle fibres, with the idea that these fibres represented
different muscle characteristics. Fortunately, enough data
were provided to allow consolidation of the two for
present purposes. This has been carried out and the
results are plotted in figure 3, together with the above
theoretical 21/6 scaling law with the proportional coef-
ficient (725) determined from the data. The agreement is
generally good, considering the nature of the measure-
ments. Detailed regression analysis of the data indicates,
in fact, an exponent of 20.155 ± 0.044 (n = 10, r2 =
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Figure 3. Capillary density (number mm22) variation with
mammal size as measured by Schmidt-Nielsen & Pennycuik
(1961) for the gastrocnemius (leg) muscle.

0.609), which is in surprisingly good agreement with the
theoretical value of 21/6 (20.167) required by equation
(7.1) and the present theory. As in the case of the
measurements for the masseter muscle, it is therefore
probable that these measurements mainly involved those
capillaries open and active in the resting state.

The measurements of Schmidt-Nielsen & Pennycuik
(1961) were made using light microscopy, and, in view
of the experimental difficulties noted by Krogh (1920) in
detecting inactive capillaries in the resting state, it is not
surprising that they were probably missed in the investi-
gation.

The more recent measurements of capillary density in
muscle tissue by Hoppeler et al. (1981) employed electron
microscopy and provided a better opportunity to detect
inactive (reserve) capillaries in tissue. When such capil-
laries are included in the determination of capillary den-
sity, we can no longer expect the 21/6 scaling law (based
on resting conditions) to apply. Neither can we expect the
capillary density to follow the scaling relation from equ-
ation (7.1) when the capillary-number variation (3/4
power law) for strenuous exercise is used on the left side
of this relation. This variation represents a net variation
for the entire body, some parts having no reserve capil-
laries and some with both active and reserve capillaries.
We can, however, use equation (7.1) to determine the
number of active and reserve capillaries in a muscle when
the capillary density in that muscle has been measured.

Using the measurements of Hoppeler et al. (1981) for
the four muscles of the body studied (semitendinosus, lon-
gissimus, vastus medialis and diaphragm), the capillary
density is found to vary with mammal mass to the average
power 20.073. Equation (7.1) demonstrates that the aver-
age number of capillaries in these muscles varies with
mammal mass to the power 0.72. This is greater than the
resting case (0.63), but not perhaps as large as might be
expected. The case of the diaphragm by itself is note-
worthy in that its capillary density was found to vary with
mammal mass to the power 10.045. Equation (7.1) then
requires the total number of capillaries in the diaphragm
to vary with mammal mass to the power 0.84, which is
appreciably larger than for the average and the resting
cases. The matter requires more experimental investi-
gation, but the indications are favourable and provide sup-
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port for the theoretical results of the present work
regarding scaling of capillary number for strenuous exer-
cise.

8. DISCUSSION AND CONCLUSIONS

In summary, the present work has demonstrated that
there can be little doubt that the minute capillary vessels
of mammals vary in size and number with mammal body
mass. There can also be little doubt about the general val-
idity of the scaling laws developed here for describing
these variations. The basic similarity assumptions from
which they were derived, while idealized in table 1, rest
on a firm experimental foundation. The additional
measurements used in this work to confirm the scaling
laws combine to provide strong independent evidence for
their general validity as derived here, and as presented
earlier by the author (Dawson 1991, 2001) on different
grounds.

With regard to the latter, it may be worthwhile to
observe that the basic data of Gehr et al. (1981) for capil-
lary volume VC and surface area SC can also be used to
estimate the scaling laws for capillary radius RC and net
capillary length NCLC directly from the geometric con-
ditions RC ~ VC /SC and NCLC ~ S2

C /VC . It has been
shown, by analysis of the data, that VC and SC vary with
mammal mass to the powers 1.015 ± 0.014 and
0.946 ± 0.013, respectively. The capillary radius and net
capillary length are accordingly indicated by these results
to vary with mammal mass to the powers 0.069 ± 0.027,
and 0.877 ± 0.040, respectively. These results are likewise
in good agreement with the scaling laws of equation (3.4),
which provide predictions of 0.083 and 0.833, respect-
ively, based on the idealized representations of related
physiological variables in table 1. The following con-
clusions can therefore be reached.

Capillary radius and length in mammals vary in an idea-
lized sense with mammal mass to the powers 1/12 and
5/24, respectively. Measurements provide general agree-
ment.

The entire number of capillaries in the body that are
open and active in the resting state varies, in an idealized
sense, as mammal mass to the power 5/8. Moreover, for
organs whose entire capillary networks are open and active
in the resting state, the latter scaling law applies also to
the total number of capillaries in these individual organs.
Measurements support the prediction.

Recent work (Dodds et al. 2001) has identified a tran-
sition in the power-law (scaling) representation of oxygen
consumption rate between small and large mammals.
However, no such difference has been found in the present
work for power-law representations of measurements
(Gehr et al. 1981) of capillary volume and surface area.
This matter has been addressed here in terms of the basic
process of oxygen transfer across capillaries. A plausible
explanation is offered that attributes the different rep-
resentations for the oxygen consumption rate to actual dif-
ferences in the oxygen transfer process for small and large
mammals, thus leaving the capillary representations unaf-
fected.

By considering an average power-law representation
(traditional 3/4 power law) for oxygen consumption rate
for all mammal sizes, and an average of the oxygen-
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transfer process across capillaries, reasonably accurate sca-
ling laws for capillary size and resting number are
obtained, even though differences presumably exist
between small and large mammals regarding both the
oxygen-consumption-rate law and the oxygen process.

The scaling theory for the capillary system of mammals
at rest has been extended to include the intense-exercise
state. The capillary system for this state involves an
increased number of operative capillaries in muscle tissue.
The measured scaling laws for oxygen consumption rate
and heart rate are accounted for by this shift, but similarity
of the system that exists in the resting state is lost. Larger
mammals have greater increases in capillary number dur-
ing exercise than do smaller ones. The fraction of blood
in the total number of capillaries in the body is accordingly
no longer size invariant, but rather increases with increas-
ing mammal size, in proportion to the ratio of the total
number of capillaries in exercise to the total number at
rest.

During strenuous exercise, the scaling laws for capillary
radius and length remain the same as for the resting state,
but the scaling law for the total number of capillaries in
the body is changed from the theoretical 5/8 power law
for resting to a 3/4 power law. For individual organs where
all capillaries are active in the resting state, the 5/8 power
law continues to apply, but for muscles and other organs
where an increased number of capillaries are active in
exercise, neither the 5/8 nor the 3/4 law is applicable.

Theory indicates that, with respect to actual capillary
count in the cross-section of muscles, the density of oper-
ative capillaries in the resting state should vary with mam-
mal mass to the power 21/6. Measurements confirm this
general relation for (presumably) open and active capil-
laries of the resting state. Theory and measurements also
indicate decreased scale variation for capillary density
when both active and reserve capillaries are included in
the counting.

Capillary density in muscle and other tissue varies in an
idealized sense with mammal mass to the power 21/6
when only capillaries that are active in the resting state
are considered. For muscles where both active and reserve
capillaries are considered, the scaling exponent can be
expected to be nearer to zero, or even positive.

The author is grateful to the referees for their many valuable
comments and criticisms of the original manuscript.
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