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Understanding how climate can interact with other factors in determining patterns of species abundance is a

persistent challenge in ecology. Recent research has suggested that the dynamics exhibited by some popula-

tions may be a non-additive function of climate, with climate affecting population growth more strongly at

high density than at low density. However, we lack methodologies to adequately explain patterns in popu-

lation growth generated as a result of interactions between intrinsic factors and extrinsic climatic variation in

non-linear systems. We present a novel method (the Functional Coefficient Threshold Auto-Regressive

(FCTAR) method) that can identify interacting influences of climate and density on population dynamics

from time-series data. We demonstrate its use on count data on the size of the Soay sheep population, which

is known to exhibit dynamics generated by nonlinear and non-additive interactions between density and cli-

mate, living on Hirta in the St Kilda archipelago. The FCTAR method suggests that climate fluctuations can

drive the Soay sheep population between different dynamical regimes—from stable population size through

limit cycles and non-periodic fluctuations.

Keywords: Soay sheep (Ovis aries); density dependence; population cycles; climate effects;

time-series analysis
1. INTRODUCTION
Given the potential ecological effects of climate change, a

current major challenge is to characterize the dynamic

effects of extrinsic climate fluctuation (Stenseth et al. 2002;

Walther et al. 2002). This is not a trivial task, as climate can

interact with other factors, such as population density

(Coulson et al. 2001), degree of interspecific competition

(Sætre et al. 1999), grazing impact (Mysterud et al. 2003)

and human harvesting (Stenseth et al. 2002), in determin-

ing species distribution and abundances. Although the

relative importance of intrinsic factors and extrinsic

environmental variation in determining the dynamics of

animal populations has long been a central theme in popu-

lation ecology (Nicholson 1933; Andrewartha & Birch

1954; Turchin 1995; Leirs et al. 1997; Grenfell et al. 1998;

Berryman 1999; Coulson et al. 2001; Lima 2001), the

interactive effects of climate and population density have

usually been ignored (but see Coulson et al. 2001). Interac-

tions between climate and other factors may yield complex

dynamics that are not appropriately modelled using linear

systems.
Following May’s pioneering work (May 1974), the

degree to which populations are limited by nonlinear

intrinsic processes has been explored in detail (Royama

1977, 1992; Berryman 1978, 1981, 1999; Sugihara 1994;

Falck et al. 1995; Stenseth et al. 1998a; Turchin & Ellner

2000). Ricker (1954) focused on the dynamic effects of

nonlinearity before May (1974); however, it was May’s

writing that made this topic a focal one among ecologists.

Later, the possibility of such nonlinearity in the effect of

extrinsic factors was also recognized ( Jewell et al. 1974;

Grenfell et al. 1992, 1998; Mysterud et al. 2001). However,

few methodologies allow disentangling of the effects of

intrinsic factors and extrinsic climatic variation in situa-

tions in which, for example, the climatic effect is stronger at

high than at low population densities. Such interacting

effects can be seen in a few simple systems following

detailed longitudinal individual-based demographic mea-

surements (Coulson et al. 2001). However, such detailed

and long-term data are extremely rare. Most long-term

datasets from monitoring are time-series of total counts,

and we need a method for identifying patterns that are

likely to be caused by nonlinear and non-additive effects

from such data.

Using the long-term data of annual counts of Soay sheep

(Ovis aries) from Hirta in the St Kilda archipelago

(figure 1a,b), we demonstrate, in a time-series setting, a
#2004 The Royal Society
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pattern that is consistent with the hypothesis that extrinsic

climate fluctuations affect the intrinsically generated direct

density dependence in a nonlinear and non-additive

manner. The proposed approach allows the simultaneous

identification of nonlinear density dependence and non-

additive effects of extrinsic factors (e.g. Chan et al. 2003)

even when the extrinsic effects on the population dynamics

are also nonlinear ( Jewell et al. 1974; Grenfell et al. 1992,

1998; Mysterud et al. 2001). As such, our paper has a

double focus, helping to characterize the dynamics of the

Soay sheep as well as providing a methodological contri-

bution to the analysis of time-series data in order to infer

how intrinsic and extrinsic processes might determine the

dynamic structure of the population, and how this may

affect the dynamics of the growth rate.
2. THE SOAYSHEEPPOPULATION
The data on the dynamics of the Soay sheep population on

Hirta consist of detailed individual-based data on marked
Proc. R. Soc. Lond.B (2004)
animals that have been collected in the Village Bay catch-

ment of the island since 1985 (figure 1b). In addition, there

have been annual estimates of the total island population

size since 1955; these are the data used in this study. Sev-

eral approaches have been used to model both of these

datasets (Grenfell et al. 1992, 1998; Catchpole et al. 2000;

Coulson et al. 2001; Forchhammer et al. 2001). The

current understanding is that the dynamics of the Soay

sheep result from a complex interaction between popu-

lation density, winter weather, and the age and sex struc-

tures of the population (Coulson et al. 2001). The Age-

Structured Markov Model (ASMM) reported by Coulson

et al. (2001) describes the dynamics well and provides

accurate predictions of future population sizes given the

correct weather inputs. The model is complex, with 32

parameters, and contains functions describing density-

dependent and density-independent sex- and age-specific

survival and fecundity functions (see electronic Appendix
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Figure 1. The study site, Hirta (b) in the St Kilda archipelago off the coast of Scotland (a). The Soay sheep count data are given
in (c) and the NAO index for the corresponding years are given in (d). The blue-shaded area in (b) represents the Village Bay
catchment—the area within which the individual-based studies were carried out—these data are used to develop the ASSM model
(see x 3a). The quality of the count data within the grey-shaded segment of (c) is unknown. However, the climatic effects detected
by the new time-series method seem to be robust to slight measurement errors. We assessed the effects of measurement errors with
a simulation study by adding normal errors with zero mean and standard deviation equal to one-tenth of the observed standard
deviation over the period from 1970 to 1984 to the log-sheep counts. For each of the 50 replications, we repeated the estimation
procedure described in x 3a, and all fitted models of the 50 replications chose 2 d.f. for the B(NAO) spline function, as is the case
for the original logarithmic sheep counts.
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A for a discussion of the fit to the data as compared with

our threshold autoregressive (TAR) model).

Most ecological data do not consist of sufficiently

detailed records to warrant such a complex modelling

approach. Indeed, most long-term data consist of counts.

This begs the question of how much of the underlying

biology can be accurately inferred from analyses of such

counts. We develop a method for inferring a process pre-

viously undetectable with existing time-series methods—a

method that may enable us to extract important infor-

mation about the ecology–climate interaction for a broad

variety of systems for which only count time-series are

available.

3. THEDATA
(a) Sheep data

Feral sheep populations on islands of the St Kilda archipel-

ago, UK, have been monitored since 1955 ( Jewell et al.

1974; Grenfell et al. 1992, 1998; figure 1c). There is some

ambiguity concerning the quality of counts between 1968

and 1984. Our simulations demonstrate that our results are

not an artefact of the ambiguity of this segment of the data

(see legend to figure 1c).

(b) Climate data (the North Atlantic Oscillation)

The North Atlantic Oscillation (NAO; Hurrell 1995;

Hurrell et al. 2003; see also Stenseth et al. 2003) is a large-

scale fluctuation in atmospheric mass between the sub-

tropical North Atlantic region (centred on the Azores) and

the sub-polar North Atlantic region (centred on Iceland)

(Lamb & Peppler 1987). As an index for the global winter

climate, we used Hurrell’s winter NAO index (Hurrell

1995), which is based on the difference of normalized sea

level pressures between Lisbon, Portugal and Stykkishol-

mur/Reykjavik, Iceland for December–March (http://

www.cgd.ucar.edu/~jhurrell/nao.html#winter). The NAO

is positively related to winter rainfall on the west coast of

Scotland (Hurrell 1995; Catchpole et al. 2000) and has

been shown to affect fecundity and survival in Soay sheep

(Milner et al. 1999; Catchpole et al. 2000; Forchhammer et

al. 2001). The NAO has been detrended by fitting a natural

cubic spline with 5 d.f. (see x 4 (equation (4.4)) for further

discussion on the natural cubic splines). We have focused

on detrended NAO values in order to avoid trends in the

NAO leading us to find spurious effects owing to the trend

itself (as opposed to the fluctuation in the NAO, which is,

after all, the key focus of this climate index). We have also

repeated the analysis below (see x 5) with the raw NAO,

with similar conclusions.

4. INCORPORATINGCLIMATE EFFECTSONTHE
STRENGTHOF THEDENSITY DEPENDENCE IN
POPULATIONMODELS
Simulation with the ASMM has predicted that the degree

of over-compensatory density dependence might vary as a

function of the underlying climate (Coulson et al. 2001).

Indeed, even in the case of the Soay sheep, we do not have

data for a sufficient number of years to test this prediction,

yet the time-series of island counts may (when analysed by

the method proposed in this paper) be long enough to

detect short-term dynamical phases in the structure of the

dynamics that result from climate fluctuations. In order to

model the count data, we use the basic model adopted by
Proc. R. Soc. Lond.B (2004)
Grenfell et al. (1992) and Moorcroft et al. (1996):

Nt ¼ Nt�1 R0 1 þ Nt�1=Kð Þb
h i. �

gt,
�

(4:1)

where Nt is the density in year t (referred to as the counts in

the summer of year t ), gt is a multiplicative noise-term, R0

is the maximum net population growth rate, K is a para-

meter closely related to the carrying capacity (given as

Ne ¼ K(R0 �1)1/b ), and b is a parameter expressing the

degree of density dependence (or the degree of over-

compensation; the larger it is, the stronger the degree of

density dependence or overcompensation). The dynamic

properties of the skeleton of this model (i.e. gt DD1) are well

understood (May 1975; Bellows 1981; see also Begon et al.

1996) and vary from stable population size for low R0 and

b, through regular cyclic dynamics to chaos for large values

of R0 and b.

The model given by equation (4.1) may be approxi-

mated by the continuous TAR model (Chan & Tsay 1998;

Stenseth & Chan 1998). Writing nt ¼ log(Nt), r0 ¼ log(R0)

and k¼ log(K), equation (4.1) becomes

nt ¼ nt�1 þ r0 � log(1 þ exp((nt�1 � k)b)): (4:2)

For large values of b, log(1 þ exp½(nt�1 � k)b�) approx-

imates to zero if nt�1 �k� 0, and to (nt�1�k)b if

nt�1�k� 0. Incorporating these approximations into

equation (4.1) produces a continuous TAR model.

Including a stochastic process noise component (ei,t are

independently and identically randomly distributed (iid)

variables of zero mean, and variance r2
i ), the model is

given as

xt ¼
a0 þa1 xt�1 �kð Þþ e1, t if xt�1 6 k

;
a0 þa2 xt�1 �kð Þþ e2, t if xt�1 > k

(
(4:3)

where xt ¼ log(Nt), log(gt)¼ e1;t , if xt�1 6 k, otherwise

log(gt) ¼ e2;t; a0 ¼ log(R0) þ a1k, a1 ¼ 1, a2 ¼ a1 � b, and

k¼ log(K). Grenfell et al. (1998) used a similar model;

however, their self-exciting threshold auto-regressive

(SETAR) model (Tong 1990) was discontinuous. This

model involves, at most, only six parameters.

The TAR model has several advantages over other non-

linear models such as the one defined by equation (4.2).

For example, Stenseth et al. (1998a,b) applied the TAR

models to the Norwegian lemming data and the Canadian

lynx data, and the two regimes were found to correspond to

the increase and the decrease phases of the highly fluctuat-

ing populations; hence the threshold model is capable of

modelling density dependence and phase dependence in

ecological processes. More importantly, the piecewise lin-

earity of the TAR model simplifies the analysis of the eco-

logical features local to a particular phase—the nonlinear

perturbations when climate affects the system only in a

particular phase of the process (see Royama 1992, p. 40).

Statistical inferential procedures are simpler for TAR mod-

els than for the model given by equation (4.1) particularly

when we extend the model to account for parametric vari-

ation in terms of climate covariates. A distinct feature of the

continuous TAR model is that it is essentially a linear

model, given the threshold. This makes it much easier to

include climatic effects non-parametrically in the model.

By contrast, the theta logistic model (Gilpin & Ayala 1973;

see also Lande et al. 2003) and other similar nonlinear
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models become exceedingly complex upon non-para-

metrically incorporating climatic effects.

Observing that there was a non-homogenous structure of

the noise-term, Grenfell et al. (1998) applied a somewhat

similar TAR approach. We extend this approach by further

modelling this noise term. We do this by testing for whether

a climate proxy (the NAO) has an additive or non-additive

effect on the dynamics structure; observing that the exter-

nal climatic forcing has a non-additive effect, we thus

develop a method for estimating this non-additive effect.

Coulson et al. (2001) suggested that the degree of over-

compensation followed a humped distribution with an

increasing NAO index—over-compensatory density

dependence was greatest for intermediate mean values of

the NAO, implying that b may be described as a function of

the NAO (i.e. b = B(NAOt)). We substantiate this claim

through a general and generic time-series approach—an

extension of the continuous TAR model (e.g. Stenseth &

Chan 1998) which we will refer to as the Functional Coef-

ficient Threshold Auto-Regressive (FCTAR) model that

specifies some coefficients of the TAR model (here b) to be

functions of some covariates. Because the functional form

of b ¼ BðNAOt) is unknown, we will model this as a spline.

Specifically, in equation (4.3), we model b as a function of

the NAO, and hence a2 as a function of the NAO (i.e.

a2 ¼ a1 � b(NAOt)). We take a2 as a natural cubic spline

(i.e. a cubic spline which is linear for extreme values). The

degrees of freedom (d.f.) of the natural cubic spline equal

the number of coefficients specifying the piecewise cubic

polynomial; in general terms, the d.f. measures the curva-

ture of the function. For any given d.f., the natural cubic

splines are conveniently parameterized in terms of the

B-spline (Eubank 1999). The B-spline basis functions are

computed using the ns function of the spline package of R

(http://lib.stat.cmu.edu/R/CRAN/). For 1 d.f., the splines

become constants; for 2 d.f., they are straight lines. If the

d:f : ¼ m > 2, the natural cubic spline a2(NAO) can be

expressed as the sum of some scalar multiples of particular

types of smoothly pasted piecewise cubic polynomials (i.e.

parameterized as a linear combination of m natural

B-spline bases):

a2 NAOtð Þ ¼ R16 i6mcjNi NAOtð Þ: (4:4)

The models reported in table 1 are fitted by mini-

mizing the AIC ¼ �2 � ðlog likelihoodÞ þ 2 � ðnumber

of parameters), calculated under the assumption of nor-

mally distributed noise in equation (4.3).

For the constrained TAR model (i.e. with a1 ¼ 1),

we have K ¼ exp(k) and R0 ¼ exp(a0 � a1k). Assuming

that a1 ¼ 1, a0 > 0, a2 < 1, then the equilibrium equals

exp½(a0 � a2k)=(1 � a2)�.

5. RESULTSANDDISCUSSION
Table 1 provides the parameter estimates for models

including the NAO as a climatic covariate (Burnham &

Anderson 1998). As expected, a1 of the unconstrained

model (given by equation (4.3)) is close to 1 (implying no

density dependence in the lower regime). We consequently

fit the constrained TAR model assuming a1 ¼ 1 (table 1b).

All of the constrained TAR models estimate K as 1006

(s:d: ¼ 94:5) and R0 as 1.269 (s:d: ¼ 0:127); the corre-

sponding equilibrium densities will, without the NAO, be

ca. 1241 (s:d: ¼ 59:2). The appropriateness of the model is
Proc. R. Soc. Lond.B (2004)
further supported by the observation that observed litter

sizes are ca. 1.2 (Forchhammer et al. 2001) and that, on

average, 68% of the population are females, juvenile sur-

vival over their first year is ca. 0.6 (Forchhammer et al.

2001) and yearly survival of adults is ca. 0.8 (Catchpole et

al. 2000), which altogether suggest a comparable value for

R0 (ca. 1:2 � 0:68 � 0:6 þ 0:8 ¼ 1:29).

It should be noted that the most competitive model var-

ies depending on the assessment of fit—adjusted R2s sug-

gest that b(NAO) should have 4 d.f. (a nonlinear function),

whereas AICs suggest it should have 2 d.f. (a linear func-

tion; see figure 2). The adjusted R2s are (as is typically the

case in ecological time-series modelling) all relatively small.

However, for the constrained model, b() being a linear

function of NAO explains ca. 8% of the residual variation

of the model without NAO (i.e. a constant b function).

One probable reason for the small R2 values is that the

total sheep counts include proportions of animals in differ-

ent life stages that vary independently of current population

size, and that the demographic rates of these different life

stages respond to climatic variation in contrasting ways

(Coulson et al. 2001). Total count data do not capture this

complexity. Consequently the effects of climate will be dilu-

ted in analyses of such data. Nonetheless, incorporating the

NAO into the model almost doubles the R2, suggesting that

the observed climatic effect is profound. In electronic

Appendix A, we provide a discussion of the advantages of

using adjusted R2 and AIC as measures of fit. Which model

should then be considered the most appropriate? Figure 2

suggests that increasing the degrees of freedom from two to

four adds a ‘kink’ to the shape of the function. The general

impression from each of these plots suggests that the B

function increases as the NAO index increases. Given the

similarities between the shape of the functions with 2, 3 and

4 d.f., we consider the B function to have 2 d.f., as is

suggested by AIC. Indeed, figure 2 explains why Grenfell et

al. (1998) found the upper flat segment of their SETAR

model: their model represents a compromise fit to the

varying NAO values. We note that the climatic effects

detected by the new time-series method seem to be robust to

measurement errors; see the legend of figure 1.

The overall best model admits a rich spectrum of

dynamical behaviour across a variety of NAO values. The

TAR skeleton admits a globally stable limit point that

decreases with increasing NAO value within the observed

NAO range, but limit cycles (Chan & Tong 2001) and non-

periodic behaviour emerge when NAO is extrapolated to

higher values.

The long-term qualitative behaviour of the skeleton may

be altered when the system is subject to dynamic process

noise as specified by equation (4.3); see for example, Sten-

seth et al. (1998a). For example, the skeleton defined by

equation (4.2) generally admits a stable limit point when

the NAO is fixed at any value within the observed range of

the NAO. Simulation studies (see electronic Appendix A)

suggest that this qualitative behaviour seems, for all but

very high NAO values, unchanged by including dynamical

noise in the system. Because the decadal signal of the NAO

is generally weak (Stephenson et al. 2000), the NAO may

be viewed as an almost noise-like oscillator that further

reinforces the interaction of the dynamic noise and the

nonlinear skeleton, resulting in enhanced cyclicity in the

process with high NAO values.
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A critical question is whether the modelling of count

data can detect the climatic effects that operate in the

population through age structure and other mechanistic

links. We have explored this issue empirically using simula-

tions (see electronic Appendix A).

We simulated 50 time-series of the total island popu-

lation size from an ASMM (see electronic Appendix A).

Each series covers 50 years. In the ASMM, survival and

fecundity parameters depend on the NAO as well as pre-

vious population size and their interaction. For each simu-

lated series, the NAO values are generated as a continuous

sub-sequence of historical standardized NAO indices (i.e.

(NAO � 1:73Þ=10 with a random starting point between

1864 and 1951). The age structure of the first time-point

was identical for all series. For each simulated series, we fit-

ted a FCTAR model with the coefficient of the lower

regime constrained to be 1 and that of the upper regime

being a natural cubic spline function of the detrended

NAO, with d.f. ranging from 1 to 4. The d.f. required were

then estimated by minimizing the AIC. The continuous

TAR model detects the NAO effect in 100% of such

ASMM-simulated cases; d.f. is chosen to be 2, 3 and 4 with

frequencies of 7, 8 and 35, respectively.

The NAO inputs to the ASMM were then simulated as

iid normally distributed variables of zero mean and stan-

dard deviation c� 0.2 (roughly that of the observed

centred NAO), c being proportional to the dispersion of the

NAO inputs and hence the strength of the NAO effect in

the simulated model. The empirical performance of the

FCTAR method is summarized in table 2a. The c para-

meter was varied from 1 to 0 in the simulation study. The

FCTAR method performed well. When c > 0.25, a NAO

effect was detected on 100% of occasions (out of 1000
Proc. R. Soc. Lond.B (2004)
replicates). The FCTAR method performed less well when

the NAO input was weaker; when there was no NAO input

(c¼ 0) the FCTAR model correctly specified 1 d.f. on

62.4% of occasions, and when c¼ 0:01 (a weak NAO

input) the method correctly specified 1 d.f. on 42.9%

of occasions. Furthermore, table 2a suggests that the

magnitude of the simulated NAO correlates positively with

the d.f. chosen, revealing the nonlinear character of the

climatic effect in the ASMM.

We then simulated times-series from the FCTAR model

fitted to the Soay sheep data, with d.f. equal to 1 or 2 (see

table 2b). Again, the NAO values are simulated as iid nor-

mally distributed variables with mean and standard devia-

tions equal to �0.102 and 2.01, respectively (the observed

values of their counterparts of the detrended NAO over the

study period); the noises of the two regimes are assumed to

be normally distributed, with the first sheep count equal to

the observed count in 1955. When the true d:f : ¼ 2, the

method has a very high capability of detecting the NAO

effect, which indeed is expected because the data are now

simulated from a FCTAR model with a NAO effect. We

note that when the true d:f : ¼ 1, the false-positive rate

decreases with increasing sample size, but is now much

lower than that of the ASMM with the NAO effect sup-

pressed. The slight disparity of these results may be

because the statistical properties of the ASMM predictions

and the whole island time-series differ. These differences

may be attributed to the atypical five years of decline from

1973 to 1978. It is also possible that two population

crashes were missed (see Besbeas et al. 2002).

In sum, the time-series method seems reliably to detect

climatic effects in the Soay sheep system being studied in

this paper. Recent research has demonstrated that a wide
Table 1. Results from the fitting of the unconstrained and constrained continuous TAR model, with a2 modeled as a natural
cubic spline with d:f : ¼ 1, 2, 3, 4.
(The threshold parameter, k, is searched from the 30th to the 70th percentiles of the data. Values of c are the estimated coefficients
of the B-spline bases, the linear combination of which is a spline function estimator of a2. The B(NAO) ¼ a1 � a2(NAO) can be
estimated by substituting a1 and a2() with their corresponding estimators. When the d:f : ¼ 1, c1 DD a2, which does not hold for
d:f : > 1. Models with the lowest AIC or highest adjusted (adj.) R2 are given in bold. Models with 1 d.f. do not have the NAO incor-
pora-ted as a covariate (only as a constant), whereas the models with d.f. values of between 2 and 4 do incorporate the NAO as a
covariate. Standard errors of estimates are given in parentheses.)
d.f.
 a0
 a1
 c1
 c2
 c3
 c4
 k
 r2
1
 r2

2

adj. R2

(%)
 AIC
(a) unconstrained model fits

1
 7.127
 0.7967
 �0.06434
 6.914
 0.01986
 0.0864
 4.4
 �122.8
(0.0769)
 (0.218)
 (0.258)
 (0.121)

2
 7.132
 0.8138
 0.2399
 �0.9721
 6.914
 0.01952
 0.07906
 9.8
 �123.8
(0.0890)
 (0.218)
 (0.508)
 (0.722)
 (0.135)

3
 7.125
 0.7925
 �0.8860
 0.8971 �
1.196
 6.914
 0.01995
 0.07789
 8.5
 �121.9
(0.0874)
 (0.217)
 (1.14)
 (1.05) (
0.802)
 (0.129)

4
 7.108
 0.7644
 �1.107
 �0.6040 1
.903
 �2.278
 6.904
 0.01985
 0.07102
 11.8
 �121.6
(0.0829)
 (0.229)
 (1.07)
 (0.609) (
1.31)
 (1.49)
 (0.124)
(b) a1 constrained at a fixed value of 1

1
 7.148
 1
 �0.1173
 6.914
 0.01958
 0.08728
 6.0
 �124.7
(0.0747)
 (0.260)
 (0.0817)

2
 7.152
 1
 0.1458
 �0.986
 6.914
 0.01926
 0.07975
 11.4
 �125.7
(0.0852)
 (0.517)
 (0.660)
 (0.0939)

3
 7.148
 1
 �0.8691
 0.7394 �
1.204
 6.914
 0.01963
 0.0787
 10.1
 �123.8
(0.0855)
 (0.9944)
 (0.972)
 (0.703)
 (0.0928)

4
 7.138
 1
 �1.171
 �0.6608
 1.770
 �2.357
 6.914
 0.02068
 0.07343
 12.9
 �123.3
(0.0825)
 (0.839)
 (0.531)
 (0.864)
 (1.15)
 (0.0868)
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Figure 2. The resulting B(NAO) function (a) for various d.f.: (i) d.f : ¼ 1; (ii) d:f : ¼ 2; (iii) d:f : ¼ 3; (iv) d:f : ¼ 4, and (b) the
corresponding phase plots with the original data inserted together with the resulting FCTAR model for (in the case of d:f : > 2)
three levels of (detrended) NAO: blue line corresponds to NAO ¼ �2:79; black line corresponds to NAO ¼ �0:310; and red line
corresponds to NAO ¼ 2:84. The model given by equation (4.1) assumes a smooth transition, whereas the TAR model assumes a

continuous but non-differentiable instantaneous transition. For the log-transformed Soay sheep data, the FCTAR (AIC ¼ �124:7,

R2 ¼ 10:3%, adjusted R2 ¼ 6:1%) provides a better fit than the MSS model (i.e. model (4.1)) (AIC ¼ �107:2, R2 ¼ 6:9%,

adjusted R2 ¼ 2:5%). For the Soay sheep data, model (1) approximating the TAR model is given by R0 ¼ 1:26, b ¼ a1�a2 ¼ 1:17
3 and K¼ 1006, whereas the best-fitted model (1) has the parameter estimates being R0 ¼ 1:93, b ¼ 1:763. and K ¼ 1270. In
particular, for a value of b of ca. 1, the TAR model and the MSS model do not resemble each other closely around the threshold
(k), although they approach each other asymptotically for values distant from k.
d.B (2004)
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range of free-living populations across several taxa are

influenced by climate—regardless of whether they are

resource- or predator-limited (Stenseth et al. 2002). Pre-

viously, we considered only b to be a function of the NAO,

although it is plausible that this may also be true of the

other two ecological parameters, k and r. If either k or r is a

function of the NAO, the intercept term a0 must be a func-

tion of the NAO, in which case the NAO also affects the

system through an additive component besides its non-

additive effect through the parameter b. We have also fitted

a FCTAR model with both a0 and a2 as spline functions of

the NAO, but a constant a0 is selected by AIC. This does

indeed suggest that the NAO affects the Soay sheep

dynamics mainly through the parameter b.

In common with other time-series techniques, the power

of the FCTAR method depends on the signal-to-noise

ratio, as well as the sample size. With the increasing aware-

ness of the value of long-term data (including count data),

we are convinced that the FCTAR method will prove appli-

cable for a variety of systems, and thus provide indications

of interesting biological insight. It is certainly encouraging

to note that, for the Soay sheep system, the inferential

FCTAR time-series approach identified similar nonlinear,

non-additive climate–density interactions as proposed by

Coulson et al. (2001) using a more deductive, process-

oriented approach. For age-structured systems, the stron-

gest climatic signal may be embedded in some intra-group

transitions, for example, the junior and the senior groups

(Gaillard et al. 1998). A generalization of the FCTAR
Proc. R. Soc. Lond.B (2004)
approach to modelling intra-group transitions provides a

promising approach to detecting climatic effects with

otherwise short time-series data.
6. CONCLUSION
We have developed a method that can detect the

non-additive and nonlinear ecological effects of climate on

population dynamics, which is probably due to the interac-

tion between climate and population density, using only

count data. The importance of our model is its ability to

detect effects of the NAO on the basis of only total popu-

lation count data. A detailed understanding of the mechan-

isms that generate nonlinear and non-additive dynamics

can only come from the modelling of detailed long-term

individual-based data relating to fecundity and survival, or

through large-scale experimental manipulations. Not sur-

prisingly, the ASMM with its larger number of parameters

and more mechanistic approach, captures the Soay sheep

population dynamics with greater accuracy than any of the

time-series methods, but the FCTAR method will, using a

much simpler model with much less data demand, help to

direct attention to those systems being dynamically affec-

ted by climate fluctuations. It also allows an examination of

the prevalence of such effects in ecological time-series. Our

analyses suggest that even small changes might have pro-

found dynamic effects—the latter of which might have cas-

cading effects on entire ecosystems (Post et al. 1999).

When faced with the threats of global warming, this will be
Table 2. Empirical frequency of d.f. selected when the simulated time-series are generated (a) by the ASMM and (b) by the Con-
strained FCTAR model.
(The number of replications is 1000. In (a) the (centred) NAO are iid normally distributed with zero mean and standard deviation
equal to c� 0:2 (roughly that of the observed NAO series); c parameterizes the strength of the NAO effect. In (b) the (spline-
detrended) NAO are iid normally distributed, with mean and standard deviation equal to �0.102 and 2.01, respectively (the
observed values over the study period). In both cases, when the effect of the NAO is present in the simulations, the new time-series
method is able to detect it with high probability. (Numbers in bold are the frequencies of the cases whose estimated d.f. coincide
with the true d.f.; in (b), since there is a tendency to over-fit the degrees of freedom, it is appropriate to compare those with esti-
mated d:f : ¼ 1 (i.e. no effect of the NAO) and those with estimated d:f : > 2 (i.e. estimated effect of the NAO). Italics represent
entries within which we would expect the majority of the simulated cases to fall, if the time-series method properly picks up the
effect of the NAO. Bold figures represent the majority-cases.))

(a) the ASMM simulations
d.f.
c
 1
 2
 3
 4
1 (n¼ 50)
 0
 6
 466
 528
0.75 (n¼ 50)
 0
 40
 417
 543
0.50 (n¼ 50)
 0
 232
 328
 440
0.25 (n¼ 50)
 3
 515
 239
 243

0.01 (n¼ 50)
 429
 257
 159
 155

0.00 (n¼ 50)
 601
 160
 123
 116

0.00 (n¼ 200)
 624
 143
 115
 118
(b) the constrained FCTAR simulations
estimated d.f.
sample size
 true d.f.
 1
 2
 3
 4
 > 2
50
 1
 685 (69%)
 149
 89
 77
 315

200
 1
 776 (78%)
 110
 63
 51
 224

50
 2
 263
 503 (50%)
 130
 104
 737 (74%)

200
 2
 6
 768 (77%)
 150
 76
 994 (99%)



1992 N. Chr. Stenseth and others Climate and population threshold
of great value in our efforts to adjust to the resulting eco-

logical changes due to climate change.
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