Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2004 Oct 22;271(1553):2161–2169. doi: 10.1098/rspb.2004.2826

Population control of the malaria vector Anopheles pseudopunctipennis by habitat manipulation.

J Guillermo Bond 1, Julio C Rojas 1, Juan I Arredondo-Jiménez 1, Humberto Quiroz-Martínez 1, Javier Valle 1, Trevor Williams 1
PMCID: PMC1691844  PMID: 15475337

Abstract

Insect vector-borne diseases continue to present a major challenge to human health. Understanding the factors that regulate the size of mosquito populations is considered fundamental to the ability to predict disease transmission rates and for vector population control. The mosquito, Anopheles pseudopunctipennis, a vector of Plasmodium spp., breeds in riverside pools containing filamentous algae in Mesoamerica. Breeding pools along 3 km sections of the River Coatan, Chiapas, Mexico were subjected to algal extraction or left as controls in a cross-over trial extending over 2 years. Initial densities of An. pseudopunctipennis larvae were directly proportional to the prevalence of filamentous algae in each breeding site. The extraction of algae brought about a striking decline in the density of An. pseudopunctipennis larvae sustained for about six weeks, and a concurrent reduction in the adult population in both years of the study. Mark-release experiments indicated that dispersal from adjacent untreated areas was unlikely to exert an important influence on the magnitude of mosquito control that we observed. Habitat manipulation by extraction of filamentous algae offers a unique opportunity for sustainable control of this malaria vector. This technique may represent a valuable intervention, complimenting insecticide spraying of households, to minimize Plasmodium transmission rates in Mesoamerica.

Full Text

The Full Text of this article is available as a PDF (253.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Attaran A., Roberts D. R., Curtis C. F., Kilama W. L. Balancing risks on the backs of the poor. Nat Med. 2000 Jul;6(7):729–731. doi: 10.1038/77438. [DOI] [PubMed] [Google Scholar]
  2. Ault S. K. Environmental management: a re-emerging vector control strategy. Am J Trop Med Hyg. 1994;50(6 Suppl):35–49. doi: 10.4269/ajtmh.1994.50.35. [DOI] [PubMed] [Google Scholar]
  3. Berti J., Zimmerman R., Amarista J. Spatial and temporal distribution of anopheline larvae in two malarious areas in Sucre State, Venezuela. Mem Inst Oswaldo Cruz. 1993 Jul-Sep;88(3):353–362. doi: 10.1590/s0074-02761993000300003. [DOI] [PubMed] [Google Scholar]
  4. Collins F. H., Paskewitz S. M. Malaria: current and future prospects for control. Annu Rev Entomol. 1995;40:195–219. doi: 10.1146/annurev.en.40.010195.001211. [DOI] [PubMed] [Google Scholar]
  5. Curtis C. F., Davies C. R. Present use of pesticides for vector and allergen control and future requirements. Med Vet Entomol. 2001 Sep;15(3):231–235. doi: 10.1046/j.1365-2915.2001.00293.x. [DOI] [PubMed] [Google Scholar]
  6. Curtis C. F. Infectious disease. The case for deemphasizing genomics in malaria control. Science. 2000 Nov 24;290(5496):1508–1508. doi: 10.1126/science.290.5496.1508. [DOI] [PubMed] [Google Scholar]
  7. Curtis C. F., Lines J. D. Should DDT be banned by international treaty? Parasitol Today. 2000 Mar;16(3):119–121. doi: 10.1016/s0169-4758(99)01605-1. [DOI] [PubMed] [Google Scholar]
  8. Fernandez-Salas I., Roberts D. R., Rodriguez M. H., Marina-Fernandez C. F. Bionomics of larval populations of Anopheles pseudopunctipennis in the Tapachula foothills area, southern Mexico. J Am Mosq Control Assoc. 1994 Dec;10(4):477–486. [PubMed] [Google Scholar]
  9. Fernandez-Salas I., Rodriguez M. H., Roberts D. R., Rodriguez M. C., Wirtz R. A. Bionomics of adult Anopheles pseudopunctipennis (Diptera: Culicidae) in the Tapachula foothills area of southern Mexico. J Med Entomol. 1994 Sep;31(5):663–670. doi: 10.1093/jmedent/31.5.663. [DOI] [PubMed] [Google Scholar]
  10. Gillies M. T., Wilkes T. J. A study of the age-composition of populations of Anopheles gambiae Giles and A. funestus Giles in North-Eastern Tanzania. Bull Entomol Res. 1965 Dec;56(2):237–262. doi: 10.1017/s0007485300056339. [DOI] [PubMed] [Google Scholar]
  11. Gubler D. J. Resurgent vector-borne diseases as a global health problem. Emerg Infect Dis. 1998 Jul-Sep;4(3):442–450. doi: 10.3201/eid0403.980326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hall T. F. The influence of plants on anopheline breeding. Am J Trop Med Hyg. 1972 Sep;21(5):787–794. doi: 10.4269/ajtmh.1972.21.787. [DOI] [PubMed] [Google Scholar]
  13. Hay S. I., Myers M. F., Burke D. S., Vaughn D. W., Endy T., Ananda N., Shanks G. D., Snow R. W., Rogers D. J. Etiology of interepidemic periods of mosquito-borne disease. Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):9335–9339. doi: 10.1073/pnas.97.16.9335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hay Simon I., Cox Jonathan, Rogers David J., Randolph Sarah E., Stern David I., Shanks G. Dennis, Myers Monica F., Snow Robert W. Climate change and the resurgence of malaria in the East African highlands. Nature. 2002 Feb 21;415(6874):905–909. doi: 10.1038/415905a. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hii J. L., Smith T., Mai A., Ibam E., Alpers M. P. Comparison between anopheline mosquitoes (Diptera: Culicidae) caught using different methods in a malaria endemic area of Papua New Guinea. Bull Entomol Res. 2000 Jun;90(3):211–219. doi: 10.1017/s000748530000033x. [DOI] [PubMed] [Google Scholar]
  16. Hoffman S. L. Infectious disease. Research (genomics) is crucial to attacking malaria. Science. 2000 Nov 24;290(5496):1509–1509. doi: 10.1126/science.290.5496.1509. [DOI] [PubMed] [Google Scholar]
  17. Killeen G. F., McKenzie F. E., Foy B. D., Schieffelin C., Billingsley P. F., Beier J. C. A simplified model for predicting malaria entomologic inoculation rates based on entomologic and parasitologic parameters relevant to control. Am J Trop Med Hyg. 2000 May;62(5):535–544. doi: 10.4269/ajtmh.2000.62.535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Killeen Gerry F., Knols Bart G. J., Gu Weidong. Taking malaria transmission out of the bottle: implications of mosquito dispersal for vector-control interventions. Lancet Infect Dis. 2003 May;3(5):297–303. doi: 10.1016/s1473-3099(03)00611-x. [DOI] [PubMed] [Google Scholar]
  19. Kitron U. Malaria, agriculture, and development: lessons from past campaigns. Int J Health Serv. 1987;17(2):295–326. doi: 10.2190/68UG-BAWQ-YXCT-HFKT. [DOI] [PubMed] [Google Scholar]
  20. Kitron U., Spielman A. Suppression of transmission of malaria through source reduction: antianopheline measures applied in Israel, the United States, and Italy. Rev Infect Dis. 1989 May-Jun;11(3):391–406. doi: 10.1093/clinids/11.3.391. [DOI] [PubMed] [Google Scholar]
  21. Longnecker M. P., Klebanoff M. A., Zhou H., Brock J. W. Association between maternal serum concentration of the DDT metabolite DDE and preterm and small-for-gestational-age babies at birth. Lancet. 2001 Jul 14;358(9276):110–114. doi: 10.1016/S0140-6736(01)05329-6. [DOI] [PubMed] [Google Scholar]
  22. Longnecker Matthew P., Klebanoff Mark A., Brock John W., Zhou Haibo, Gray Kimberly A., Needham Larry L., Wilcox Allen J. Maternal serum level of 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene and risk of cryptorchidism, hypospadias, and polythelia among male offspring. Am J Epidemiol. 2002 Feb 15;155(4):313–322. doi: 10.1093/aje/155.4.313. [DOI] [PubMed] [Google Scholar]
  23. Manguin S., Roberts D. R., Peyton E. L., Rejmankova E., Pecor J. Characterization of Anopheles pseudopunctipennis larval habitats. J Am Mosq Control Assoc. 1996 Dec;12(4):619–626. [PubMed] [Google Scholar]
  24. Marten G. G. Mosquito control by plankton management: the potential of indigestible green algae. J Trop Med Hyg. 1986 Oct;89(5):213–222. [PubMed] [Google Scholar]
  25. Mathenge E. M., Killeen G. F., Oulo D. O., Irungu L. W., Ndegwa P. N., Knols B. G. J. Development of an exposure-free bednet trap for sampling Afrotropical malaria vectors. Med Vet Entomol. 2002 Mar;16(1):67–74. doi: 10.1046/j.0269-283x.2002.00350.x. [DOI] [PubMed] [Google Scholar]
  26. Mbogo C. N., Glass G. E., Forster D., Kabiru E. W., Githure J. I., Ouma J. H., Beier J. C. Evaluation of light traps for sampling anopheline mosquitoes in Kilifi, Kenya. J Am Mosq Control Assoc. 1993 Sep;9(3):260–263. [PubMed] [Google Scholar]
  27. Orr B. K., Resh V. H. Experimental test of the influence of aquatic macrophyte cover on the survival of Anopheles larvae. J Am Mosq Control Assoc. 1989 Dec;5(4):579–585. [PubMed] [Google Scholar]
  28. Rogers D. J., Randolph S. E. The global spread of malaria in a future, warmer world. Science. 2000 Sep 8;289(5485):1763–1766. doi: 10.1126/science.289.5485.1763. [DOI] [PubMed] [Google Scholar]
  29. Rogers David J., Randolph Sarah E., Snow Robert W., Hay Simon I. Satellite imagery in the study and forecast of malaria. Nature. 2002 Feb 7;415(6872):710–715. doi: 10.1038/415710a. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Rose R. I. Pesticides and public health: integrated methods of mosquito management. Emerg Infect Dis. 2001 Jan-Feb;7(1):17–23. doi: 10.3201/eid0701.010103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Savage H. M., Rejmankova E., Arredondo-Jim'enez J. I., Roberts D. R., Rodr'iguez M. H. Limnological and botanical characterization of larval habitats for two primary malarial vectors, Anopheles albimanus and Anopheles pseudopunctipennis, in coastal areas of Chiapas State, Mexico. J Am Mosq Control Assoc. 1990 Dec;6(4):612–620. [PubMed] [Google Scholar]
  32. Service M. W. Can we control mosquitoes without pesticides? A summary. J Am Mosq Control Assoc. 1995 Jun;11(2 Pt 2):290–293. [PubMed] [Google Scholar]
  33. Service M. W. Mosquito (Diptera: Culicidae) dispersal--the long and short of it. J Med Entomol. 1997 Nov;34(6):579–588. doi: 10.1093/jmedent/34.6.579. [DOI] [PubMed] [Google Scholar]
  34. Shiff Clive. Integrated approach to malaria control. Clin Microbiol Rev. 2002 Apr;15(2):278–293. doi: 10.1128/CMR.15.2.278-293.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Sina B. J., Aultman K. Resisting resistance. Trends Parasitol. 2001 Jul;17(7):305–306. doi: 10.1016/s1471-4922(01)02007-4. [DOI] [PubMed] [Google Scholar]
  36. Ulloa Armando, Arredondo-Jiménez Juan I., Rodriguez Mario H., Fernández-Salas Ildefonso. Mark-recapture studies of host selection by Anopheles (Anopheles) vestitipennis. J Am Mosq Control Assoc. 2002 Mar;18(1):32–35. [PubMed] [Google Scholar]
  37. Utzinger J., Tozan Y., Singer B. H. Efficacy and cost-effectiveness of environmental management for malaria control. Trop Med Int Health. 2001 Sep;6(9):677–687. doi: 10.1046/j.1365-3156.2001.00769.x. [DOI] [PubMed] [Google Scholar]
  38. Utzinger Jürg, Tanner Marcel, Kammen Daniel M., Killeen Gerry F., Singer Burton H. Integrated programme is key to malaria control. Nature. 2002 Oct 3;419(6906):431–431. doi: 10.1038/419431a. [DOI] [PubMed] [Google Scholar]
  39. Utzinger Jürg, Tozan Yesim, Doumani Fadi, Singer Burton H. The economic payoffs of integrated malaria control in the Zambian copperbelt between 1930 and 1950. Trop Med Int Health. 2002 Aug;7(8):657–677. doi: 10.1046/j.1365-3156.2002.00916.x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES