Abstract
There is a long-standing debate as to how Ireland attained its present fauna; we help to inform this debate with a molecular study of one species. A 1110 base pair fragment of the mitochondrial cytochrome b gene was sequenced in 74 specimens of the pygmy shrew, Sorex minutus, collected from throughout its western Palaearctic range. Phylogenetic analysis of these sequences revealed several well-supported lineages. Most of the 65 haplotypes belonged to a northern lineage, which ranged from Britain in the west to Lake Baikal in the east. The other lineages were largely limited to Iberia, Italy and the Balkans. One exception, however, was a lineage found in both Ireland and Andorra. This affinity, and the large difference between the mitochondrial sequences of Irish and British individuals, suggest that pygmy shrews did not colonize Ireland via a land connection from Britain, as has been previously supposed, but instead were introduced by boat from southwest continental Europe. All the Irish pygmy shrews analysed were identical or very similar in cytochrome b sequence, suggesting an extreme founding event.
Full Text
The Full Text of this article is available as a PDF (195.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson S., Bankier A. T., Barrell B. G., de Bruijn M. H., Coulson A. R., Drouin J., Eperon I. C., Nierlich D. P., Roe B. A., Sanger F. Sequence and organization of the human mitochondrial genome. Nature. 1981 Apr 9;290(5806):457–465. doi: 10.1038/290457a0. [DOI] [PubMed] [Google Scholar]
- Bilton D. T., Mirol P. M., Mascheretti S., Fredga K., Zima J., Searle J. B. Mediterranean Europe as an area of endemism for small mammals rather than a source for northwards postglacial colonization. Proc Biol Sci. 1998 Jul 7;265(1402):1219–1226. doi: 10.1098/rspb.1998.0423. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davison A., Birks J. D., Brookes R. C., Messenger J. E., Griffiths H. I. Mitochondrial phylogeography and population history of pine martens Martes martes compared with polecats Mustela putorius. Mol Ecol. 2001 Oct;10(10):2479–2488. doi: 10.1046/j.1365-294x.2001.01381.x. [DOI] [PubMed] [Google Scholar]
- Hasegawa M., Kishino H., Yano T. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol. 1985;22(2):160–174. doi: 10.1007/BF02101694. [DOI] [PubMed] [Google Scholar]
- Hill E. W., Jobling M. A., Bradley D. G. Y-chromosome variation and Irish origins. Nature. 2000 Mar 23;404(6776):351–352. doi: 10.1038/35006158. [DOI] [PubMed] [Google Scholar]
- Irwin D. M., Kocher T. D., Wilson A. C. Evolution of the cytochrome b gene of mammals. J Mol Evol. 1991 Feb;32(2):128–144. doi: 10.1007/BF02515385. [DOI] [PubMed] [Google Scholar]
- Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980 Dec;16(2):111–120. doi: 10.1007/BF01731581. [DOI] [PubMed] [Google Scholar]
- Mirol P. M., Mascheretti S., Searle J. B. Multiple nuclear pseudogenes of mitochondrial cytochrome b in Ctenomys (Caviomorpha, rodentia) with either great similarity to or high divergence from the true mitochondrial sequence. Heredity (Edinb) 2000 May;84(Pt 5):538–547. doi: 10.1046/j.1365-2540.2000.00689.x. [DOI] [PubMed] [Google Scholar]
- Posada D., Crandall K. A. MODELTEST: testing the model of DNA substitution. Bioinformatics. 1998;14(9):817–818. doi: 10.1093/bioinformatics/14.9.817. [DOI] [PubMed] [Google Scholar]
- Rodríguez F., Oliver J. L., Marín A., Medina J. R. The general stochastic model of nucleotide substitution. J Theor Biol. 1990 Feb 22;142(4):485–501. doi: 10.1016/s0022-5193(05)80104-3. [DOI] [PubMed] [Google Scholar]
- Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987 Jul;4(4):406–425. doi: 10.1093/oxfordjournals.molbev.a040454. [DOI] [PubMed] [Google Scholar]
- Tamura K., Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol. 1993 May;10(3):512–526. doi: 10.1093/oxfordjournals.molbev.a040023. [DOI] [PubMed] [Google Scholar]