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Viruses, bacteria, eukaryotic parasites, cancer cells, agricultural pests and other inconvenient animates
have an unfortunate tendency to escape from selection pressures that are meant to control them. Chemo-
therapy, anti-viral drugs or antibiotics fail because their targets do not hold still, but evolve resistance. A
major problem in developing vaccines is that microbes evolve and escape from immune responses. The
fundamental question is the following: if a genetically diverse population of replicating organisms is chal-
lenged with a selection pressure that has the potential to eradicate it, what is the probability that this
population will produce escape mutants? Here, we use multi-type branching processes to describe the
accumulation of mutants in independent lineages. We calculate escape dynamics for arbitrary mutation
networks and fitness landscapes. Our theory shows how to estimate the probability of success or failure
of biomedical intervention, such as drug treatment and vaccination, against rapidly evolving organisms.
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1. INTRODUCTION

A successful treatment of an infectious disease is one that
reduces its basic reproductive ratio to less than one
(Anderson & May 1992). On a population level, this
means that each infected host produces, on average, less
than one newly infected host. A vaccination strategy that
achieves this goal can ultimately remove the infectious
agent from the population. Within an infected host, a suc-
cessful intervention has to ensure that each microbe pro-
duces, on average, less than one offspring; for example,
each virally infected cell has to produce less than one
newly infected cell (Nowak & May 2000). In this case,
the host can be cured from infection. Vaccines and anti-
microbial drugs work towards these goals. Similarly, anti-
cancer therapy aims to reduce the basic reproductive ratio
of cancer cells to less than one, thereby eliminating cancer
from the patient.

Success is difficult, however, because microbes and can-
cer cells reproduce fast, take advantage of new mutations
and develop resistance (Levin et al. 1999; Levin 2001;
Singh Sidhu et al. 2002). Bacterial resistance against anti-
biotics is a growing challenge to public health (Bonhoeffer
et al. 1997; Lenski 1998; Levin et al. 2000; Chang & Roth
2001; Levy 2001). The human immunodeficiency virus
(HIV) can rapidly evolve to escape from anti-viral drugs
or immune responses in individual patients (Nowak et al.
1991; Condra et al. 1995; Martinez-Picado et al. 2000;
Richman 2001). Emergence of resistance is a main reason
for failure of cancer therapy (Ozols 1989; Sawyers 2001).
Successful vaccines of the past were directed against
organisms with little antigenic variation, whereas many of
the current efforts in vaccine development target highly
diverse organisms (Levin et al. 1999; Frank 2002). The
struggle to develop an HIV or malaria vaccine, for
example, is determined by the problem of inducing
sufficiently strong and broad immunity in a vaccinated
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individual to sustain challenges by genetically diverse
microbe populations without producing vaccine escape
mutants (Desrosiers 1998; Letvin 1998; Dittmer et al.
1999; Amara et al. 2001; Gaschen et al. 2002; Ho &
Huang 2002; Richie & Saul 2002). The influenza vaccine
has to be modified every year to keep up with antigenic
variation (Plotkin et al. 2002). Agricultural pests are
opposed by breeding durable resistance into plants that
can only be overcome by several mutations of the patho-
gen genome (McDonald & Linde 2002).

The fundamental problem of evolution of escape is the
following. Consider a genetically diverse microbe popu-
lation of size N, which is subjected to some biomedical
intervention such as drug treatment or vaccine-induced
immunity. In the presence of intervention, sensitive
mutants have a basic reproductive ratio of less than one,
but resistant mutants have a basic reproductive ratio in
excess of one. Successful intervention means that the
microbe population is driven to extinction before a sub-
stantial number of escape mutants has accumulated that
could maintain the infection. Failure is evolution of
escape. We will calculate the chances for success or failure
depending on the population size of microbes (or cancer
cells), the efficacy of the intervention, the mutation rate,
the number of mutations required for escape and the
selective conditions prior to intervention. Our theory will
specify the contribution to the risk of escape that comes
from the pre-existence of resistant mutants before inter-
vention versus emergence of resistant mutants during
intervention (Bonhoeffer & Nowak 1997). We will quan-
tify the relative importance of escape pathways that
require a certain number of mutational events, and allow
for the possibility that intermediate mutants have different
residual reproductive rates during intervention and can be
subject to different selection pressures before intervention.

2. A MULTI-TYPE BRANCHING PROCESS

Suppose that n point mutations in some crucial pos-
itions in the genome are relevant for escape. The genomes
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Figure 1. Two mutations to escape. The mutation rates in
the two positions are u1 and u2. Prior to intervention, the
fitness values of the four mutants are w00 = 1 and
0 � w01,w10,w11 � 1. Intervention leads to basic reproductive
ratios 0 � R00,R01,R10 � 1 and R11 � 1. Thus 00 is wild-
type, 00, 01 and 10 are sensitive to intervention, while 11 is
resistant. Let ai = Ri/(1 � Ri) and bi = 1/(1 � wi). Prior to
intervention, the mutants have the following frequencies:
x00 � 1, x01 � u2b01, x10 � u1b10, x11 � u1u2b11(1 � b01 � b10).
During intervention, escape mutants are generated from
sensitive mutants at rates �00 = u1u2a00(1 � a01 � a10),
�01 = u1a01 and �10 = u2a10. For the probability of success, we
obtain P = exp[�Nz(�00 � x01�01 � x10�10 � x11)], where N
is the total population size and z is the probability of escape
starting with a single 11 type. If R11 � 1, then z � 1. We
can write P = exp(�NzCu1u2) with a risk coefficient
C = a00(1 � a10 � a01) � a01b01 � a10b10 � b11(1 � b10 � b01).
The selective scenario prior to intervention (w-values) and
the residual reproduction during intervention (R-values)
provide symmetric contributions for the odds of escape. The
shades of grey indicate the level of sensitivity/escape, from
sensitive (dark) to escape (pale).

can be described as binary strings of length n. All possible
mutants are enumerated by i = 0, ..., m, where m = 2n �
1. Treatment reduces the basic reproductive ratios, Ri, of
mutants i. Sensitive mutants have Ri � 1, whereas escape
mutants have Ri � 1. In each generation, a mutant i indi-
vidual produces a random number of offspring following
a Poisson distribution, with mean Ri. We want to calculate
the probability, P, that treatment is successful against a
population of microbes or cancer cells of size N. For
example, N denotes the total amount of viruses challeng-
ing a vaccinated individual, or the total population size of
bacteria present in a patient at the time of initiating anti-
biotic therapy. The distribution of mutants is determined
by the mutation–selection balance prior to intervention,
with fitness values given by w0, ..., wm; without loss of gen-
erality, we set 0 � wi � 1.

The general calculation is based on multi-type branch-
ing processes (Seneta 1970; Athreya & Ney 1972) and
shown in Appendix A. Let us consider a specific example
(figure 1). Suppose that two point mutations confer resist-
ance. The mutation rates in these two positions are given
by u1 and u2. In the presence of treatment, the basic repro-
ductive ratios of the four types 00, 01, 10 and 11, are
given by R00, R01, R10 and R11. We have R11 � 1, while
all other values are less than one. Prior to intervention,
the fitness values are given by w00, w01, w10 and w11. The
wild-type has fitness w00 = 1, while all other fitness values
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are less than one. For the probability of successful inter-
vention we obtain

P = exp(�NCu1u2z).

The risk coefficient, C, is given by

C = a00(1 � a01 � a10) � a01b01 � a10b10 � b11(1 � b01 � b10),

where ai = Ri/(1 � Ri) and bi = 1/(1 � wi). The parameter
z denotes the probability that a single 11 mutant leads to
escape. For a discrete time branching process, where the
number of offspring per individual follows a Poisson distri-
bution with mean R11, the escape probability z can be cal-
culated as the root of the transcendental equation
log(1 � z) = �R11z. For example, if R11 = 2 we obtain
z = 0.797. A discrete time branching process with a geo-
metric distribution or a continuous time branching process,
where individuals either produce one offspring or die, leads
to z = 1 � 1/R11. In any case, if R11 � 1 then z � 1.

Let us now consider the situation where n mutations are
required for escape, but all sequences except the escape
mutant, 11 ... 1, have the same basic reproductive ratio,
R � 1, during treatment, and all mutants except the wild-
type, 00 ... 0, have the same relative fitness, w � 1, in the
absence of treatment (figure 2a). Let a = R/(1 � R) and
b = 1/(1 � w). The probability of successful intervention is
given by

P = exp(�NCnunz).

For the risk coefficient, we obtain

Cn = �n
i = 0

�n
i
� fn�i(a)fi(b).

The function f is recursively defined as

f0(x) = 1,

fi(x) = x�i � 1

j = 0

� i
j
� f j(x).

For perfect intervention, R = 0, and maximum prior
selection, w = 0, we find risk coefficients C1 = 1, C2 = 3,
C3 = 13, C4 = 75, ..., Cn = fn(1). These numbers count all
possible jumps from the 00..0 to the 11..1 sequence,
including single and multiple mutations. Interestingly,
multiple simultaneous mutations cannot be ignored in the
calculation, because intermediate mutants have fre-
quencies of the order of the mutation rate (Seneta 1970).
If the n mutations must occur in a particular order (figure
2b), then the risk coefficient is given by

Cn = [a2(1 � a)n�1 � b2(1 � b)n�1]/[a � b].

For perfect intervention, R = 0, and maximum prior selec-
tion, w = 0, we have Cn = 2n�1, counting all possible jumps.

The model can be applied to any mutation–selection
network describing any fitness or mutation landscape, also
including multiple escape mutants and neutral networks
(figure 2c). In general, the probability of successful inter-
vention is of the form P = exp(�NCnunz). Let us define
the critical population size N∗ = 1/(Cnunz). If N = N∗, then
the probability of success is 1/e. If N � N∗, success is
nearly impossible. If N � N∗, success is almost certain.
Let us now discuss two examples that show how the
theory can be applied to specific biological situations.
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Figure 2. Mutation–selection networks and trajectories of
escape. Assume that individual mutations occur at the same
rate, u. (a) Three mutations are required for escape. They can
occur in any order. The calculation has to consider 13
trajectories from 000 to 111, three trajectories from 001 to
111 and so on. Suppose that all variants (except 111) have the
same basic reproductive ratio, R � 1, during treatment and all
variants (except 000) have the same fitness, w � 1, prior to
treatment. Let a = R/(1 � R) and b = 1/(1 � w). The risk
coefficient is C = a � 6a2 � 6a3 � 3b(a � 2a2) � 3a(b � 2b2)
� b�6b2 � 6b3. (b) The three escape mutations must occur in
a particular order. The eight relevant trajectories are shown.
The risk coefficient is C = a000[1 � a100(1 � a110) � a110]
� b100a100(1 � a110) � b110(1 � b100)a110 � b111[1 � b110

(1 � b100) � b100]. (c) An escape situation that includes a
neutral network of wild-type virus and two escape mutants.
There are three shortest routes to escape: 1000 → 1110,
0010 → 1110 and 0011 → 1111. Each route has three
trajectories. The risk coefficient is C = 3

5[a(1 � a) � 2ab
� b(1 � b)], assuming the same R- and w-values for the
corresponding mutants. The shades of grey indicate the level
of sensitivity/escape, from sensitive (dark) to escape (pale).
Abbreviations: esc, escape mutant; wt, wild-type.

3. EXAMPLE 1: HIV THERAPY

In HIV therapy, single point mutations confer resistance
to non-nucleoside reverse transcriptase inhibitors, while
resistance to protease inhibitors or nucleoside/nucleotide
reverse transcriptase inhibitors usually evolves gradually
by accumulation of multiple mutations (Larder & Kemp
1989; Nowak & May 2000; Condra et al. 1995; Martinez-
Picado et al. 2000; Casado et al. 2001; Richman 2001).
Consider a particular combination therapy for which
n = 3 point mutations are required for resistance. The
wild-type is denoted by 000, whereas the escape mutant
is given by 111. In the best possible scenario, wild-type
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and all intermediate mutants cannot replicate during ther-
apy, R = 0, and all mutants have minimum fitness prior to
therapy, w = 0. In this case, the critical virus population
size is given by N∗ = 9 × 1012. This assumes that the
mutations have to occur in a particular order, otherwise
N∗ = 3 × 1012. Patients with a virus load below N∗ will not
evolve resistance. If, by contrast, the mutants have only a
10% selective disadvantage compared with wild-type prior
to therapy, w = 0.9, then N∗ = 3 × 1010. If the intermediate
mutants, 001 and 011, have a 1% selective disadvantage
(R = 0.99) and the 011 mutant has a basic reproductive
ratio of R = 0.9, then N∗ = 4 × 108. For comparison, a per-
fect intervention (R = 0, w = 0) that requires only n = 2
point mutations has a critical population size of
N∗ = 6 × 108. Figure 3 gives further examples and also
shows how the risk of escape is distributed between the
evolution of escape mutants following intervention and the
pre-existence of escape mutants. The success of anti-HIV
therapy crucially depends on: (i) the minimum number of
point mutations required for escape; (ii) the virus load in
the patient; (iii) the residual replication of wild-type and
intermediate mutants during therapy; and (iv) the selec-
tive pressure against relevant mutations prior to treatment.
Our calculation quantifies the individual contributions of
these four factors and thus allows us to estimate the prob-
abilities of success of particular interventions.

In previous work (Nowak et al. 1997; Bonhoeffer &
Nowak 1997; Ribeiro et al. 1998; Nowak & May 2000),
we calculated the expected frequency of resistant mutants
prior to treatment. We showed that the probability that
resistant mutants are being generated de novo during effec-
tive therapy is less than the probability that such mutants
are already present before therapy. This result holds for the
limit of ‘effective therapy’, which is defined as reducing the
basic reproductive ratios of all sensitive mutants to well
below one (Ri � 1). In the present paper, we show how
pre-existing resistance and de novo resistance contribute to
escape dynamics for any choice of the fitness landscape, Ri.

4. EXAMPLE 2: ANTI-CANCER THERAPY

Cancer cells can evolve resistance to chemotherapy by
inactivation of tumour suppressor genes (Ozols 1989;
Lowe et al. 1994; McCurrach et al. 1997; Sawyers 2001).
Suppose that, at the beginning of therapy, both alleles of
a certain gene are wild-type. Inactivation occurs by a com-
bination of point mutations, at rate u, and loss of hetero-
zygosity, at rate p (figure 4). Assume that cells with at least
one wild-type allele are sensitive to chemotherapy and
have a reproductive ratio of R � 1 during treatment. Cells
that have no wild-type allele can escape from chemo-
therapy. The maximum cell number of a cancer that can
be contained by chemotherapy is N∗ = 1/[a(1 � 2a)
× u(u � 2 p)], where a = R/(1 � R). For example, if
R = 0.9, u = 10�7 and p = 10�6, we have N∗ = 3 × 1010. If
the number of cancer cells in a patient is below this thres-
hold, then the therapy will be successful. Many cancers,
however, have mutations in genes that cause chromosomal
instability resulting in increased rates of loss of heterozygos-
ity (Lengauer et al. 1998; Nowak et al. 2002). If, for
example, p = 10�2 (Lengauer et al. 1998), then the critical
number of cancer cells still compatible with success is
reduced to N∗ = 3 × 106. Thus the response to chemo-
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Figure 3. Anti-viral therapy in HIV infection often fails because the virus evolves resistance in individual patients. Usually,
several point mutations are required for escape from combination therapy including reverse transcriptase and protease
inhibitors. In this figure, we show various treatment scenarios in which two or three point mutations lead to escape. There is a
maximum total virus load, N∗, compatible with success. If the virus load in a patient, N , exceeds N∗, then evolution of
resistance is certain. A perfect intervention requiring three point mutations for escape leads to N∗ = 9 × 1012, whereas a perfect
intervention requiring two point mutations leads to N∗ = 6 × 108. The figure also shows the contribution to the probability of
escape that comes from pre-existing escape mutants, b3[1 � b2(1 � b1) � b1]/C. Here, C is the same as in figure 2b. For perfect
treatment, R = 0, all escape is due to pre-existing mutants. For less than perfect treatment, R � 0, there is considerable
probability that resistance evolves after initiation of therapy. In these examples, we assume that the mutations must occur in a
particular order; if this is not the case, then the estimates for the maximum population size are slightly lower. Mutation rate
u = 0.00003 per base. The shades of grey indicate the level of sensitivity/escape, from sensitive (dark) to escape (pale).

therapy crucially depends on whether or not a particular
cancer has already evolved some form of genetic instability.

5. LIMITATIONS

Our theory can be applied to the spread of replicating
organisms both in single individuals and in populations.
The calculations hold for arbitrarily complex fitness land-
scapes, including epistatic interaction among mutants.
The model can be extended to include spatial compart-
ments with different extinction probabilities. There can be
latently infected cells or latent cancer cells. The fitness
values of individual mutants during intervention can be
time-dependent.

There are some limitations to our approach. The theory
is based on multi-type branching processes that describe
the accumulation of mutations in independent lineages.
Therefore, we cannot describe recombination, horizontal
gene transfer or frequency-dependent fitness. All of these
phenomena can be important in certain situations of
escape dynamics. Our study provides an analytical theory
for the evolutionary dynamics of escape. It is a point of
departure and comparison for more specific and complex
models that deal with particular situations (Lipsitch 1999,
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2001; Lipsitch et al. 2000). We also note that the relation-
ship between resistance and treatment failure can be com-
plicated. Sometimes treatment fails in the absence of
resistance mutations, while at other times treatment
remains succesful despite the presence of resistant
mutants. Such questions require an analysis of the usually
nonlinear and frequency-dependent infection dynamics of
particular situations (Levin et al. 1999; Nowak & May
2000; Lipsitch 2001).

We also note that HIV, like other retroviruses, is diploid
and has the ability to recombine. Our theory cannot deal
with recombination. It is unclear, however, to what extent
recombination contributes to the escape of HIV from
selection pressures exerted by anti-viral therapy or vacci-
nation, because recombining two different mutations
requires the superinfection of the same cell with two dif-
ferent virions. Superinfection might be unlikely in patients
with low virus load.

6. CONCLUSIONS

We have calculated evolutionary escape dynamics for a
population of organisms challenged by a biomedical inter-
vention that has the potential to eradicate it. Initially, the
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Figure 4. Cancer cells can evolve resistance to chemotherapy
by mutations of specific genes such as p53, RAS, etc. Genes
can be mutated by subtle nucleotide changes that occur at
rate u per gene per cell division, or by gross chromosomal
changes or recombination events that lead to loss of
heterozygosity, occurring at rate p per gene per cell division.
Let us consider the example of a tumour suppressor gene.
Suppose that all cancer cells have two functioning alleles of
a tumour suppressor gene prior to chemotherapy. Cells and
their reproductive rates, R0, ..., R4, are enumerated as given
in the figure. Let R = R0 = R1 = R2 and a = R/(1 � R). We
have N∗ = 1/[a(1 � 2a)u(u � 2 p)]. Suppose u = 10�7 and
R = 0.9. For p = 10�6 we have N∗ = 3 × 1010. For p = 10�2

we have N∗ = 3 × 106. Thus, cancers with chromosomal
instability, defined by an increased rate p, have a much
lower critical population size for escape from chemotherapy.
The same prediction holds for cancers with increased point
mutation rates. The shades of grey indicate the level of
sensitivity/escape, from sensitive (dark) to escape (pale).

population can be genetically heterogeneous: partial or full
escape mutants can be present at the time of starting the
intervention. This initial distribution can be the conse-
quence of a mutation–selection process prior to inter-
vention. We show how to calculate the probability of
escape for any initial distribution and any fitness landscape
during intervention. The efficacy of an intervention can
be characterized in terms of a critical population size, N∗,
that is compatible with success. For example, if the
mutation rate is the same for all steps, then the critical
population size is proportional to 1/(Cnun), where Cn is a
risk coefficient that can be calculated combinatorially and
un denotes the nth power of the mutation rate. Here, n is
the number of mutational steps required for escape. The
risk coefficient, Cn, essentially sums up all possible for-
ward trajectories from wild-type to escape mutant. There
are two sets of parameters that determine Cn: the basic
reproductive ratios, Ri, of mutants during intervention and
their fitness values, wi, prior to intervention. Thus, we can
quantify how escape depends on the pre-existence versus
emergence of resistant mutants. The primary objective of
biomedical intervention against a variable pathogen popu-
lation is to maximize the minimum distance between wild-
type and escape mutant.

APPENDIX A

Suppose that the microbial or cancer cell genomes are
described by sequences of n bits. The wild-type is 00 ... 0
and the escape mutant is 11..1. The escape mutant has
index m. For all sensitive mutants, i = 0, ..., m � 1, we
have Ri � 1. For the escape mutant, we have Rm � 1. In
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the time interval of one generation, an individual i produces
a random number of offspring following a Poisson distri-
bution with mean Ri. Most offspring are of the same type,
i, but some are mutants, j. The mutation rate from i to j is
given by uij. If u is the mutation rate per bit, then uij =
uhij(1 � u)n�hij . The Hamming distance, hij, denotes the
number of bits that differ between i and j. We have u � 1.

Let �i denote the probability of escape starting from one
individual of type i. The corresponding probability of
extinction is 1 � �i. For extinction, all offspring lineages
generated from this one individual have to become extinct.
Thus, we have

1 � �i = ���
k = 0

(1 � �i)k
[(1 � uii)Ri]k

k!
e�(1�uii)Ri�

× �
j � i

���
k = 0

(1 � � j)k
(uijRi)k

k!
e�uijRi�

= exp���iRi � �m
j = 0

� j uijRi�.

Here, the diagonal elements of the matrix are modified to
uii = �Σk � i uik. The probability �i is a positive solution of
the equation

log(1 � �i) = ��iRi � �m
j = 0

� j uijRi.

For the escape mutant, m, we can neglect the sum and
obtain �m = z as a positive root of log(1 � z) = �zRm. For
sensitive mutants, we cannot neglect the sum, but lin-
earize log(1 � �i) � ��i, because �i � 1. Then we have

�i = �zuim � �m � 1

j = 0

� j uij�Ri/(1 � Ri).

Focusing only on the terms with the smallest power of u,
we obtain

�i = zuhim �
p:i → m

v( p).

The sum is calculated over all paths, p:i =
k1 → k2 → ... → kg = m, which progress monotonically
from i to m (the Hamming distance between ki and m
decreases). The value of path p is v( p) = ak1

ak2
... akg�1

,
where ai = Ri/(1 � Ri). Because the mutation rate is small,
we have to consider only those paths that proceed towards
the escape mutant(s) with the minimum number of
mutaional steps. Suppose that we want to calculate escape
dynamics from the sensitive mutant 000 to the escape
mutant 111. The following are examples of paths with
minimum length: (i) a sequence of three one-
step mutations, 000 → 001 → 101 → 111; (ii) a double
mutation followed by a one-step mutation, 000 →
110 → 111; and (iii) a triple-mutation, 000 → 111. The
following two examples do not have minimum length: (iv)
000 → 011 → 101 → 111 or (v) 000 → 010 → 011 →
001 → 111.

Let us calculate the initial distribution of mutants at the
time of intervention assuming a mutation selection equi-
librium from a quasi-species equation (Eigen & Schuster
1977). Denote by x0 the frequency of the wild-type,
0 = 00 ... 0. For all other mutants we have dxi/dt =
�(1 �wi)xi � Σm

j = 0 u jix j � u0ix0. For u � 1, we obtain at
the equilibrium
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xi = uh0i �
q:0 → i

ṽ(q).

The sum is calculated over all paths, q:0 = k1 →
k2 → ... → kg = i , which progress monotonically from 0 to
i. The value of path q is ṽ(q) = bk2

bk3
... bkg, where

bi = 1/(1 � wi).
The risk of escape per microbe is c = Σm

i = 0 �ixi. For a
population of N microbes, the probability of escape is
1 � exp(�Nc). Using the expression of Xi and �i, we can
derive the formulas in the text. If all sensitive mutants
have the same reproductive rate, R, during intervention
and a = R/(1 � R), then �i = zuhimfi(a). Here, fi(a) is the
sum of the value of all paths between two sequences that
differ in i sites, given that the value of a path with k tran-
sitions is ak. Similarly, if all strains except the wild-type
have the same fitness, w, before intervention and
b = 1/(1 � w), then xi = uh0i fi(b).
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