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A new method for estimating the effort required to
control an infectious disease
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We propose a new threshold quantity for the analysis of the epidemiology of infectious diseases. The
quantity is similar in concept to the familiar basic reproduction ratio, R0, but it singles out particular host
types instead of providing a criterion that is uniform for all host types. Using this methodology we are able
to identify the long-term effects of disease-control strategies for particular subgroups of the population, to
estimate the level of control necessary when targeting control effort at a subset of host types, and to
identify host types that constitute a reservoir of infection. These insights cannot be obtained by using
R0 alone.
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1. INTRODUCTION

The most pervasive and useful concept in the mathemat-
ical epidemiology of infectious diseases is the basic repro-
duction ratio, commonly written R0 (for recent examples
see Keeling & Gilligan 2000; Ferguson et al. 2001; Gan-
don et al. 2001; Gani & Leach 2001; Lloyd & May 2001;
Dye et al. 2002; Kao 2002). It is defined as the expected
number of secondary cases that would arise from a typical
primary case in a susceptible population. If R0 � 1, an
infection cannot persist in a population, hence R0 is a use-
ful indicator of the effort required to eliminate an infection
(Anderson & May 1991; Diekmann & Heesterbeek 2000;
Heesterbeek 2002). For example, an infection will be
eliminated over time if a proportion of the population
greater than 1 � 1/R0 is permanently protected from
becoming infected, by being effectively vaccinated at birth
or by some other means. This criterion is based on the
assumption that the population is homogeneous and well
mixed, but may be extended to populations with a more
complex structure. If we identify n distinct host types, we
construct an n × n next-generation matrix (K) (Diekmann
et al. 1990). The word generation here refers to the infec-
tion not the host, and different host types may be physio-
logically identical, but might have been infected in
different ways that influence the course of the infection,
might be in different locations, or might have some other
characteristic that differentiates them epidemiologically.
The elements of K are similar in concept to R0; for
example, Kij is the expected number of secondary cases in
host type i that would arise from a typical primary case in
host type j in a susceptible population. The value of R0 is
calculated as the spectral radius (dominant eigenvalue) of
K (Diekmann et al. 1990; Diekmann & Heesterbeek
2000), written R0 = �(K). Hence, to calculate the control
effort required to eliminate an infection, we construct the
next-generation matrix for the population with control in
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operation, Kc, as a function of the control effort, c, and
then determine the control effort that ensures �(Kc) � 1.
In the literature on epidemic modelling, a real-time
approach is often taken instead of one based on successive
infection generations. Starting from the system of differen-
tial equations near the infection-free steady state, a thres-
hold quantity is derived from the Jacobian matrix
determining the steady state’s stability. Although a quan-
tity derived in this way will have the same threshold behav-
iour as the dominant eigenvalue of the next-generation
matrix, it does not have the same biological interpretation
and can therefore not be called the basic reproduction
ratio or denoted by R0. This distinction is important if
statements based on the value of R0 are made about the
relative ease of controlling different infections, or when
gauging the control effort needed to eliminate an infec-
tion.

The concept of R0 is less useful when the control effort
is to be targeted at particular host types, or if the infection
cycle includes another type such as a vector, intermediate
host or reservoir host. For example, R0 is well defined for
malaria via the next-generation matrix, but its calculation
results in a uniform value over the human and mosquito
populations. Taking humans and mosquitoes as host types
1 and 2, respectively, the next-generation matrix would
then have K11 = K22 = 0, as humans cannot infect humans
and mosquitoes cannot infect mosquitoes, K12 as the
expected number of humans that a single infected mos-
quito infects, and K21 as the expected number of mos-
quitoes infected by a single infected human, both in a
susceptible population. Hence R0 = (K21K12)1/2. However,
the expected number of secondarily infected humans that
result from a single infected human is R2

0, as two gener-
ations are required to transmit an infection from human
to human, the first being from human to mosquito and
the second being from mosquito to human. If a vaccine
were available that could be administered to humans at
birth, a proportion greater than 1 � 1/R2

0 should be vacci-
nated to eliminate the infection; hence, application of the
original threshold of 1 � 1/R0 would lead to an underesti-
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mate of the control effort required. Similar expressions are
obtained for other systems where the life cycle is obliga-
tory, but a more detailed analysis is required when the life
cycle is not obligatory. Examples of the latter in host–
vector systems include cases where there could be vertical
transmission in the vector, as with dengue disease (Rosen
et al. 1983), or horizontal transmission in the human, as
with Chagas’ disease (Prata 2001). In the first example, it
could take any number of infection generations greater
than one for an initial infection in humans to result in a
secondary human infection, because the infection can cycle
within the vector population. In the second example, sec-
ondary human cases caused by horizontal transmission
may occur after a single infection generation. The situ-
ation may be even more complicated for infections where
there are a variety of host types, for example bovine
tuberculosis in cattle with a wildlife reservoir (Jackson
2002). The introduction of an infected bovine could
initiate an endemic infection in the wildlife population,
which could then continue to infect cattle indefinitely.
Hence, a single infected bovine could result in a large
number of secondary infections of cattle, all of which are
the result of transmission within the wildlife reservoir.
Although reducing R0 below one will lead to elimination
of the infection in all these cases, the magnitude of R0

does not indicate the control effort required to achieve
this. By concentrating on one particular host type it is
possible, however, to derive a threshold quantity that does
convey this information.

We present a method to estimate the control effort
required to eliminate an infectious disease when control
is applied to a specific subpopulation of hosts, but taking
into account the fact that the infection will pass through
other subpopulations (of the same species or another spec-
ies, in the same or in another geographical area) before
causing secondary cases in the subpopulation of interest.
The formula for the threshold quantity and its motivation
are presented in § 2; we then provide examples of its appli-
cation to vector-transmitted infections and infectious
diseases of wild animals. Appendix A contains formal
mathematical derivations of the properties of interest.

2. THE THRESHOLD QUANTITY

Consider an infection that has multiple host types, and
concentrate without loss of generality on host type 1. With
the entire population susceptible, introduce a single
infected host of type 1, and apply the matrix K to deter-
mine the expected numbers of infected hosts of all types
in the next infection generation. The first element of the
vector Ke, where e is the unit vector with first element
equal to one and other elements equal to zero, gives the
number of new cases of type 1 expected in the next gener-
ation. We are, however, interested not only in the number
of infected hosts of type 1 in this generation, which might
well be zero if we are dealing with a pure host–vector sys-
tem, but also in the future infections of host type 1 that
will result from the other infected host types. Because we
wish to calculate the infections of type 1 arising from a
single type 1 infected individual, we reset the number of
infected hosts of type 1 to zero and apply K again to the
infected hosts of types 2 to n. In each infection generation
we count and ‘remove’ the infections of type 1, then apply

Proc. R. Soc. Lond. B (2003)

K again to the numbers of infected hosts of types 2 to n.
The cumulative number of infected hosts of type 1 that
result in this process, as a result of chains of infection that
link one or more of host types 2 to n without another
infected host of type 1 being allowed to reproduce, is
denoted by T1. Note that (Ke)1 is the result of this process
after only one infection generation, hence T1 � (Ke)1. The
explicit formula for T1 is

T1 = e�K(I � (I � P )K)�1e, (2.1)

where I is the n × n identity matrix, P is the projection
matrix, defined by P11 = 1, Pij = 0 when i � 1 or j � 1, and
a prime signifies that the vector e is transposed.

We observe the following properties:

(i) T1 � 1 if and only if R0 � 1;
(ii) an infection will be eliminated over time if a pro-

portion of the population of hosts of type 1 greater
than 1 � 1/T1 is permanently vaccinated at birth;
and

(iii) a reservoir host other than type 1 exists if
�((I � P)K) � 1.

Equation (2.1) and the properties ((i)–(iii)) are derived
in Appendix A. The result can be generalized further, to
consider the transmission of infection from a subset of �
out of a total of n host types, where we can take the �
types to be type 1, …, �, without loss of generality. The
threshold quantity T� is then the spectral radius of an � × �
matrix defined by

M� = E��K(I � (I � P �)K)�1E�, (2.2)

where E� and P� are n × � and n × n projection matrices,
respectively, defined by (E�)ii = (P�)ii = 1 for i = 1…�,
(E�)ij = (P�)ij = 0 otherwise. Equation (2.2) is also derived
in Appendix A, and provides the basis for determining the
correct control effort needed to eradicate an infection
while targeting control at a subset of � host types.

3. VECTOR-TRANSMITTED INFECTIONS

Although the malaria example described in § 1 illus-
trates the contrast between R0 and T�, some of the con-
fusion that has arisen in the literature and the practical
implications, the point may still seem rather academic.
Here, we present two examples of vector-transmitted
infections where it is not obligatory to follow the life cycle,
and demonstrate the use of the threshold quantity T� in
these cases.

(a) Chagas’ disease
The protozoan parasite Trypanosoma cruzi, which is the

cause of Chagas’ disease, is transmitted by haematopha-
gous arthropods, principally Triatominae (Marsden
1998), but can also be transmitted horizontally between
humans by blood transfusion (Velasco-Hernandez 1994;
Prata 2001). We may wish to determine first whether the
infection can be maintained by vector transmission alone
under a particular control procedure, and, if not, what
proportion of blood transfusions should be screened to
eradicate the infection. Let host types 1 and 2 be humans
infected by blood transfusion and by the arthropod,
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respectively, and host type 3 be the arthropod. The next-
generation matrix has the form

�K11 K12 0

0 0 K23

K31 K32 0 �, (3.1)

and R0 = �(K) is a solution of the characteristic equation
of K, which is a cubic. The argument leading to equation
(2.1) implies that if �((I � P)K) = (K23K32)1/2 � 1 then
the infection can persist through host–vector transmission
alone. If a control intervention were to reduce host–vector
transmission so that �((I � P)K) � 1, then this mode of
transmission would no longer be sustainable in isolation,
but it would still be possible that R0 � 1 (equivalently
T1 � 1) owing to the additional human-to-human trans-
mission via blood transfusion. Although R0 cannot con-
veniently be expressed explicitly, T1 can. From equation
(2.1)

T1 = K11 �
K12K23K31

1 � K23K32
, (3.2)

and the infection will be eliminated if a proportion greater
than 1 � 1/T1 of horizontally transmitted cases can be pre-
vented, for example by screening blood transfusions for
infection.

(b) Dengue disease
Dengue disease is caused by the four serotypes of an

arbovirus transmitted by the mosquitoes Aedes aegypti and
Ae. albopictus. Whereas the former is primarily an urban
mosquito, the latter is more abundant in rural areas and
also exhibits vertical transmission of the virus to a much
greater extent (Rosen et al. 1983; Esteva & Vargas 1998).
If a vaccine were available for dengue disease, we may
wish to determine the relative merits of vaccinating the
rural or urban populations, or whether one should vacci-
nate the entire human population. Let host types 1 and 2
be urban and rural humans, respectively, host type 3 be
Ae. aegypti and host types 4 and 5 be Ae. albopictus
infected from biting humans and from vertical trans-
mission, respectively. For illustration we consider only one
virus serotype and neglect vertical transmission in
Ae. aegypti. The next-generation matrix K has the form

�
0 0 K13 K14 K15

0 0 K23 K24 K25

K31 K32 0 0 0

K41 K42 0 0 0

0 0 0 K54 K55

�. (3.3)

To calculate R0 = �(K), it is necessary to find the largest
root of the fifth-order characteristic polynomial of K, and
an analytic expression can not be conveniently obtained.
To evaluate the probable effects of a vaccination policy,
appropriate values for the components of K must be sub-
stituted in equation (3.3) and the eigenvalues evaluated
numerically. Alternatively, by applying equation (2.2) with
� = 2 we find that M2, the matrix that expresses trans-
mission from human to human, is
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M2 = �K13K31 � �K14 �
K15K54

1 � K55
�K41 K13K32 � �K14 �

K15K54

1 � K55
�K42

K23K31 � �K24 �
K25K54

1 � K55
�K41 K23K32 � �K24 �

K25K54

1 � K55
�K42

�.

(3.4)

The components of M2 are similar in concept to the
components of K, for example (M2)11 is the expected
number of secondarily infected urban humans that would
arise from a single infected urban human in a fully suscep-
tible population. The matrix M2 has spectral radius

T2 =
(M2)11 � (M2)22 � �((M2)11 � (M2)22)2 � 4(M2)21(M2)12

2
.

(3.5)

Equation (3.5) provides an analytic criterion for determin-
ing critical vaccination levels when treating both urban
and rural populations. The formula to determine the pro-
portion of urban humans alone that should be vaccinated
to eradicate the disease is obtained by applying equation
(2.1) to either K or M2:

T1 = (M2)11 �
(M2)21(M2)12

1 � (M2)22
= K13K31 � �K14 �

K15K54

1 � K55
�K41

�
�K23K31 � �K24 �

K25K54

1 � K55
�K41��K13K32 � �K14 �

K15K54

1 � K55
�K42�

1 � �K23K32 � �K24 �
K25K54

1 � K55
�K42� .

(3.6)

To eradicate the infection, a proportion greater than
1 � 1/T1 of urban humans must be maintained in an
immune state.

The reason for the term 1/(1 � K55) appearing in equa-
tions (3.4) and (3.6) merits a comment. By definition K55

is the proportion of Ae. albopictus mosquitoes that transmit
the infection vertically. An infected mosquito is expected
to infect K25 rural humans (for example) in one infection
generation and produce K55 vertically infected mosquitoes
who infect K55K25 humans in the next infection gener-
ation, K55

2K25 in the next and so on. Taking the sum to
infinity yields K25/(1 � K55).

4. INFECTIOUS DISEASES OF WILD ANIMALS

The analysis presented in this paper is not restricted
to infectious diseases with proscribed, or even non-
obligatory, life cycles. The methodology can be used to
analyse the epidemiology of complex situations to deter-
mine which parts of the system are essential to maintain
transmission, and to determine control strategies where
only a subset of host types is targeted. We present two
further examples, one where the spatial structure of a wild-
animal population means that only animals in a restricted
area can be targeted, while infection dynamics have to be
considered on a metapopulation; and the other the more
general problem of defining host types that make up reser-
voirs of infection.

(a) Metapopulation infection dynamics
The brush-tailed possum (Trichosurus vulpecula) is a res-

ervoir for bovine tuberculosis in New Zealand (Cowan
1990). The dynamics of the infection may be described
in a metapopulation residing on a number of habitat
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patches, with transmission between patches being main-
tained by the migration, as they mature into adults, of
juvenile possums that had previously been exposed to
infection (Fulford et al. 2002). Hence, in a metapopul-
ation of m patches we define host types 2i � 1 and 2i to
be the juvenile and adult possums on patch i, respectively,
for i = 1…m. The next-generation matrix K is of dimen-
sion 2m × 2m, and may be regarded as being constructed
from m2 2 × 2 matrices. The submatrices in off-diagonal
positions have zeros in their right-hand columns, as pos-
sums exposed as adults do not migrate to other patches,
and hence cannot transmit infection directly to juveniles
or adults on other patches. For example, in a system of
just two patches we would have

K = �
K11 K12 K13 0

K21 K22 K23 0

K31 0 K33 K34

K41 0 K43 K44

�. (4.1)

Suppose that patch 2 is an area of forest in which the
possum population is being regularly culled, so that
�((I � P2)K) � 1 and the infection cannot maintain itself
in the forest alone. Suppose also that the plan is to vacci-
nate possums against bovine tuberculosis on patch 1,
which is an area adjacent to farmland. We target juvenile
and adult possums on patch 1, i.e. host types 1 and 2,
and therefore calculate T2 = �(M2) where

M2 = �K11 �
K13K31(1 � K44) � K13K34K41

(1 � K33)(1 � K44) � K34K43
K12

K21 �
K23K31(1 � K44) � K23K34K41

(1 � K33)(1 � K44) � K34K43
K22�.

(4.2)

If equal proportions of juveniles and adults can be main-
tained in an immune state on patch 1, then that pro-
portion must exceed 1 � 1/T2 in order to eradicate bovine
tuberculosis from the metapopulation. If the proportions
are unequal, they may be calculated from the explicit
relationship presented as equation (3.5), using values for
the components of M2 from equation (4.2). The infection
may be eradicated from the metapopulation by introduc-
ing control measures so that T2 � 1, which in turn guaran-
tees that R0 � 1.

(b) Reservoirs of infection
The identification of reservoirs of infection is an

important topic in the epidemiology of infectious diseases,
especially for zoonoses and diseases of farmed animals
(Haydon et al. 2002). For example, the possum is con-
sidered to be a reservoir of bovine tuberculosis for cattle,
and if we had needed to quantify the transmission to
cattle, we would have had to include additional host types
in the analysis presented in § 4a. With � host types that
are cattle, and 2m host types that are possums, comprising
juveniles and adults on m patches of habitat, we would
have a next-generation matrix K of size (� � 2m)
× (� � 2m). In the terminology of Haydon et al. (2002),
the cattle would then become the target species and the
possums the maintenance community, provided
�((I � P�)K) � 1.
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In general, consider an infection that is transmitted
between n host types. Identify � host types as target hosts
and label these 1 to �. Any subset 	 of the remaining host
types is a reservoir of infection for the target hosts if
�(P	K) � 1, where (P	)ii = 1 if i � 	 and (P	)ij = 0 other-
wise. The matrix P	K has the rows of K corresponding to
the host types in 	, and zeros elsewhere. When 	 contains
k host types, the eigenvalues of P	K are zero (n � k times)
and the eigenvalues of the k × k matrix whose elements
are the entries in K that correspond to members of the
putative reservoir of infection. As an example, consider
the analysis based on dengue disease presented in § 3b.
To ascertain whether the rural life cycle is a reservoir of
infection for urban dengue, we would determine whether
the matrix

P	 K = � 0 K24 K25

K42 0 0

0 K54 K55
� (4.3)

had an eigenvalue greater than or equal to one.

5. DISCUSSION

The basic reproduction ratio (R0) remains the most use-
ful concept in the mathematical epidemiology of infectious
diseases. Its threshold property provides a criterion for
policies to eradicate an infection from a population, and
its magnitude provides an indication of the control effort
required to achieve eradication. When R0 is used for the
latter purpose some extra care is required in its definition
and calculation. The quantity T1 has the same threshold
property as R0, but focuses attention on one particular
host type rather than averaging over all types. It therefore
provides a direct measure of the control effort required to
achieve eradication when that effort is directed at only one
host type, and in many of the examples that we have
presented it provides an explicit formula where the calcu-
lation of R0 would require the numerical determination of
a matrix eigenvalue.

The models for infectious diseases with life cycles illus-
trate this point convincingly, and it is here that the litera-
ture is inconsistent. A formula equivalent to T1 was used
as R0 for models of malaria (Anderson & May 1991; Dye
1994), canine leishmaniasis (Dye 1994), tick-borne infec-
tions (Randolph et al. 2002) and African horse sickness
(Lord et al. 1996). By contrast, R0 = �(K) has been used
in relation to models for dengue disease (Feng & Velasco-
Hernandez 1997; Soewono & Supriatna 2001) as has
R0 = �(K 2) with a statement that the basic reproduction
number was equal to √(R0) (Esteva & Vargas 1998, 2000).
By adopting the distinction between R0 and T1 it is to be
hoped that this confusion may be removed.

The concepts of T1 and its multidimensional analogue
T� have application in the epidemiology of infectious dis-
eases with wild-animal reservoirs. In fact, the analysis pro-
vides a rigorous definition of a reservoir and a method for
determining which subset of hosts constitutes it. A reser-
voir may consist of one or many host types, or the hosts
of a particular type in one location or group, or other poss-
ible combinations. The key characteristic of a reservoir of
infection, as defined by the criterion �((I � P�)K) � 1, is
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that if an infectious host of one of the target types were
introduced to the population then the host types that
make up the reservoir would subsequently become
infected; the infection would then be maintained indefi-
nitely in the reservoir hosts and continue to be transmitted
back to the target hosts. Hence, a single primary infection
of a target host would result in an indefinite number of
secondary cases in the target population owing to the per-
petuation of transmission between the reservoir hosts.

The methodology presented in this paper provides a
framework for the analysis of the epidemiology of infec-
tious diseases where there are a number of host types. It
could be applied to many other infectious agents, for
example HIV with transmission within and between differ-
ent risk categories of hosts, and foot and mouth disease
with short-range transmission between neighbouring
premises and longer-range transmission between
locations. By calculating the quantity T1 under different
control scenarios, the long-term effects of control inter-
ventions may be estimated. In particular, if a proportion
v of transmission to the target host can be eliminated, then
v � 1 � 1/T1 will ensure that the infection is eradicated.

This work was commenced while the authors collaborated on
a workshop on epidemic models at the Institute of Technology
Bandung, Indonesia, funded by KNAW, the Royal Dutch
Academy of Arts and Sciences. At the time M.G.R. worked
for AgResearch Ltd.

APPENDIX A

(a) Derivation of equation (2.1)
Starting with one infected host of type 1, the second gen-

eration of infected hosts consists of an expected (Ke)i hosts
of type i. We trace the transmission paths that have not yet
yielded a type 1 infection, that is those that arise from the
infections represented by the vector (I � P )Ke.
At the third generation we have a vector K(I � P )Ke,
which represents an expected P K(I � P )Ke infected
hosts of type 1 and (I � P )K(I � P )Ke infected hosts of
types 2…n. In general, at the (j � 1)th infection generation
there are expected to be e�K((I � P )K) j�1e infected hosts
of type 1 that arise as a result of transmission through the
life cycle without involving a host of type 1 in an inter-
mediate infection generation (note that the prime denotes
transpose, and e�P = e�). Hence the number of secondarily
infected hosts of type 1 that arise from a typical primary
infected host of type 1 is T1 = e�Me where

M = K�

j = 0

((I � P )K) j . (A 1)

If �((I � P)K) � 1 then the summation in equation (A 1)
converges, leading to the desired result.

(b) Derivation of equation (2.2)
A matrix

M = P �K�

j = 0

((I � P �)K) j (A 2)

is constructed in a manner similar to that used to derive
equation (A 1), but we now start with any vector e� for
which (e�)i = 0 for i � �, (e�)i � 0 for i � � and (e�)i � 0 for
some i � �. When �((I � P�)K) � 1 equation (A 2) leads to
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M = P �K(I � (I � P �)K)�1. (A 3)

The vector e� represents a system state with infected hosts
of types 1…� only; the vector Me� represents the expected
number of second-generation infected hosts of types 1…�
that arise from these, and so on. Hence the sequence Mje�

converges to zero as j → 
 whenever �(M) � 1. The
matrix M has non-negative entries in rows 1 to � and zero
entries elsewhere, and hence has rank �. The matrix
M� = E��ME� is the leading � × � submatrix of M (note
E��P� = E��), hence M� and M have the same eigenvalues
and T� = �(M) = �(M�).

(c) Derivation of property (i)
We prove this for the general case presented as equation

(2.1), as the result for T1 follows trivially from that for T�.
Assume �((I � P�)K) � 1. Rearranging equation (A 3),
M(I � K) = (I � M)P�K. The matrix K has a positive eig-
envector w corresponding to the eigenvalue R0 = �(K),
hence (1 � R0)Mw = R0(I � M)P�w. All elements Mw and
P�w are non-negative, hence 1 � R0 and 1 � �(M) are
either zero or have the same sign (Minc 1988), and the
proof is complete.

(d) Derivation of property (ii)
The row vector e�K has elements (e�K)j = K1j for

j = 1…n, whereas (I � P)K does not contain any terms K1j.
Recalling that K1j is the expected number of infections of
host type 1 arising from an infection of host type j, if these
elements of K are linear in S1, the steady-state number of
susceptibles of host type 1, then T1 is linear in S1. If a
proportion v of hosts of type 1 are vaccinated at birth, then
T1 becomes (1 � v)T1, and to eliminate the infection we
require v � 1 � 1/T1.

(e) Derivation of property (iii)
If �((I � P)K) � 1 then clearly R0 � 1, but also the pro-

jection of the next-generation matrix K onto a subset of
host types not including type 1 has spectral radius greater
than or equal to one, implying that one of these other host
types is a reservoir host.
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