Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2004 Oct 7;271(1552):2025–2033. doi: 10.1098/rspb.2004.2787

Two classes of deleterious recessive alleles in a natural population of zebrafish, Danio rerio.

Amy R McCune 1, David Houle 1, Kyle McMillan 1, Rebecca Annable 1, Alexey S Kondrashov 1
PMCID: PMC1691827  PMID: 15451692

Abstract

Natural populations carry deleterious recessive alleles which cause inbreeding depression. We compared mortality and growth of inbred and outbred zebrafish, Danio rerio, between 6 and 48 days of age. Grandparents of the studied fish were caught in the wild. Inbred fish were generated by brother-sister mating. Mortality was 9% in outbred fish, and 42% in inbred fish, which implies at least 3.6 lethal equivalents of deleterious recessive alleles per zygote. There was no significant inbreeding depression in the growth, perhaps because the surviving inbred fish lived under less crowded conditions. In contrast to alleles that cause embryonic and early larval mortality in the same population, alleles responsible for late larval and early juvenile mortality did not result in any gross morphological abnormalities. Thus, deleterious recessive alleles that segregate in a wild zebrafish population belong to two sharply distinct classes: early-acting, morphologically overt, unconditional lethals; and later-acting, morphologically cryptic, and presumably milder alleles.

Full Text

The Full Text of this article is available as a PDF (196.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bittles A. H., Neel J. V. The costs of human inbreeding and their implications for variations at the DNA level. Nat Genet. 1994 Oct;8(2):117–121. doi: 10.1038/ng1094-117. [DOI] [PubMed] [Google Scholar]
  2. Chakraborty R., Chakravarti A. On consanguineous marriages and the genetic load. Hum Genet. 1977 Apr 7;36(1):47–54. doi: 10.1007/BF00390435. [DOI] [PubMed] [Google Scholar]
  3. Charlesworth B., Charlesworth D. The genetic basis of inbreeding depression. Genet Res. 1999 Dec;74(3):329–340. doi: 10.1017/s0016672399004152. [DOI] [PubMed] [Google Scholar]
  4. Crow J. F. Minor viability mutants in Drosophila. Genetics. 1979 May;92(1 Pt 1 Suppl):s165–s172. [PubMed] [Google Scholar]
  5. Deng H. W., Lynch M. Estimation of deleterious-mutation parameters in natural populations. Genetics. 1996 Sep;144(1):349–360. doi: 10.1093/genetics/144.1.349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Duarte L. C., Bouteiller C., Fontanillas I. P., Petit E., Perrin N. Inbreeding in the greater white-toothed shrew, Crocidura russula. Evolution. 2003 Mar;57(3):638–645. doi: 10.1111/j.0014-3820.2003.tb01555.x. [DOI] [PubMed] [Google Scholar]
  7. Haag Christoph R., Hottinger Jürgen W., Riek Myriam, Ebert Dieter. Strong inbreeding depression in a Daphnia metapopulation. Evolution. 2002 Mar;56(3):518–526. [PubMed] [Google Scholar]
  8. Hussain R. The impact of consanguinity and inbreeding on perinatal mortality in Karachi, Pakistan. Paediatr Perinat Epidemiol. 1998 Oct;12(4):370–382. doi: 10.1046/j.1365-3016.1998.00146.x. [DOI] [PubMed] [Google Scholar]
  9. Hussain R. The role of consanguinity and inbreeding as a determinant of spontaneous abortion in Karachi, Pakistan. Ann Hum Genet. 1998 Mar;62(Pt 2):147–157. doi: 10.1046/j.1469-1809.1998.6220147.x. [DOI] [PubMed] [Google Scholar]
  10. Jiménez J. A., Hughes K. A., Alaks G., Graham L., Lacy R. C. An experimental study of inbreeding depression in a natural habitat. Science. 1994 Oct 14;266(5183):271–273. doi: 10.1126/science.7939661. [DOI] [PubMed] [Google Scholar]
  11. Jorde L. B. Consanguinity and prereproductive mortality in the Utah Mormon population. Hum Hered. 2001;52(2):61–65. doi: 10.1159/000053356. [DOI] [PubMed] [Google Scholar]
  12. Joron Mathieu, Brakefield Paul M. Captivity masks inbreeding effects on male mating success in butterflies. Nature. 2003 Jul 10;424(6945):191–194. doi: 10.1038/nature01713. [DOI] [PubMed] [Google Scholar]
  13. Kasarskis A., Manova K., Anderson K. V. A phenotype-based screen for embryonic lethal mutations in the mouse. Proc Natl Acad Sci U S A. 1998 Jun 23;95(13):7485–7490. doi: 10.1073/pnas.95.13.7485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Keller Lukas F., Grant Peter R., Grant B. Rosemary, Petren Kenneth. Environmental conditions affect the magnitude of inbreeding depression in survival of Darwin's finches. Evolution. 2002 Jun;56(6):1229–1239. doi: 10.1111/j.0014-3820.2002.tb01434.x. [DOI] [PubMed] [Google Scholar]
  15. Khoury M. J., Cohen B. H., Newill C. A., Bias W., McKusick V. A. Inbreeding and prereproductive mortality in the Old Order Amish. II. Genealogic epidemiology of prereproductive mortality. Am J Epidemiol. 1987 Mar;125(3):462–472. doi: 10.1093/oxfordjournals.aje.a114552. [DOI] [PubMed] [Google Scholar]
  16. Kondrashov A. S., Houle D. Genotype-environment interactions and the estimation of the genomic mutation rate in Drosophila melanogaster. Proc Biol Sci. 1994 Dec 22;258(1353):221–227. doi: 10.1098/rspb.1994.0166. [DOI] [PubMed] [Google Scholar]
  17. Krotoski D. M., Reinschmidt D. C., Tompkins R. Developmental mutants isolated from wild-caught Xenopus laevis by gynogenesis and inbreeding. J Exp Zool. 1985 Mar;233(3):443–449. doi: 10.1002/jez.1402330313. [DOI] [PubMed] [Google Scholar]
  18. Kruuk Loeske E. B., Sheldon Ben C., Merilä Juha. Severe inbreeding depression in collared flycatchers (Ficedula albicollis). Proc Biol Sci. 2002 Aug 7;269(1500):1581–1589. doi: 10.1098/rspb.2002.2049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Launey S., Hedgecock D. High genetic load in the Pacific oyster Crassostrea gigas. Genetics. 2001 Sep;159(1):255–265. doi: 10.1093/genetics/159.1.255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lee J. K., Lascoux M., Nordheim E. V. Number of lethal equivalents in human populations: how good are the previous estimates? Heredity (Edinb) 1996 Aug;77(Pt 2):209–216. doi: 10.1038/hdy.1996.126. [DOI] [PubMed] [Google Scholar]
  21. Macklon N. S., Geraedts J. P. M., Fauser B. C. J. M. Conception to ongoing pregnancy: the 'black box' of early pregnancy loss. Hum Reprod Update. 2002 Jul-Aug;8(4):333–343. doi: 10.1093/humupd/8.4.333. [DOI] [PubMed] [Google Scholar]
  22. McCune Amy R., Carlson Rose L. Twenty ways to lose your bladder: common natural mutants in zebrafish and widespread convergence of swim bladder loss among teleost fishes. Evol Dev. 2004 Jul-Aug;6(4):246–259. doi: 10.1111/j.1525-142X.2004.04030.x. [DOI] [PubMed] [Google Scholar]
  23. McCune Amy R., Fuller Rebecca C., Aquilina Allisan A., Dawley Robert M., Fadool James M., Houle David, Travis Joseph, Kondrashov Alexey S. A low genomic number of recessive lethals in natural populations of bluefin killifish and zebrafish. Science. 2002 Jun 28;296(5577):2398–2401. doi: 10.1126/science.1071757. [DOI] [PubMed] [Google Scholar]
  24. Meagher S., Penn D. J., Potts W. K. Male-male competition magnifies inbreeding depression in wild house mice. Proc Natl Acad Sci U S A. 2000 Mar 28;97(7):3324–3329. doi: 10.1073/pnas.060284797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Morton N. E., Crow J. F., Muller H. J. AN ESTIMATE OF THE MUTATIONAL DAMAGE IN MAN FROM DATA ON CONSANGUINEOUS MARRIAGES. Proc Natl Acad Sci U S A. 1956 Nov;42(11):855–863. doi: 10.1073/pnas.42.11.855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mukai T., Cardellino R. A., Watanabe T. K., Crow J. F. The genetic variance for viability and its components in a local population of Drosophila melanogaster. Genetics. 1974 Dec;78(4):1195–1208. doi: 10.1093/genetics/78.4.1195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Mukai T., Chigusa S. I., Mettler L. E., Crow J. F. Mutation rate and dominance of genes affecting viability in Drosophila melanogaster. Genetics. 1972 Oct;72(2):335–355. doi: 10.1093/genetics/72.2.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Nüsslein-Volhard C., Wieschaus E. Mutations affecting segment number and polarity in Drosophila. Nature. 1980 Oct 30;287(5785):795–801. doi: 10.1038/287795a0. [DOI] [PubMed] [Google Scholar]
  29. Ober C., Hyslop T., Hauck W. W. Inbreeding effects on fertility in humans: evidence for reproductive compensation. Am J Hum Genet. 1999 Jan;64(1):225–231. doi: 10.1086/302198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Remington D. L., O'Malley D. M. Whole-genome characterization of embryonic stage inbreeding depression in a selfed loblolly pine family. Genetics. 2000 May;155(1):337–348. doi: 10.1093/genetics/155.1.337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Revazov A. A., Ginter E. K., Asanov A. Iu, Gar'kavtseva R. F., Turaeva Sh M. Mediko-geneticheskoe izuchenie naseleniia Turkmenii. Soobshchenie V. Populiatsionno-demograficheskoe opisanie izoliata Nokhur. Genetika. 1984 Sep;20(9):1542–1548. [PubMed] [Google Scholar]
  32. Revazov A. A. K populiatsionnoi genetike naseleniia evropeiskogo severa RSFSR. Soobshchenie VI. Dinamika geneticheskogo gruza. Genetika. 1983 Sep;19(9):1560–1565. [PubMed] [Google Scholar]
  33. Roff Derek A. Inbreeding depression: tests of the overdominance and partial dominance hypotheses. Evolution. 2002 Apr;56(4):768–775. doi: 10.1111/j.0014-3820.2002.tb01387.x. [DOI] [PubMed] [Google Scholar]
  34. Rudan Igor, Smolej-Narancic Nina, Campbell Harry, Carothers Andrew, Wright Alan, Janicijevic Branka, Rudan Pavao. Inbreeding and the genetic complexity of human hypertension. Genetics. 2003 Mar;163(3):1011–1021. doi: 10.1093/genetics/163.3.1011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Schull W. J., Neel J. V. The effects of parental consanguinity and inbreeding in Hirado, Japan. V. Summary and interpretation. Am J Hum Genet. 1972 Jul;24(4):425–453. [PMC free article] [PubMed] [Google Scholar]
  36. Slate J., Kruuk L. E., Marshall T. C., Pemberton J. M., Clutton-Brock T. H. Inbreeding depression influences lifetime breeding success in a wild population of red deer (Cervus elaphus). Proc Biol Sci. 2000 Aug 22;267(1453):1657–1662. doi: 10.1098/rspb.2000.1192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Stoll C., Alembik Y., Roth M. P., Dott B. Parental consanguinity as a cause for increased incidence of births defects in a study of 238,942 consecutive births. Ann Genet. 1999;42(3):133–139. [PubMed] [Google Scholar]
  38. Sunyaev S., Ramensky V., Koch I., Lathe W., 3rd, Kondrashov A. S., Bork P. Prediction of deleterious human alleles. Hum Mol Genet. 2001 Mar 15;10(6):591–597. doi: 10.1093/hmg/10.6.591. [DOI] [PubMed] [Google Scholar]
  39. Wahab A., Ahmad M. Biosocial perspective of consanguineous marriages in rural and urban Swat, Pakistan. J Biosoc Sci. 1996 Jul;28(3):305–313. doi: 10.1017/s0021932000022379. [DOI] [PubMed] [Google Scholar]
  40. Yaqoob M., Cnattingius S., Jalil F., Zaman S., Iselius L., Gustavson K. H. Risk factors for mortality in young children living under various socio-economic conditions in Lahore, Pakistan: with particular reference to inbreeding. Clin Genet. 1998 Nov;54(5):426–434. doi: 10.1111/j.1399-0004.1998.tb03758.x. [DOI] [PubMed] [Google Scholar]
  41. Zlotogora Joël, Leventhal Alex, Amitai Yona. The impact of congenital malformations and Mendelian diseases on infant mortality in Israel. Isr Med Assoc J. 2003 Jun;5(6):416–418. [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES