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The global epidemic of severe acute respiratory syndrome (SARS) in 2003 demonstrated the need to deter-

mine control strategies for exotic infections. The prior determination of such strategies, and the use of math-

ematical models to assist this, is hampered by the obvious lack of data. We propose an integral equation

model of Kermack–McKendrick type that may be used to compare strategies based on the isolation of infec-

tious individuals. The model structures the incidence of infection according to the location of an infected

individual at exposure, and requires knowledge of the infectivity kernel and the initial rate of exponential

increase of cases. The model’s use in the design of strategies to minimize the risk of SARS in a previously

unexposed community is demonstrated.
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1. INTRODUCTION
The motivations for this paper were the recent epidemic of

severe acute respiratory syndrome (SARS) (Pearson et al.

2003; WHO 2003; Lingappa et al. 2004), and the per-

ceived threat from smallpox as a weapon of bioterrorism

(Ferguson et al. 2003). For an isolated geographical region

both pose the same problem, assuming that the region itself

is not the terrorist target. The scenario is that an epidemic

is occurring elsewhere in the world and we wish to mini-

mize its impact on the local community. The infectious

agent is not one that has recently been present in the

region, so the local population may be regarded as having

no herd immunity to infection.

In an ideal world, a response strategy for an infectious

outbreak would be planned in advance (Anon. 2002). This

is not always realistic even when the infection is a known

one. However, when an infectious agent poses a threat the

authorities rapidly require a response strategy. This is often

based on prior experience with similar infections, the

experience of other countries, and local expert knowledge.

The methodology described here is designed as a means for

comparing potential strategies and determining the likely

outcome of an importation of infection, in terms of the

number of local cases and the time-course of the epidemic.

It is simple in concept and requires a minimum amount of

data, which is necessary for novel infections where little

information is available.

The model is derived from the original formulation of

Kermack & McKendrick (1927; also Diekmann & Hees-

terbeek 2000). At the simplest level an estimate of the

shape of the integral kernel (product of contact rate and

probability of transmission given contact, as functions of

time since infection) and of the basic reproduction number

(R0) is all that is required. Alternatively, the initial growth

rate or doubling time of the epidemic may be used to esti-

mate R0. For the structured model presented here, an

estimate of the initial distribution of infections among the

locations where transmission took place is also required to

determine weight parameters. In either case the model is
linear; thus the total number infected in the epidemic can

be explicitly determined whenR0 < 1.

In x 2, we describe the features of the model and its

analysis. We then illustrate the model’s use in planning

intervention strategies for SARS, extending the model to

include the isolation of infectious cases. Some mathemat-

ical details are included in Appendix A.
2. THEMODEL
The primary variable modelled is the incidence of infec-

tion. The infected population is structured into four types:

those who were infected by contact with members of one’s

immediate household; with others at one’s place of work

(including school); with others in the wider community;

and with others in a healthcare facility. Subscripts 1–4 are

used to denote the incidence of these infection types in

the population, respectively, and the total incidence is

ji(t)j ¼ P4
k¼1 ik(t). It should be stressed that the infected

subpopulation is structured on the location of individuals

at the time of infection, or the state at birth (see Diekmann

& Heesterbeek 2000). For the examples presented in this

paper, and for the development of the model just four loca-

tions have been chosen as most appropriate for our pur-

poses. For other infections or in other geographical regions

other choices may be appropriate, although the model

would be similar. In this type of model individuals do not

necessarily remain in one compartment, as in those dis-

cussed by Anderson & May (1991). In fact, almost all

members of the population will have contact with others at

more than one of the locations. However, the original

location of infection is an attribute that an infected individ-

ual retains.

Infection is transmitted during a contact between an

infectious individual and a susceptible recipient. The con-

tact rate function C(s) is a four by four matrix, and a func-

tion of the time since the infectious individual was infected.

In other respects, it is similar in concept to the familiar

WAIFWmatrix (Anderson &May 1991; Roberts & Tobias

2000). Its elements are Ckl(s), being the contact rates of
#2004The Royal Society
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those that were infected within their own household, at

work, in the wider community or in a healthcare facility

(l ¼ 1, 2, 3, 4, respectively) with others within their own

household, at work, in the wider community or in a health-

care facility (k ¼ 1, 2, 3, 4, respectively). In the examples

given, it is assumed that (in the absence of control interven-

tions) each of these contactee categories experience equal

contact rates with contactors, except that after two genera-

tions of infection have arisen within the same household it

is unlikely that there will be further intra-household contact

within that particular household. In other words, after one

household member has been infected outside the house-

hold, and this person has transmitted the infection to one

or more members of that household, then the remaining

uninfected members take precautions to avoid becoming

infected. The general presentation is also made using this

assumption, as further progress in model analysis may then

bemade. Hence,

Ckl(s) ¼
0 : k ¼ l ¼ 1

ck(s) : otherwise
:

�
(2:1)

Although this contact structure would be appropriate at the

beginning of an epidemic, it may change as public behav-

iour changes in response to the epidemic or as a conse-

quence of control interventions. The analysis presented in

this section relates to the initial stages of the epidemic

before these changes take place.

The time-course of infection within an individual is

assumed to be independent of the infection category into

which they fall, and the probability of transmitting infec-

tion given contact with a susceptible is denoted by p(s).
The number of susceptibles in the population at time t is

S(t) ¼ S(0)�
Z t

0

i(s) ds

����
���� (2:2)

and we define S0 ¼ S(0). If the entire population is suscep-

tible initially, then S0 ¼ N (the population size). How-

ever, the effective number of susceptibles that are available

to be infected will depend on their location at the time of

exposure to infection: either at home, at work, in the wider

community or in a healthcare facility. To account for this,

weights wk relating these to the overall community size, or

to the numbers of susceptibles in the community, are intro-

duced.

The equation for the incidence of infection is (see Diek-

mann &Heesterbeek 2000)

ik(t) ¼ ak(t)þ wkS(t)
X4
l¼1

Z 1

0

p(s)Ckl(s)il(t � s) ds (2:3)

for k ¼ 1, 2, 3, 4. The index cases are represented by the

term ak(t). The basic reproduction number for the model

defined by equation (2.3) is R0 ¼ q K0ð Þ (the largest eigen-
value ofK0), where the next generationmatrix is defined by

K0ð Þkl¼
0 : k ¼ l ¼ 1

Kk ¼ wk

R1
0

p(s)ck(s) ds : otherwise
:

�
(2:4)

Hence

R0 ¼ K2 þK3 þK4

2
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4K1

K2 þK3 þK4

r� �
: (2:5)

Following the introduction of an index case there will be a

small epidemic ifR0 < 1, or a large epidemic ifR0 > 1.
Proc. R. Soc. Lond.B (2004)
(a) Small epidemics

Assume now that a single case is introduced into the

community at time t ¼ 0. If R0 < 1, then the course of the

epidemic may be approximated by assuming that there is

an effectively inexhaustible supply of susceptibles, and

hence approximating S(t) � S0 in equation (2.3) to obtain

a linear equation. Although an analytic solution may still

not be easy (see Appendix A), the total number infected at

each location throughout the epidemic may be readily cal-

culated as the components of the vector

1

1� 1þK1ð Þ K2þK3þK4ð Þ

K1

1þK1ð ÞK2

1� 1þK1ð Þ K2þK4ð Þ
1þK1ð ÞK4

0
BBB@

1
CCCA (2:6)

and the total number infected isZ 1

0

i(t)dt

����
����¼ 1þK1

1� 1þK1ð Þ K2þK3þK4ð Þ : (2:7)

Finally, it should be noted that the small epidemic solution

is the result of a linear process. Hence, the solution of the

deterministic model is also the mean of the solution of the

corresponding stochastic model, and confidence limits

about the curve are readily derived from the Poisson distri-

bution.

(b) Large epidemics

The small epidemic solution is also valid for the initial

stages of a large epidemic, i.e. when R0 > 1 and the num-

ber of susceptibles may be approximated by S0. At this time

the growth of the epidemic is approximately exponential

with ji(t)j � ert with a constant proportion (h1, . . . , h4) in

each infection category (see Appendix A). If the observed

data are r and hk then these provide estimates of (w1, . . . ,
w4) and in turn R0, which is therefore (indirectly) a func-

tion of r. If an exotic infection were introduced to a com-

munity where the majority of the population were

susceptible, and the authorities did not have containment

procedures in place, then it is likely that an epidemic would

start and follow the large epidemic pattern. Should the

authorities then put suitable procedures in place, reducing

the basic reproduction number of the infection below one,

then the pattern would change to one similar to the small

epidemic solution. The most common interventions would

be the isolation of those infected and/or their contacts and,

where a vaccine is available, the vaccination of targeted

sub-populations. The effects of isolation policies are now

explored in more detail with reference to SARS as an

example. The effects of incorporating vaccination and iso-

lation policies in a similar model for smallpox epidemics are

discussed by Aldis & Roberts (2004).
3. EXAMPLE: THE ISOLATIONOFCONTACTS TO
MINIMIZE THE SPREADOFSARS
The first known case of SARS appeared in Guangdong

Province, China, in November 2002, and in the next nine

months a total of 8439 cases and 812 deaths1 were reported

from 28 areas (Pearson et al. 2003; WHO 2003;

Lingappa et al. 2004). Detailed models have been used to

describe its epidemiology and to explain the observed

patterns of outbreaks (Lipsitch et al. 2003; Lloyd-Smith

et al. 2003; Riley et al. 2003). One concern was to deter-
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mine the public health measures required to minimize the

impact of the infection should it be introduced to a new

geographical area. The only intervention available is to iso-

late members of the community from each other, to reduce

contacts and hence transmission. The model described

above was used to examine the potential effectiveness of

these policies (M. G. Roberts, unpublished report pre-

pared for theMinistry of Health,Wellington).

Suppose that when a time tq has elapsed after the infec-

tion of the index case, a policy is introduced that effectively

prevents a fraction qkl of infected individuals of type l from

contacting susceptibles at location k at time s after they

were exposed. Then, for times t > tq equation (2.3) would

become

ik(t) ¼ wkS(t)
X4
l¼1

Z 1

0

p(s)Ckl(s) 1� u(t � s� tq)qkl(s)
� �

� il(t � s) ds, (3:1)

where u(s) ¼ 1 when s > 0 and zero otherwise. The basic

reproduction number in the presence of the isolation policy

isRq ¼ q Kq

� 	
, where

(Kq)kl ¼ wkS0

Z 1

0

p(s)Ckl(s) 1� qkl(s)f gds: (3:2)

For the special case where qkl ¼ qk (the isolation regime is

independent of the location where infection occurred) and

with contacts isolated before they become infectious, the

expression for Rq is similar to that for R0 in equation (2.5)

but with Kk replaced by (1� qk)Kk. It must be considered

that one or more of the qk values could be negative, for

example if withdrawing from contacts at work or in the

community results in increased contact within the house-

hold or with healthcare workers.

To model the progress of an outbreak of SARS, equation

(2.3) was solved numerically (see Appendix A), with p(s)
increasing linearly from 4days post-exposure to a

maximum at 7 days, then decreasing from 11days to zero

at 14 days (see Appendix A), contact rates constant and

other parameters fixed so that R0 ¼ 3:2 (Chowell et al.

2003; Wallinga & Teunis 2004). Following introduction of

the virus to the population an intervention policy based on

the isolation of infected cases is initiated. The effects of

varying two parameters, the time after the initiation of the

epidemic that the control procedures are in place, and the

delay from an individual showing symptoms to being effec-

tively isolated, were explored. As an example, the result for

the hypothetical situation where a policy is introduced on

day 20 under which all infected individuals are isolated

from contact 3 days after the onset of symptoms (tq ¼ 20,

qk(s) ¼ 1 for s > 7, 0 otherwise) is shown in figure 1. This

was just one of a range of scenarios examined, and has been

chosen for presentation because it represents the clearest

indication of the system’s dynamics. This particular control

intervention results in Rq ¼ 0:78 and elimination of the

infection over time.
4. DISCUSSION
We have presented a method by which the incidence of an

exotic infection introduced to a susceptible population may

be predicted. In common with all predictions, the results

taken in isolation are unreliable. In fact, the methodology

being based on a linear model is a Poisson process, and the
Proc. R. Soc. Lond.B (2004)
outcome being the mean of that process has a variance of

equal magnitude. Hence, large confidence limits about the

meanwill be observed and are easily estimated. The purpose

of the model is, however, to assist in the design of control

interventions rather than to provide accurate predictions.

Given the limited availability of data it would be unwise to

rely on predictions from anymodel of an exotic infection.

Our proposal enables an estimate of the potential time-

course of an epidemic to be made based only on knowledge

of the infection kernel, an estimate of R0 or of the initial

exponential growth rate, and an estimate of the initial

distribution of incidence among different locations at infec-

tion. At the beginning of an epidemic these pieces of

information may be readily obtained, even for previously

unknown infections. The model has considerable advan-

tages over the more traditional compartmental models,

despite being less familiar. Models of this type were

presented in the original publications of Kermack &

McKendrick (1927). The infection kernel can be derived

directly from the lengths of the pre-infectious and infec-

tious periods, without the assumption that the durations of

these periods are exponentially distributed. This also

removes the feature of differential equation models that a

small proportion of the population may progress through

these periods in an unrealistically small amount of time,

thus distorting the effect of timely intervention strategies.

Specification of the kernel proceeds directly from the epi-

demiological data, and the basic reproduction number may

be estimated from the initial growth rate of the epidemic.

Fraser et al. (2004) have also shown that the initial time-

course of an epidemic is determined by R0 and the mean

generation time, which is derived from the infection kernel.

As the model (equation (2.3)) is linear, it is only neces-

sary to simulate the consequences of a single primary case;

the result of multiple introductions is then the summation

over the individual outcomes. A single primary case gen-

erates an incidence of secondary cases that has the same
0.5
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Figure 1. The hypothetical incidence of SARS following the
introduction of a single case infected at day zero into an
otherwise susceptible population. An isolation programme as
described in x 3 is initiated at day 20. The curves are from
bottom to top: i1, i1 þ i2, i1 þ i2 þ i3 and ji(t)j.
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profile as the infection kernel p(s)C(s). This can be seen in

the beginning of the hypothetical SARS epidemic shown in

figure 1, but the second generation of infection rapidly

obscures the trapezoidal shape of the first generation.

Figure 1 shows the expected incidence of infection, the cor-

responding cumulative number of cases is a smooth func-

tion of time.

The model structure, where those that have been infected

are categorized according to the location where infection

occurred, allows more detail to be gained from the model.

Whereas individuals in a population may spend time in more

than one, or even in all, of the categories of household, work-

place, wider community and healthcare facility, the infection

is transmitted to them at only one location. Hence, the struc-

ture is of the type referred to as ‘infection type at birth’ (Diek-

mann &Heesterbeek 2000) or ‘contact group’ (Longini et al.

2004). Rather than tracking individuals moving between

compartments and specifying transition rates, it is only

necessary to include weights in the model to account for the

different effective availability of susceptibles at each location.

The categories may vary according to the infection under

study: we included the healthcare facility to include workers

and other patients because this type of transmission is impor-

tant for both SARS (Lloyd-Smith et al. 2003) and smallpox

(Gani &Leach 2001).

Concern that terrorist organizations may use an infectious

agent as a weapon has led several authors to evaluate the

potential for smallpox to spread in contemporary societies,

and themost efficient strategy for vaccinating at-risk sections

of the population (for a review see Ferguson et al. 2003). We

have used a similar model to examine the scenario where a

country or region may not be under threat of attack, but may

wish to protect itself against importation of the infection. For

smallpox, a vaccine is available, but stocks are limited and it

is unlikely that mass vaccination of the population would be

warranted. However, as the smallpox vaccine provides pro-

tection if administered within a few days after exposure to

infection, a trace and vaccinate policy for contacts is feasible

(Ferguson et al. 2003). Hence, the model was extended to

examine the effectiveness of vaccinating some sections of the

community in response to an outbreak, as well as combining

vaccination with an isolation or quarantine policy. For details

of the modifications required for this model see G. K. Aldis

andM.G. Roberts (unpublished data).

The utility of the method described is in providing an

assessment of the relative merits of alternative control stra-

tegies. For all interventions the policy specified by the

authorities is only approximated in reality. For exotic infec-

tions, especially new ones such as SARS, even the biologi-

cal parameters are poorly known. A framework has been

provided within which a broad view of the merits of differ-

ent interventions may be rapidly reached.
The author acknowledges many useful discussions of this
model with Geoff Aldis of the University of NSW at ADFA,
Canberra. Jacco Wallinga of the National Institute of Public
Health and the Environment (RIVM), Bilthoven, The
Netherlands, kindly made an unpublished report and a pre-
print available. The model was developed during research
funded by the Ministry of Health, Wellington, and John Boyd,
Douglas Lush, Alison Roberts and Martin Tobias provided
feedback and motivation for many aspects. The views expres-
sed are those of the author and do not necessarily reflect the
views of theMinistry.
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APPENDIX A
(a)The small epidemic solution

If R0 < 1 , S(t) � S0 in equation (2.3) is approximated to
obtain a linear equation, which may be solved in the

Laplace transform domain. A single infected individual

introduced to the population at time t ¼ 0 results in the

incidence of index cases taking the form ak ¼ d(t) for k ¼ 3

and ak ¼ 0 otherwise, where d(t) is the Dirac delta func-

tion. Defining a matrix function of the transform variable s

by

K(s)
� 	

kl
¼

0 : k ¼ l ¼ 1

jk(s) ¼ wkS0

R1
0

p(t)ck(t)e
�st dt : otherwise

(

and I to be the identity matrix, we obtain

i(s) ¼ I �K(s)
� 	�1

a

¼ 1

1� 1þ j1(s)ð Þ j2(s)þ j3(s)þ j4(s)ð Þ

�

j1(s)

1þ j1(s)ð Þj2(s)
1� 1þ j1(s)ð Þ j2(s)þ j4(s)ð Þ

1þ j1(s)ð Þj4(s)

0
BBB@

1
CCCA

The number infected in each category over the course of

the epidemic may be found by taking the limit of the equa-

tion as s ! 0: By definition R0 ¼ q K(0)
� 	

, hence the limit

exists for R0 < 1, and the total number infected in each

category is given by equation (2.6).

(b)The large epidemic solution

The linear approximation is also valid for the initial

stages of a large epidemic. At this time the growth of the

epidemic will be approximately exponential, with the

dominant exponent the solution of

1þ j1(r)ð Þ j2(r)þ j3(r)þ j4(r)ð Þ ¼ 1

and the proportions in each infection category equal to

h1, h2, h3, h4ð Þ ¼ j1(r)
1þ j1(r)

, j2(r), j3(r), j4(r)

� �
:

(c)The numerical solution

To obtain a numerical solution of equation (2.3) with

S(t) � S0, and hence the epidemic curve, it is easiest to

solve for successive infection generations. The incidence in

the zeroth generation is i03(t) ¼ d(t) and i0k(t) ¼ 0 for k 6¼ 3.

Substituting this in the integral in equation (2.3) we obtain

the incidence in the first infection generation

i1k(t) ¼ wkS0p(t)Ck3(t), and the incidence in subsequent

infection generations

i jþ1
k (t) ¼ wkS0

X4
l¼1

Z 1

0

p(s)Ckl(s)il
j(t � s) ds:

The epidemic curve is found by summing the result over all

infection generations. If the equation is to be solved over the

interval 0,T½ �, and p(s) ¼ 0 for s < sa, then the number of

infection generations calculated should be greater thanT=sa.

(d)The SARS example

Details of the functions and parameters for the example

presented in the text now follow.We set
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p(s) ¼

p0
s�sa
sb�sa

: s 2 sa, sbð Þ
p0 : s 2 sb, scð Þ
p0

s�sc
sd�sc

: s 2 sc, sdð Þ
0 : otherwise

8>>>><
>>>>:

with sa, sb, sc, sdð Þ ¼ 4, 7, 11, 14ð Þ days, and contact

rates c(s) constant. Defining the functions

/(sa, sb, s) ¼
Z sb

sa

e�ss ds ¼ e�ssa � e�ssb

s

and

w(sa,sb, s)¼
Z sb

sa

se�ssds¼ e�ssa �e�ssb

s2
þ sae

�ssa � sbe
�ssb

s

we have

jk(s)¼wkS0

Z 1

0

p(t)ck(t)e
�st dt

¼wkS0p0
w(sa,sb, s)� sa/(sa,sb, s)

sb� sa þ/(sb,sc, s)



þ sd/(sc,sd, s)�w(sc,sd ,s)
sd � sc

�
(3:2)

for k¼ 1, . . .4. Then using

/(sa,sb,0)¼ sb� sa;w(sa,sb,0)¼
s2b �s2a

2

we have

jk(0)¼wkS0p0
sd þ sc� sb� sa

2
:

For the initial part of the epidemic, it was assumed that

incidence would be distributed in the proportions

h1, h2, h3, h4ð Þ ¼ 0:65, 0:15, 0:05, 0:15ð Þ.
1Note added in proof. These figures were subsequently

revised downwards to 8096 cases and 774 deaths. See http://

www.who.int/csr/sars/country/table2004_04_21/en/en/.
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