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Bayesian analysis of experimental epidemics
of foot-and-mouth disease
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We investigate the transmission dynamics of a certain type of foot-and-mouth disease (FMD) virus under
experimental conditions. Previous analyses of experimental data from FMD outbreaks in non-homo-
geneously mixing populations of sheep have suggested a decline in viraemic level through serial passage
of the virus, but these do not take into account possible variation in the length of the chain of viral
transmission for each animal, which is implicit in the non-observed transmission process. We consider
a susceptible–exposed–infectious–removed non-Markovian compartmental model for partially observed
epidemic processes, and we employ powerful methodology (Markov chain Monte Carlo) for statistical
inference, to address epidemiological issues under a Bayesian framework that accounts for all available
information and associated uncertainty in a coherent approach. The analysis allows us to investigate the
posterior distribution of the hidden transmission history of the epidemic, and thus to determine the effect
of the length of the infection chain on the recorded viraemic levels, based on the posterior distribution
of a p-value. Parameter estimates of the epidemiological characteristics of the disease are also obtained.
The results reveal a possible decline in viraemia in one of the two experimental outbreaks. Our model
also suggests that individual infectivity is related to the level of viraemia.

Keywords: Bayesian inference; foot-and-mouth disease; Markov chain Monte Carlo;
stochastic epidemic modelling; transmission chain

1. INTRODUCTION

The study of the infection dynamics of animal pathogens
is not straightforward, especially in the case of asymptom-
atic diseases, and many issues regarding the transmission
dynamics and characteristics of foot-and-mouth disease
(FMD) remain open. One such issue was raised following
the FMD outbreak in Greece during 1994. The relatively
fast diminishing of the epidemic suggested that the viral
strain responsible for the disease (type O) may not be able
to maintain itself through time, as animals infected in the
later stages of the epidemic may not be able to produce
sufficient amounts of the infectious agent for new infec-
tions to occur (Mackay et al. 1995), owing to a suspected
lower blood viral load under a hypothesis of viraemia
being related to exposure dose.

To investigate the persistence of the disease through
time, we analyse data on the transmission of the type O
viral strain to sheep. In two conducted experiments, ani-
mals were randomly allocated to four groups (G1 to G4),
and the first-group sheep were inoculated with a constant
FMD viral dose. The virus was then passed to animals of
the remaining groups, so that, throughout the experiment,
each group spent 24 h mixing with a given group of
‘donor’ animals, followed by 24 h in the presence of a
given group of ‘recipient’ animals. It has been reported
that this specific FMD viral isolate may not be able to
maintain itself through time, as mean peak viraemic levels
are significantly different in sheep of different passage
groups (Hughes et al. 2002b). This is based on the
assumption that the ‘donating’ group is the only possible
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source of infection for all members of a given group, and
implies that the length of the transmission chain, and
therefore the relative temporal position in the epidemic
process, is identical for all animals in a given group and
correlates well with group membership.

This assumption may not be valid even under the spe-
cific experimental conditions, and in this paper we allow
the source of infection of members of a given group to
vary, so that the virus may be acquired from any animal
contacting a susceptible at the moment of transmission,
given the restrictions imposed by the non-homogeneous
daily mixing patterns in the experimental design. The aim
is to obtain a more realistic representation of a possible
decline in the peak viraemic levels as a result of an increas-
ing number of contacts in the transmission chain leading
to an individual infection. Futhermore, to attribute the
eradication of the disease to a diminishing viral load, an
association between viraemia and infectiousness must be
established. We investigate the presence of such a relation-
ship through suitable modelling of the infection-challenge
process. Relevant studies to assess whether the trans-
mission process of the FMD virus to susceptible sheep
is dose related (e.g. Hughes et al. 2002a) have not been
conclusive in establishing a clear relationship between
dose level and infectivity. Here, we also address the issue
of the characterization of the disease through the quantifi-
cation of appropriate epidemiological parameters such as
the transmission coefficient and the duration of the latent
(incubation) period, which, if the times of the events
related to the epidemic outbreak are unobserved or cen-
sored, cannot be tackled with the use of standard statisti-
cal techniques.

To address these issues we fit a stochastic compart-
mental epidemic model (Bailey 1975; Gibson & Renshaw
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1998, 2001) to the data. We follow a Bayesian approach
to incorporate the uncertainty associated with the unob-
served times of exposure to the virus and the exact dur-
ations of the viraemic periods, and also to accommodate
available knowledge and past experience regarding the dis-
ease characteristics. Our analysis is based on the posterior
distribution of the model parameters, obtained with the
use of Markov chain Monte Carlo (MCMC) method-
ology, which is being increasingly employed in epidemic
modelling (e.g. Gibson 1997; O’Neill & Roberts 1999;
Britton & O’Neill 2002). Höhle et al. (2003) also use
MCMC to analyse data from disease transmission experi-
ments in a Bayesian setting. Here, in addition to estimat-
ing the model parameters, we employ the posterior
distribution of the unobserved exposure times to deter-
mine the lengths of the infection chains of infected ani-
mals, and therefore investigate their effect on detected
viraemia by using analysis of variance (ANOVA) to test
the hypothesis of no change in viraemic level as the chain
length increases. This allows the derivation of a posterior
distribution of p-values (cf. Meng 1994).

2. DATA

Data were collected during experiments carried out at
the Institute of Animal Health, Pirbright, UK, in collabor-
ation with the Centre for Tropical Veterinary Medicine,
University of Edinburgh. Two experiments were perfor-
med under identical conditions, and each involved 32 sus-
ceptible sheep randomly divided into four groups of eight
animals. Viraemic diagnosis was based on daily blood
samples. Full details of the design and conditions of the
experiments and the collected data can be found in
Hughes et al. (2002b). The data used in this paper consist
of individual records of the days of onset and cessation
of viraemia and the peak viraemic level. Four sheep in
experiment 1 and nine in experiment 2 did not exhibit
detectable viraemia, but were treated as susceptible in our
model, and their contribution to the transmission dynam-
ics of the disease was taken into account in the analysis.
When differences in viraemic levels among animals were
tested, only naturally infected sheep (G2–G4) were
included in the analysis.

3. MODEL AND METHODOLOGY

We represent the spread of the epidemic through a sus-
ceptible–exposed–infectious–removed model (e.g. Bailey
1975; Becker 1989), where each animal can be classified
as susceptible to the disease (S), exposed to the infecting
agent (E), infectious (I) or removed (recovered, R). The
sojourn time in state E, i.e. the latent period, plays a sig-
nificant role in the control of FMD, but for purposes of
inference is often considered to be of fixed length in epi-
demic modelling (e.g. Becker 1983; O’Neill & Becker
2001). Also, the exponential distribution has been widely
used to describe sojourn times in various compartments in
the study of epidemics, partly owing to its mathematically
convenient Markov property, as for example in the general
susceptible–infectious–removed epidemic model (Bailey
1975). In this paper, following the work in Streftaris
& Gibson (2004), we employ the two-parameter
Weibull(�, �) distribution with probability density
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function f(x) = ��x��1exp(��x�), with x, �, � � 0, whose
properties offer a more flexible framework for realistic epi-
demic modelling. Non-Markovian models have been used
in the literature to describe sojourn times in the epidemic
modelling of diseases such as acquired immune deficiency
syndrome (AIDS) (e.g. De Angelis et al. 1998) and in
transmissible spongiform encephalopathy related epi-
demics (e.g. Ferguson et al. 1997; Ghani et al. 1998). The
gamma distribution has also been considered in a similar
context (O’Neill & Becker 2001).

(a) Likelihood
We use n to denote the number of viraemic animals in

each population. The observation period of the epidemic
is represented in our model by the time interval [0, T ],
defining its start as the inoculation time and its end as the
time of the last recorded event (last recovery). We assume
that no G1-sheep infection was caused by natural trans-
mission of the virus, and therefore G1 animals are not
regarded as recipients in the model. The design of the
experiments mimics a non-homogeneous population mix-
ing pattern, according to which the groups mix in pairs.
Thus, (G1, G2) and (G3, G4) mix on odd days of the
experiment, and (G2, G3) mix on even days while G1 and
G4 are kept separately. Transitions from compartment
S to compartment E in the infinitesimal time increment
[t, t � dt) occur according to a probability of the form

Pr{Sk(t � dt) = Sk(t) � 1} = �Sk(t)�n
l = 1

{v�
l il(k, t)}dt, (3.1)

with � denoting the rate of infection per possible suscep-
tible–infectious contact weighed by the associated infec-
tivity, and Sk(t) giving the number of susceptible animals
in group k at time t. We consider the peak viraemic level
of each infectious sheep as a potential factor affecting the
infective challenge exerted on each susceptible animal.
The possible influence is modelled as the sum of a power
function of the individual viraemic levels, allowing the
power level, denoted by �, to be estimated as a model
parameter. This allows for the special case of a mass-
action infective-challenge function when � = 0. For com-
parisons with mass-action models and also to facilitate the
MCMC algorithm presented in § 3b, we scale the original
viraemic measurements to a mean level of one unit, and
use vl, l = 1, …, n, to denote the normalized measure-
ments. The function il(k, t) is an indicator factor such that
for l = 1,…, n, il(k, t) = 1 if at time t animal l is infectious
and mixing only with group k, or zero otherwise. We
assume independent Weibull distributions for the durations
of the latent and infectious periods. It is possible that sheep
that acquired the disease by viral inoculation will have a
shorter incubation period than naturally infected sheep
(Sellers et al. 1977), and therefore we consider a
Weibull(�1, 	1) distribution for G1 sheep and a Weibull(�2,
	2) distribution for G2–G4 animals. A Weibull(�, �) distri-
bution is used to represent the length of the infectious per-
iod, and we assume that infectious and viraemic periods
coincide in time. The likelihood of the complete data
(assuming perfect observation of the epidemic) can be writ-
ten as a function of the model parameters as
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L(�, �, �1, 	1, �2, 	2, �, �; e, s, r) = �
j � ε

���n
l = 1

{va
l il(Gj , e j)}�

× exp�� � T

0

�C(t)dt� × �
j � I1

f1(s j � e j ; �1, 	1)

× �
j � I2,3,4

f2(s j � e j ; �2, 	2) × �
j � R

f3(r j � s j ; �, �), (3.2)

where ej, sj and rj denote, respectively, the times of
exposure, the start of the infectious period and recovery of
animal j, and e, s and r are the corresponding vectors; Gj

is the group to which animal j belongs; f1(·) and f2(·) denote
the Weibull densities for the latent G1 and G2–G4 periods,
and f3(·) is the Weibull density of the infectious period.
Also, ε, I1, I2,3,4 and R denote the sets of exposed (G2–
G4), infectious (G1, G2–G4) and recovered animals,
respectively, at the end of the experiment, while �C(t) rep-
resents the total infective force on the susceptible popu-
lation at time t, given the mixing pattern and the infectious
state of the population at that time. C(t) is defined as

C(t) = �3
k = 1

�{Sk(t) � Sk�1(t)} × �n
l = 1

{v�
l il(k, k � 1, t)}�

� S4(t) × �n
l = 1

{v�
l il(4, t)}, (3.3)

and uses information on all susceptible sheep, including
those that remained uninfected through the course of the
epidemic. Here il(k, m, t) is defined as in equation (3.1)
with the generalization that il(k, m, t) = 1 if at time t animal
l is infectious and mixing with both groups k and m, or zero
otherwise, l = 1, …, n.

Perfect knowledge of all event times would allow direct
use of the likelihood equation (3.2) to obtain estimates for
the parameters of interest, for example by the method of
maximum likelihood. However, the available information is
only partial, as the exposure times for naturally infected
animals, el where l � ε, are not known. Furthermore, the
recorded times of infectiousness onset (sl) and recovery (rl)
result from sampling carried out every 24 h, and are there-
fore not exact. Standard statistical methodology would fail
to account for the missing information and accommodate
the associated uncertainty. In §§ 3b and 3c we present a
coherent framework for tackling these issues.

(b) Bayesian inference
We follow a Bayesian approach, under which the unob-

served events in the transmission process of the disease are
represented as nuisance parameters. The joint posterior
density of these parameters and the model parameters
(given the observed values) is investigated and inferences
on model parameters are extracted from the respective mar-
ginal densities. We first specify appropriate prior
distributions for the model parameters �, �, �1,
	1, �2, 	2, � and �. For the parameters of the Weibull distri-
butions of latent and infectious periods we assume gamma
priors with parameters determined such that the resulting
distributions loosely reflect existing knowledge about the
epidemic characteristics of FMD in sheep under conditions
similar to those in the experiments. More specifically, based
on information from previous studies, which suggest that
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the incubation period can be less than 1 day for inoculated
sheep and less than 4 days for naturally infected sheep and
also that the viraemic period usually lasts ca. 3 days (Sellers
et al. 1977; Kitching & Mackay 1994; Cox et al. 1999), we
determine the parameters of the gamma prior distributions
in such a way that their moments provide Weibull distri-
butions that are rather weakly concentrated around these
values. The transmission parameter � is assigned a non-
informative gamma distribution, while for the power para-
meter � we assume a vague exponential prior distribution.
All prior distributions are assumed to be independent of
each other. The prior distribution of the parameters is then
updated using the information provided by the data
through the likelihood function, to yield the posterior distri-
bution. From Bayes’ theorem the joint posterior density of
the parameters is given as

p(�, �, �1, 	1, �2, 	2, �, ��e, s, r)

 L(�, �, �1, 	1, �2, 	2, �, �; e, s, r) (3.4)
× �(�, �, �1, 	1, �2, 	2, �, �),

where L(·) is the likelihood function in equation (3.2) and
�(·) denotes the joint prior distribution of the parameters
(where the dependence on hyperparameters has been
suppressed). The posterior density is given in an analyti-
cally intractable form, and therefore inference will rely on
computationally intensive estimation methods. We use
MCMC methodology (e.g. Gelfand & Smith 1990; Tier-
ney 1994), which offers tools for stochastic integration in
problems of increased complexity and dimension. A sin-
gle-component Metropolis–Hastings algorithm is used, in
a manner similar to that described in Streftaris & Gibson
(2004). Details of the algorithm implementation are given
in electronic Appendix A.

(c) Posterior investigation of the hidden infection
process

To investigate the effect of the length of the infection
chain on the detected level of viraemia we consider pos-
terior properties of the network of infectious contacts.
These can be accessed via the posterior distribution of the
unobserved times of exposure to the disease, conditional
on the recorded events. We determine the length of the
infection chain of each viraemic sheep by first recon-
structing the whole infection transmission history of the
epidemic. The lack of detailed observations of the infec-
tion process implies that this will be subject to uncertainty
within a stochastic framework. The MCMC algorithm
allows us to obtain stochastic realizations of the unob-
served infection trees conditional on the unknown
exposure times, by selecting an infecting animal for each
exposure according to a probability distribution weighed
by the infectiousness of available infectious individuals.
Each sampled tree specifies a partition of the animals
according to the length of the infection chain, and we
assess the possible effect on the exhibited viraemia by
using ANOVA to test a null hypothesis of no differences in
viraemic levels with increasing length of the transmission
chain. Each sample of individual infection chain is used
for the evaluation of the appropriate test statistic based
on data from the posterior distribution of exposure times,
giving an associated p-value (cf. Meng 1994) for the null
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Table 1. Posterior mean, standard deviation, median and equal-tailed 95% credible interval for disease-progression characteristics
in the two experiments.

transmission mean latent s.d. latent mean latent s.d. latent
coefficient, � period G1 period G1 period G2–G4 period G2–G4 �

experiment 1
mean 0.024 0.938 0.437 1.599 0.672 1.553
s.d. 0.011 0.265 0.270 0.440 0.364 0.762
median 0.023 0.915 0.370 1.507 0.581 1.477
95% interval (0.005, 0.048) (0.613, 1.360) (0.185, 1.027) (0.943, 2.695) (0.255, 1.583) (0.208, 3.259)

experiment 2
mean 0.020 0.937 0.433 1.937 1.356 0.808
s.d. 0.008 0.231 0.258 0.732 1.012 0.493
median 0.020 0.910 0.378 1.882 1.137 0.732
95% interval (0.004, 0.036) (0.576, 1.469) (0.183, 0.965) (0.836, 3.403) (0.313, 3.772) (0.083, 1.998)
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Figure 1. Posterior densities of the characteristics of the transmission of FMD virus in sheep under experimental conditions:
(a) �; (b) mean latent period for G1; (c) mean latent period for G2–G4; and (d ) �. The solid and dashed lines correspond to
experiment 1 and experiment 2, respectively.

hypothesis. The whole posterior distribution of these p-
values can then be obtained based on data from the
MCMC output. The suggested methodology has been
validated with the use of simulated data. Several epidemic
outbreaks have been generated under the assumed model
and experimental design, with epidemiological determi-
nants corresponding to various scenarios. The analysis
identified an effect of length of infection chain on virae-
mia, when viraemic levels were systematically generated to
follow a decreasing trend (similar to that estimated from
the experimental epidemics). Conversely, the posterior
distribution of the p-values did not suggest any such trend
when the viraemic levels were simulated independently of
infection generation. Details of the simulated epidemics
and relevant results are given in electronic Appendix A.
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4. RESULTS

We first present estimates of the parameters quantifying
the spread of FMD in the two studied experiments.
Characteristics of interest are the transmission (or contact)
parameter �, the durations of the latent (incubation) and
infectious periods of the disease and the parameter � used
to assess a possible relationship between blood viral load
and the infectiousness of individual sheep. Estimates of the
model parameters are given in table 1, with the correspond-
ing marginal posterior densities shown in figure 1. The
transmission parameter � represents the rate of viral trans-
mission in relation to the number of possible infectious con-
tacts and the viraemic level of infective animals. As the
viraemia measurements were standardized to a mean level



Bayesian analysis of foot-and-mouth disease epidemics G. Streftaris and G. J. Gibson 1115

fr
eq

ue
nc

y
fr

eq
ue

nc
y

0 0.2 0.4 0.6 0.8 1.0
p-value

0 0.2 0.4 0.6
p-value

150

100

50

0

600

500

0

400

300

200

100

(a)

(b)

Figure 2. Histograms of posterior distributions of p-values
associated with the hypothesis of no differences among
average peak viraemic levels of sheep classified according to
the length of the infection chain. (a) Experiment 1 and (b)
experiment 2. Summary statistics for (a) experiment 1: first
quartile = 0.12, median = 0.48, mean = 0.40, third
quartile = 0.62; and (b) experiment 2: first quartile = 0.01,
median = 0.04, mean = 0.06, third quartile = 0.08.

of one unit in the likelihood computation, our � estimates
are comparable to the rate of infection per possible suscep-
tible–infectious contact under a mass-action infective-chal-
lenge function of the form �S(t)I(t). For sheep infected by
inoculation, both experiments reveal an average latent
period that concurs with empirical observations reported in
the literature: that the incubation period for sheep inocu-
lated with the FMD virus can be less than 24 h (Sellers et
al. 1977). The posterior densities of all model parameters
are consistent with the assumption of the same underlying
epidemic process in the two experimentals. Estimation of
the mean latent period of sheep in G2–G4 in experiment
1 is more precise than in experiment 2, as shown by the
dispersion of its posterior distribution in figure 1c, which
could partly be attributed to the greater estimation uncer-
tainty present in the second experiment as a result of fewer
G2–G4 animals being detected as viraemic and thus
entering the process of transition between different com-
partments. This is not the case in the estimation of the
latent period of G1 sheep, for which uncertainty is also
reduced as a result of the exposure times being known.

(a) Relationship between viraemia and
infectiousness

The posterior distribution of the � parameter is shown
in figure 1d. As an almost flat non-informative exp(0.001)
distribution was used to express our a priori knowledge
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about �, the location of the posterior distribution indicates
that the information in the data supports non-zero values
of the parameter. Experimentation with simulated epi-
demics verified that, when no relationship between virae-
mia and infectivity is assumed in the data-generation
process (� = 0), the posterior probability density of � is
significantly shifted towards the origin, and its location
can be clearly distinguished from the case where values of
� close to 1 are used in the simulation. In addition, we
employed a discrete prior model for �, with the parameter
taking values over a non-negative grid, to assess the ability
of the purely continuous exponential model to identify a
possible concentration of point mass at � = 0. Histograms
of the posterior distribution of � (shown in electronic
Appendix A) revealed the same characteristics with both
models. Therefore our analysis shows that individual peak
viraemic levels affect the infective challenge exerted on
susceptible animals in both experiments, suggesting a
possible association between blood viral load and the
infectivity of sheep infected with FMD.

(b) Decline of viraemia through the infection chain
Work by Hughes et al. (2002b) on the same data showed

that viraemia declines along passage groups. However,
with the course of the infection process being largely
unobserved, a more powerful analysis is required to sug-
gest the same effect over the infection chain. Assuming an
association between viraemia and infectivity, a decrease in
viraemic levels can be interpreted as the disease not being
able to maintain itself through a chain of viral trans-
missions. By determining the length of the infection chain
of each viraemic sheep in the way described in § 3c we
obtain a more realistic representation of the relative
temporal position of each sheep in the infection process.
We then perform ANOVA tests and obtain p-values for
the null hypothesis of no differences in the average peak
viraemic level among sheep classified according to the
length of their infection chain. The posterior distributions
of these p-values, based on histograms obtained from 1000
samples for each experiment, are shown in figure 2. Our
analysis reveals possible differences in the viraemic levels
of animals with different lengths of infection chain in
experiment 2, as the histogram in figure 2b favours small
p-values. Graphical inspection of the viraemic levels of
sheep grouped according to infection-chain length verified
that small p-values corresponded to differences caused by
decreasing patterns of viraemia. However, the shape of the
distribution for experiment 1 implies that, on this
occasion, the available information on the epidemic gives
rise to transmission patterns that are consistent with both
changing and unaffected viraemic levels, as reflected by
the range of small and large p-values in the histogram.

5. DISCUSSION

Owing to the asymptomatic nature of FMD, control
measures have to rely on estimation of the transmission
dynamics, especially in cases of insufficient early diagnosis
(e.g. caused by large outbreaks, time restrictions or the
non-availability of suitable tests). In this paper, we have
developed estimation methodology that can be applied
when complex modelling of the infection process is used
to represent an epidemic outbreak. Such explicit
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modelling is required to relax assumptions that are either
unrealistic or difficult to substantiate. The Bayesian analy-
sis of the presented model tackles the complex interactions
between rate of infection, quantity of virus replicated, dur-
ations of latent and infectious periods, and infectivity of
the host in a coherent way, so that the conclusions are
based on the entire available information on the epidemic
outbreak. The power of our approach to distinguish
between different infection dynamics of various epidemic
processes was validated through simulations of epidemic
data from appropriate outbreak scenarios.

Our estimates of the mean latent period for in-contact
infections (G2–G4) suggest a shorter incubation time for
naturally infected sheep than that reported in the literature
(between 3 and 8 days; e.g. Kitching & Mackay 1994).
Possible explanations include the dependence of the incu-
bation period on the infectious dose received by suscep-
tible sheep and also the specific experimental conditions
leading to a highly intensive process. The assumption that
infectious and viraemic periods coincide in time is com-
mon in studies of the course of FMD infection (e.g.
Gibson & Donaldson 1986; Cox et al. 1999) and is
employed here for reasons of model parsimony and to
avoid problems of parameter identifiability. The use of a
more complicated model to account for a possible time
delay between the onset (or end) of infectiousness and
viraemia would be problematic for inference purposes
under the restricted information in the available data.

We have modelled the infective challenge exerted by
each infectious sheep as a function of its blood viral load
(standardized to a mean level of one), assuming that the
recorded peak viraemic levels represent accurately the
overall viral load. Therefore, the non-zero estimates of the
power parameter � should be regarded as an indication of
a departure from the hypothesis of no relationship
between viraemia and infectiousness, rather than as an
effort to quantify such an association.

Our results regarding a suspected decline in levels of
blood viral load in sheep infected by the FMD virus
involve ANOVA techniques employing a test statistic
evaluated using realizations of the unobserved exposure
times based on their posterior distribution. The resulting
distributions of p-values can be viewed as an indication of
how extreme the ‘observed’ random representations of the
epidemic tree would be under the null hypothesis of no
change in viraemia over the transmission chain. We also
note here that the data (viraemic levels) involved in the
ANOVA computations were transformed to the logarith-
mic scale to satisfy the assumptions required for the tests.
Our analysis relies on the stochastic reconstruction of the
unobserved infection process, which is based on ident-
ifying individual infectious in-contact animals as the poss-
ible infecting source. However, because inhalation of
infectious droplets is considered to be a common route of
FMD infection in sheep, a more complicated represen-
tation of the transmission process provides scope for poss-
ible extensions to our model.
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improved the paper. We are also grateful to Mark Woolhouse
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