Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2004 Mar 7;271(1538):501–507. doi: 10.1098/rspb.2003.2608

An epidemiological model for West Nile virus: invasion analysis and control applications.

Marjorie J Wonham 1, Tomás de-Camino-Beck 1, Mark A Lewis 1
PMCID: PMC1691622  PMID: 15129960

Abstract

Infectious diseases present ecological and public health challenges that can be addressed with mathematical models. Certain pathogens, however, including the emerging West Nile virus (WN) in North America, exhibit a complex seasonal ecology that is not readily analysed with standard epidemiological methods. We develop a single-season susceptible-infectious-removed (SIR) model of WN cross-infection between birds and mosquitoes, incorporating specific features unique to WN ecology. We obtain the disease reproduction number, R0, and show that mosquito control decreases, but bird control increases, the chance of an outbreak. We provide a simple new analytical and graphical method for determining, from standard public health indicators, necessary mosquito control levels. We extend this method to a seasonally variable mosquito population and outline a multi-year model framework. The model's numerical simulations predict disease levels that are consistent with independent data.

Full Text

The Full Text of this article is available as a PDF (133.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson J. F., Andreadis T. G., Vossbrinck C. R., Tirrell S., Wakem E. M., French R. A., Garmendia A. E., Van Kruiningen H. J. Isolation of West Nile virus from mosquitoes, crows, and a Cooper's hawk in Connecticut. Science. 1999 Dec 17;286(5448):2331–2333. doi: 10.1126/science.286.5448.2331. [DOI] [PubMed] [Google Scholar]
  2. Bernard K. A., Maffei J. G., Jones S. A., Kauffman E. B., Ebel G., Dupuis A. P., 2nd, Ngo K. A., Nicholas D. C., Young D. M., Shi P. Y. West Nile virus infection in birds and mosquitoes, New York State, 2000. Emerg Infect Dis. 2001 Jul-Aug;7(4):679–685. doi: 10.3201/eid0704.010415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Binder S., Levitt A. M., Sacks J. J., Hughes J. M. Emerging infectious diseases: public health issues for the 21st century. Science. 1999 May 21;284(5418):1311–1313. doi: 10.1126/science.284.5418.1311. [DOI] [PubMed] [Google Scholar]
  4. Blower S. M., McLean A. R. Mixing ecology and epidemiology. Proc Biol Sci. 1991 Sep 23;245(1314):187–192. doi: 10.1098/rspb.1991.0108. [DOI] [PubMed] [Google Scholar]
  5. Hayes J., Hsi B. P. Interrelationships between selected meteorologic phenomena and immature stages of Culex pipiens quinquefasciatus Say: study of an isolated population. J Med Entomol. 1975 Sep 25;12(3):299–308. doi: 10.1093/jmedent/12.3.299. [DOI] [PubMed] [Google Scholar]
  6. Keeling M. J., Woolhouse M. E., Shaw D. J., Matthews L., Chase-Topping M., Haydon D. T., Cornell S. J., Kappey J., Wilesmith J., Grenfell B. T. Dynamics of the 2001 UK foot and mouth epidemic: stochastic dispersal in a heterogeneous landscape. Science. 2001 Oct 3;294(5543):813–817. doi: 10.1126/science.1065973. [DOI] [PubMed] [Google Scholar]
  7. Komar Nicholas, Langevin Stanley, Hinten Steven, Nemeth Nicole, Edwards Eric, Hettler Danielle, Davis Brent, Bowen Richard, Bunning Michel. Experimental infection of North American birds with the New York 1999 strain of West Nile virus. Emerg Infect Dis. 2003 Mar;9(3):311–322. doi: 10.3201/eid0903.020628. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Langevin S. A., Bunning M., Davis B., Komar N. Experimental infection of chickens as candidate sentinels for West Nile virus. Emerg Infect Dis. 2001 Jul-Aug;7(4):726–729. doi: 10.3201/eid0704.010422. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lord C. C., Day J. F. Simulation studies of St. Louis encephalitis and West Nile viruses: the impact of bird mortality. Vector Borne Zoonotic Dis. 2001 Winter;1(4):317–329. doi: 10.1089/15303660160025930. [DOI] [PubMed] [Google Scholar]
  10. McLean R. G., Ubico S. R., Docherty D. E., Hansen W. R., Sileo L., McNamara T. S. West Nile virus transmission and ecology in birds. Ann N Y Acad Sci. 2001 Dec;951:54–57. doi: 10.1111/j.1749-6632.2001.tb02684.x. [DOI] [PubMed] [Google Scholar]
  11. Mogi M., Miyagi I., Cabrera B. D. Development and survival of immature mosquitoes (Diptera: Culicidae) in Philippine rice fields. J Med Entomol. 1984 May 30;21(3):283–291. doi: 10.1093/jmedent/21.3.283. [DOI] [PubMed] [Google Scholar]
  12. Mpho M., Callaghan A., Holloway G. J. Temperature and genotypic effects on life history and fluctuating asymmetry in a field strain of Culex pipiens. Heredity (Edinb) 2002 Apr;88(4):307–312. doi: 10.1038/sj.hdy.6800045. [DOI] [PubMed] [Google Scholar]
  13. Nasci R. S., Savage H. M., White D. J., Miller J. R., Cropp B. C., Godsey M. S., Kerst A. J., Bennett P., Gottfried K., Lanciotti R. S. West Nile virus in overwintering Culex mosquitoes, New York City, 2000. Emerg Infect Dis. 2001 Jul-Aug;7(4):742–744. doi: 10.3201/eid0704.010426. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Oda T., Uchida K., Mori A., Mine M., Eshita Y., Kurokawa K., Kato K., Tahara H. Effects of high temperature on the emergence and survival of adult Culex pipiens molestus and Culex quinquefasciatus in Japan. J Am Mosq Control Assoc. 1999 Jun;15(2):153–156. [PubMed] [Google Scholar]
  15. Petersen L. R., Roehrig J. T. West Nile virus: a reemerging global pathogen. Emerg Infect Dis. 2001 Jul-Aug;7(4):611–614. doi: 10.3201/eid0704.010401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Peterson A. Townsend, Vieglais David A., Andreasen James K. Migratory birds modeled as critical transport agents for West Nile Virus in North America. Vector Borne Zoonotic Dis. 2003 Spring;3(1):27–37. doi: 10.1089/153036603765627433. [DOI] [PubMed] [Google Scholar]
  17. Reisen W. K., Meyer R. P., Shields J., Arbolante C. Population ecology of preimaginal Culex tarsalis (Diptera: Culicidae) in Kern County, California. J Med Entomol. 1989 Jan;26(1):10–22. doi: 10.1093/jmedent/26.1.10. [DOI] [PubMed] [Google Scholar]
  18. Reisen W. K., Siddiqui T. F. Horizontal and vertical estimates of immature survivorship for Culex tritaeniorhynchus (Diptera: Culicidae) in Pakistan. J Med Entomol. 1979 Oct 12;16(3):207–218. doi: 10.1093/jmedent/16.3.207. [DOI] [PubMed] [Google Scholar]
  19. Reiter P. From Shakespeare to Defoe: malaria in England in the Little Ice Age. Emerg Infect Dis. 2000 Jan-Feb;6(1):1–11. doi: 10.3201/eid0601.000101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sardelis M. R., Turell M. J. Ochlerotatus j. japonicus in Frederick County, Maryland: discovery, distribution, and vector competence for West Nile virus. J Am Mosq Control Assoc. 2001 Jun;17(2):137–141. [PubMed] [Google Scholar]
  21. Senne D. A., Pedersen J. C., Hutto D. L., Taylor W. D., Schmitt B. J., Panigrahy B. Pathogenicity of West Nile virus in chickens. Avian Dis. 2000 Jul-Sep;44(3):642–649. [PubMed] [Google Scholar]
  22. Spielman A. Structure and seasonality of nearctic Culex pipiens populations. Ann N Y Acad Sci. 2001 Dec;951:220–234. doi: 10.1111/j.1749-6632.2001.tb02699.x. [DOI] [PubMed] [Google Scholar]
  23. Swayne D. E., Beck J. R., Smith C. S., Shieh W. J., Zaki S. R. Fatal encephalitis and myocarditis in young domestic geese (Anser anser domesticus) caused by West Nile virus. Emerg Infect Dis. 2001 Jul-Aug;7(4):751–753. doi: 10.3201/eid0704.010429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Swayne D. E., Beck J. R., Zaki S. Pathogenicity of West Nile virus for turkeys. Avian Dis. 2000 Oct-Dec;44(4):932–937. [PubMed] [Google Scholar]
  25. Theophilides Constandinos N., Ahearn Sean C., Grady Sue, Merlino Mario. Identifying West Nile virus risk areas: the Dynamic Continuous-Area Space-Time system. Am J Epidemiol. 2003 May 1;157(9):843–854. doi: 10.1093/aje/kwg046. [DOI] [PubMed] [Google Scholar]
  26. Turell M. J., O'Guinn M. L., Dohm D. J., Jones J. W. Vector competence of North American mosquitoes (Diptera: Culicidae) for West Nile virus. J Med Entomol. 2001 Mar;38(2):130–134. doi: 10.1603/0022-2585-38.2.130. [DOI] [PubMed] [Google Scholar]
  27. Turell M. J., O'Guinn M., Oliver J. Potential for New York mosquitoes to transmit West Nile virus. Am J Trop Med Hyg. 2000 Mar;62(3):413–414. doi: 10.4269/ajtmh.2000.62.413. [DOI] [PubMed] [Google Scholar]
  28. WORK T. H., HURLBUT H. S., TAYLOR R. M. Indigenous wild birds of the Nile Delta as potential West Nile virus circulating reservoirs. Am J Trop Med Hyg. 1955 Sep;4(5):872–888. doi: 10.4269/ajtmh.1955.4.872. [DOI] [PubMed] [Google Scholar]
  29. Walter N. M., Hacker C. S. Variation in life table characteristics among three geographic strains of Culex pipiens quinquefasciatus. J Med Entomol. 1974 Nov 25;11(5):541–550. [PubMed] [Google Scholar]
  30. van den Driessche P., Watmough James. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci. 2002 Nov-Dec;180:29–48. doi: 10.1016/s0025-5564(02)00108-6. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES