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In the conservation literature, heuristic procedures have been employed to incorporate spatial consider-
ations in reserve network selection with the presumption that computationally convenient optimization
models would be too difficult or impossible to formulate. This paper extends the standard set-covering
formulation to incorporate a particular spatial selection criterion, namely reducing the reserve boundary
to the extent possible, when selecting a reserve network that represents a set of target species at least
once. Applying the model to a dataset on the occurrence of breeding birds in Berkshire, UK, demonstrated
that the technique resulted in significant reductions in reserve boundary length relative to solutions pro-
duced by the standard set-covering formulation. Computational results showed that moderately large
reserve network selection problems could be solved without issue. Alternative solutions may be produced
to explore trade-offs between boundary length, number of sites required or alternative criteria.
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1. INTRODUCTION

Selection of efficient conservation reserves has been an
important focus of the biological conservation literature in
the past decade owing to the increasing need to protect
species from anthropogenic habitat loss. The problem has
been approached using either heuristic, rule-based
approaches to site selection (e.g. Margules et al. 1988;
Vane-Wright et al. 1991; Nicholls & Margules 1993;
Pressey et al. 1993, 1996, 1997; Csuti et al. 1997; Willi-
ams 2000; Polasky et al. 2001a) or formal optimization,
specifically linear integer programming (IP) (e.g. Church
et al. 1996; Ando et al. 1998; Polasky et al. 2001b; Önal &
Briers 2002; Rodrigues & Gaston 2002). Heuristic pro-
cedures may occasionally yield optimum solutions, but
more often they lead to significantly suboptimal outcomes,
which may deviate from optimum solutions by as much
as 10–15% (Church et al. 1996; Pressey et al. 1996; Rodri-
gues & Gaston 2002). Although formal optimization
guarantees the most efficient use of conservation
resources, relatively few studies have employed this
approach. This is motivated primarily by two reasons.
First, IP models may not be computationally tractable due
to excessive processing time. For instance, Pressey et al.
(1996) reported computational difficulties (or no solution
at all) experienced when working with large-scale reserve
selection problems. However, Church et al. (1996) and
Rodrigues & Gaston (2002) reported that fairly large IP
models could be solved easily. A general conclusion can-
not be made based on these observations, because compu-
tational performance of IP solvers varies depending on the
problem structure and data characteristics. However, Önal
(2003) showed that near-optimum solutions, which are
considerably better than heuristic solutions, could always
be obtained from IP solvers within a reasonable compu-
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tation time. Second, and more importantly, optimization
models are presumed to have limited ability to reflect
some important and realistic aspects of reserve selection,
particularly when spatial criteria, such as compactness of
the reserve or clustering of sites, are involved in the selec-
tion process (Pressey et al. 1996; Possingham et al. 2000;
McDonnell et al. 2002; Nalle et al. 2002a). Owing to the
perceived difficulties of modelling, spatial issues have been
addressed in only a few studies using IP formulations
(Williams 1998; Williams & ReVelle 1998; Nalle et al.
2002b). Önal & Briers (2002) demonstrated the use of
an IP method based on minimizing intersite distances to
incorporate spatial criteria into the selection process. An
alternative spatial criterion that has been used in other
studies (e.g. Possingham et al. 2000; McDonnell et al.
2002) is to design a reserve network with the minimum
boundary length. Reducing the boundary length of a
reserve minimizes edge effects that may influence the per-
sistence of species within the protected area and also
reduces economic costs, which are likely to scale more
closely with boundary length than area (Possingham et al.
2000). Minimizing the boundary will also result in greater
clustering of sites, which may be critical to the long-term
persistence of species by allowing interpopulation disper-
sal and colonization of adjacent sites (Önal & Briers
2002). Pressey et al. (1996) claimed that this problem can-
not be modelled as a linear IP and requires a nonlinear
formulation, which would be impossible to solve in practi-
cal applications (see also Possingham et al. 2000). The
purpose of this paper is to show that a computationally
convenient linear IP formulation of this problem is poss-
ible and demonstrate the utility of this approach in the
selection of reserves for conservation.

2. THE MODEL

Suppose a potential conservation reserve area is par-
titioned into square parcels (see figure 1). Although square
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Figure 1. A reserve network with six parcels. The thick grey dashed curve outlines the potential reserve area. The thin dashed
grid lines define the edges of individual parcels. The thin solid lines represent the boundary of the partition, while the thicker
solid lines represent the boundary edges of the reserve network. An edge in the partition is a boundary edge of the network if
Yk = 1 or Zk = 1 (e.g. edges a and e). If Yk = 0 or Zk = 0, then edge k is either not part of the network (e.g. edges c and d), or
it is an interior edge of the network (e.g. edge b).

parcels are used in the present application, the approach
developed here can be applied without any difficulty to
other geometric forms such as rectangles or hexagons. The
problem is to select a subset of those parcels in such a way
that the resulting network will have the smallest boundary
length among all selections which cover a given set of tar-
get species at least once (i.e. each species must be present
in at least one selected site). This problem will be formu-
lated below as an extension of the ‘set covering’ problem
(SCP) (Church & ReVelle 1974).

Consider the set of all edges of the parcels that make up
the potential conservation area, here termed the partition.
Each edge belongs to either only one parcel, in which case
it is a boundary edge (d and e in figure 1), or two adjacent
parcels, in which case it is an interior edge (a, b and c in
figure 1). When a subset of the parcels is selected to form
a reserve network, we can define the same concepts rela-
tive to the network. Explicitly, each edge in the selected
reserve network is either an interior edge of the network
(if shared by two parcels in the network, e.g. edge b in
figure 1) or it is part of the network boundary (if it belongs
to only one parcel in the network, e.g. edges a and e in
figure 1). Thus, a boundary edge of the network is either
a boundary edge of the partition, if the parcel containing
that edge is in the network (such as edge e in figure 1),
or only one of the two adjacent parcels belongs to the net-
work (such as edge a in figure 1). The main difficulty in
modelling the selection problem is to determine whether
or not one of these two cases occurs. The model
developed below uses binary variables to accomplish this.

The notation used in the model is as follows: I is the set
of all parcels in the partition and i, j � I denote individual
parcels; K is the set of all edges and K� � K is the set of
boundary edges in the partition; S is the set of species
considered for protection; �si is a parameter where �si = 1
if parcel i contains species s, and �si = 0 otherwise; �ki is a
parameter, where �ki = 1 if edge k belongs to parcel i, and
�ki = 0 otherwise; Xi is a binary variable, where Xi = 1 if
parcel i is in the selected network, and Xi = 0 otherwise;
Yk is a binary variable, where Yk = 1 if edge k is an interior
edge of the partition and a boundary edge of the selected
network, and Yk = 0 otherwise; Zk is a binary variable,
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where Zk = 1 if edge k is a boundary edge of the partition
and included in the selected network, and Zk = 0 other-
wise.

The following model minimizes the total length of the
reserve network boundary:

minimize �
k � K

Yk � �
k � K �

Zk,

such that:

Yk � Xi � Xj for all k � K , where �ki = �k j = 1, (2.1)

Yk � Xj � Xi for all k � K , where �ki = �k j = 1, (2.2)

Zk = �
i

�kiXi for all k � K �, (2.3)

�
i

�siXi � 1 for all s � S, (2.4)

Xi, Yk, Zk = 0, 1.

The objective function represents the total number of
boundary edges in the network, because each Yk or Zk

equals unity only if edge k is on the network boundary.
The model uses the total number of boundary edges in
the network as a measure of the boundary length, which
implicitly assumes that all edges are of equal length. If
individual edges are of different length (which would be
the case, for instance, with rectangular parcels), then the
Yk and Zk variables can be multiplied by the respective
edge lengths. Constraint (2.4) is the usual set covering
constraint, which ensures that every species s must be
present in at least one parcel containing that species. The
model could be extended easily to incorporate multiple
representation targets for individual species, by specifying
the right-hand side of this constraint as a positive integer,
instead of unity. The first three constraints form the heart
of the model and determine whether an edge is an interior
edge or a boundary edge of the network. Constraint (2.3)
does this for boundary edges of the partition. For any
k � K�, there is only one parcel i for which �ki = 1 and for
j � i we have �kj = 0. Thus, equation (2.3) can be simpli-
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fied as Zk = �kiXi, which implies that Zk = 1 only if Xi = 1,
i.e. if parcel i is in the network in which case edge k is on
the boundary of the network, otherwise Zk = 0. The first
two constraints jointly determine whether or not an
interior edge of the partition is on the boundary of the
network. To see this, consider the adjacent parcels i and
j that share edge k (i.e. �ik = �jk = 1). If both parcels are
excluded in the network, i.e. Xi = Xj = 0, or both parcels
are included, i.e. Xi = Xj = 1, constraints (2.1) and (2.2)
can be reduced to Yk � 0. However, minimization of
ΣkYk ensures that Yk = 0, as required. If, however, either
parcel i or parcel j is included in the network, but not
both, then we have Xi = 1 and Xj = 0, or Xj = 1 and Xi = 0.
In both cases, constraints (2.1) and (2.2) together imply
that Yk � 1, but as Yk is a binary variable we have Yk = 1,
as required. Figure 1 illustrates alternative situations
where each of these cases may occur.

The above model can be simplified by eliminating equ-
ation (2.3) and substituting the expression for Zk into the
objective function (which is not done here for clarity of
model development). Furthermore, because both Zk and
Yk are related to the binary Xi variables through binary
coefficients, their values will always be binary even if they
are defined as continuous non-negative variables. This
relaxation leaves the Xi variables as the only binary vari-
ables in the model. This offers an important compu-
tational advantage when working with medium- or large-
scale reserve selection problems, because the computation
time needed to solve IP models is sensitive to the number
of binary variables.

3. AN EMPIRICAL APPLICATION

To demonstrate the workings of the minimum-bound-
ary model and also investigate its computational
efficiency, the model was applied to a dataset for the
occurrence of breeding bird species in the county of Berk-
shire, UK (Standley et al. 1996). Between 1987 and 1989,
a survey of all 391 tetrads (2 km × 2 km squares) that fall
within the administrative boundary of Berkshire was
undertaken to record breeding distribution of bird species.
A total of 121 species were recorded as breeding within
the county; our analyses are based on the distribution of
all species except the feral pigeon or rock dove (Columba
livia Gmelin), which was excluded owing to doubt over
the domesticated status of many of the records, the Chu-
kar (Alectoris chukkar Gray), an introduced species which
does not form self sustaining wild populations, and the
stone curlew (Burhinus oedicnemus (L.)), a nationally
endangered species whose distribution was not mapped in
Standley et al. (1996). The standard SCP solution to the
reserve selection problem was also calculated to provide a
comparison with the minimum-boundary model solution.

The SCP solution to the reserve selection problem
required nine cells to represent all 118 species, with a total
boundary length of 36 units (one unit equals the edge
length of the square parcels) (figure 2a). Although this
approach gives the smallest (and hence least expensive)
reserve, it resulted in a highly fragmented reserve struc-
ture, where every parcel was isolated from the other selec-
ted parcels. The minimum-boundary solution however,
required 17 cells with a total boundary length of 30 units
to cover all species (figure 2b). The solution was not
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Figure 2. Map of tetrads (2 km × 2 km squares) within the
administrative boundary of Berkshire, UK (bold irregular
line) required to represent all species of breeding birds at
least once within selected sites. Shaded squares indicate
selected sites. (a) Sites required by the set covering
formulation with no spatial criteria; (b) sites required by the
minimum-boundary solution; and (c) an alternative
minimum-boundary solution with fewer sites. See text for
details of models.

unique, however. Multiple optimum solutions with the
same boundary length could be found by directing the
model. This was accomplished by excluding the selected
parcels one at a time (this can be done by imposing Xi = 0
if parcel i was in the base solution) or by reducing the
network size (through an added constraint ΣiXi � n,
where n is the maximum number of parcels that can be
included in the network). Both approaches resulted in sev-
eral optimum solutions, containing a different number of
parcels in the network or including the same number of
parcels, but placed in a different configuration. One of
these solutions is shown in figure 2c. This selection
included 15 parcels, again with a boundary length of 30
units, and four separated reserves. Thus, it is preferable
to the first minimum-boundary solution if the number of
parcels is to be considered as an additional selection
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criterion. Using the techniques detailed in § 2, further
reductions in the number of parcels were possible, while
maintaining the boundary length, at the expense of greater
reserve fragmentation, i.e. more disconnected parcels.
One of those alternative optimum solutions contained
only 12 parcels, for instance, but it consisted of five separ-
ate conservation areas instead of four.

As has been previously observed (Possingham et al.
2000), reductions in boundary length come at a cost in
terms of efficiency (i.e. the number of sites required to
achieve a given objective). The minimum-boundary sol-
ution did not produce a completely connected network
of parcels. The degree of connectedness that could be
achieved is highly dependent on the data characteris-
tics. A large number of endemic or rare species limits the
model’s ability to produce connected reserve networks and
is a problem inherent to all spatial criteria used in reserve
selection (Önal & Briers 2002).

Computational efficiency of IP formulations has always
been an important concern in conservation reserve selec-
tion, as mentioned at the outset. As elaborated by Camm
et al. (1996), being able to model a reserve selection prob-
lem using IP may not necessarily mean that the problem
can be solved. With the dataset used in this particular
application, the minimum-boundary reserve selection
model included 1684 equations and 1320 variables, 391
of which were binary. In all cases, the solutions were
obtained in less than 2 min of computation time using
Gams (Brooke et al. 1992) interfaced with Osl (a linear
IP solver developed by IBM), which suggests that larger
models can be solved conveniently. The number of
reserves sites, rather than species, is the critical factor, as
it determines the number of binary variables in the model.
Computational complexity is also closely related to the
data structure, particularly the distribution of species and
the number and location of sites that contain endemic
species (in which case the site will be irreplaceable) or
rare species.

4. CONCLUSIONS

Conservation reserve selection is a typical example of
multi-objective decision making. Typically, multiple cri-
teria simultaneously govern the reserve selection process,
such as the area, boundary length, connectivity, and even
the reserve configuration (Possingham et al. 2000; Sii-
tonen et al. 2002). Reducing the boundary length of a
reserve network relative to its area is an important concern
in conservation planning owing to its influence on the
economic costs of establishing and maintaining the
reserve, and on the likely persistence of species within the
selected sites (Possingham et al. 2000; Briers 2002;
Önal & Briers 2002; Siitonen et al. 2002).

While the model presented here minimizes the bound-
ary length of the reserve, it does not guarantee a fully con-
nected reserve network. When applied to a real world
dataset on the distribution of breeding birds, the mini-
mum-boundary solution was not fully connected as a
result of the particular distribution of species in the dataset
used. Two sites were irreplaceable as they contained spec-
ies not found elsewhere and those sites were far from the
cluster of sites which made up the remainder of the
reserve. Although having disconnected parcels usually
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implies an increased number of boundary edges, this may
still be preferable because producing a fully connected
network may require a large number of sites, and hence
may not be economically viable. The trade-off between
boundary length and number and configuration of sites
included in the network can be explored by searching
alternative optimum solutions or incorporating additional
selection constraints, such as limiting the reserve size
(number of parcels included) as detailed above. However,
imposing too tight an upper bound for the number of par-
cels that can be included in the network is likely to result
in increasingly fragmented reserve networks.

In conclusion, the present paper demonstrates that it is
possible to develop computationally convenient linear IP
reserve selection models that incorporate spatial criteria,
in addition to considering species’ complementarity, when
designing efficient reserve networks. While a particular
spatial criterion, namely minimization of the reserve
boundary, is considered here, alternative formulations
may also be possible for some other widely used spatial
criteria (e.g. Önal & Briers 2002). In general, incorporat-
ing spatial considerations in an optimization framework is
more complicated than the standard set covering formu-
lation because of modelling difficulties and computational
complexity. The latter can be restrictive, especially when
dealing with a large number of parcels, which would
require numerous additional constraints and, more
importantly, additional binary variables in the model.
However, such models more closely represent real world
conservation planning problems and offer a significant
level of flexibility which can be used to explore alternative
reserve configurations, while retaining the ability to pro-
duce optimal solutions. Several optimum solutions which
have identical boundary length, but differ in reserve size
and location, could be generated for the particular prob-
lem studied here (two of which are presented in figure 2).
A practical issue which needs to be explored further is how
to generate all such solutions in a systematic way so that
the planning decisions can be based on a full range of
optimum reserve configurations.
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