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ABSTRACT

Many statistical methods and programs are available
to compute the significance of a given DNA pattern
in a genome sequence. In this paper, after outlining
the mathematical background of this problem, we
present SPA (Statistic for PAtterns), an expert
system with a simple web interface designed to be
applied to two of these methods (large deviation
approximations and exact computations using sim-
ple recurrences). A few results are presented,
leading to a comparison between the two methods
and to a simple decision rule in the choice of that to
be used. Finally, future developments of SPA are
discussed. This tool is available at the following
address: http://stat.genopole.cnrs.fr/SPA/.

INTRODUCTION

Since the appearance of large scale genome sequencing
projects, automatic extraction of biologically meaningful
information has become a key issue in genetic research. One
way to assess the functional role of an oligomer would be to
evaluate its degree of significance with respect to a random
sequence model. Markov chain models of order m, preserving
counts of m þ 1 letter words, and thus modelling neighbouring
letter interactions, have been extensively used in the study of
biological sequences (1,2). For example, under-represented
palindromic words in bacterial genomes have been shown to be
closely correlated to restriction enzyme recognition sites (3,4).
On the other hand, careful analysis of over-represented words
has been helpful in the detection of transcription factor binding
sites (5,6) and in the analysis of polyadenylation signals (7,8)
in yeast ORF flanking regions.

Efficient methods in estimating the statistic of a pattern in
random texts have been developed during the past years, from
Gaussian or Poisson approximations (9–11), generating func-
tions (12–14), to simple recurrence formulae (15). Recently
large deviation approaches (16) allowed good estimations
of extreme statistics. Today, except for a web site for the
analysis of ORF upstream regions (17), there is no general and
reliable tool to help a biologist in ranking oligonucleotides of

interest. Here we present a simple application which allows the
Markovian analysis of a set of words with a chosen fixed
length. Two methods are carried out to achieve this goal: exact
computation based on recurrence formulae and large deviation
approximations. To achieve a good trade-off between speed
and precision, we developed an expert system which selects
the best method for each word. After a brief mathematical
introduction and a presentation of the web interface, we
will detail the way the software chooses between the two
methods.

MATERIAL AND METHODS

Mathematical background

Markov models and probabilities of words. We consider a
sequence X over a finite size alphabet a (for example
a¼ {a,c,g,t} for DNA sequences) assumed to be gener-
ated from an order m Markov model.

For a given word Wof length h, we denote as N(W ) its number
of (possibly overlapping) occurrences in the sequence X. A
pattern w is defined as the finite family of words {W1, . . . ,Wr}.
Its number of occurrences is simply calculated as:

NW ¼ N ðW1Þ þ � � � þ N ðWrÞ

We now consider an observed sequence x (for example, a DNA
sequence) and we say that a pattern w is over- (respectively
under-) represented if:

nW � E½NW �ðresp. nW <E½NW �Þ

where nW is the number of occurrences of w in the observed
sequence and E[NW] is the mathematical expectation of NW.

z-score. For a pattern w, we define its z-score ZW accord-
ing to:

Pðnð0; 1Þ � ZW Þ ¼ PðNW � nW Þ

if w is over-represented (i.e. is observed more than expected).
Otherwise, according to:

Pðnð0; 1Þ � ZW Þ ¼ PðNW < nW Þ

if w is under-represented.
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In both cases, n(0, 1) denotes a Gaussian distribution, and P
is the probability symbol. Using this convention, ZW will be
positive (respectively negative) for over- (respectively under-)
represented patterns. The use of this statistic enables the repre-
sentation of the p-value in a Gaussian scale, albeit this choice
does not mean we use a Gaussian approximation for the com-
putation of that p-value. For example, we can say that a pattern
with ZW larger than 2.96 (the Gaussian quantile for a probability
of 0.05), is significantly over-represented at a 5% level.

Robin and Daudin (15) have proposed a method based on
generative series and simple recurrences to compute the exact
value of ZW. Nuel (16) also proposed the use of a large
deviation approach to get an asymptotic approximation of
the same z-score. In the following, we will denote by ZW

SR the
z-scores computed with the simple recurrence method and by
ZW

LD those obtained with the large deviation.

Web interface

We have developed a web interface called SPA (Statistics
for PAtterns) whose purpose is to provide a simple access to
the patterns z-score computed through these two methods
[simple recurrence (SR) and large deviation (LD)].

A SPA request consists of: (i) a set of sequences (in FASTA
format); (ii) a list of patterns or a fixed word length when all
words are selected; and (iii) the order of the Markov model.
The parameter of this model is estimated on the set of
sequences using the maximum likelihood. Pattern counts are
also obtained on this set of sequences. Explicit selection of
the method is possible, but nevertheless it is recommended to
leave this parameter on auto since it selects the most suitable
computation for each word.

The size n of the chosen sequence (or the size of the longest
sequence) is directly related to the efficiency of the different
methods. As the LD method proposes an asymptotic
approximation, its results will obviously be more reliable as
n grows. On the other side, time complexity of the SR
approach is in O(n2), so it is quite clear that high values for n
are not recommended here. In practice, SR method will be
limited to sequences smaller than 100 kb (n¼ 105).

Each pattern must be described with a braced string using the
following conventions: . means any letter and [ ] can be used to
describe several possible letters for a single position. Union of
patterns can be done by concatenation of their string
definitions. Table 1 illustrates some examples of syntax and
the resulting patterns. The length h of a pattern will be defined
as the length of the longest word in it. The size r of a pattern
will be the number of words it contains. For the LD method, h
will be a critical parameter as memory and time complexity are
in O(kh) where k is the size of the alphabet (usually four for
DNA sequences). In practice, LD will be limited to patterns of
size smaller than 10. For the SR method, there is no such
limitations concerning h, but as time complexity grows with r2,
very large patterns are generally to be avoided.

As said in the introduction, a Markov model of order m
preserves the counts of length m þ 1 words. Therefore, m will
be limited to h7 2, due to the fact that the estimation is done
on sequences. Obviously, the quality of the estimation depends
on the total length l of the provided sequences. Practically, l
should be a O(4m) kb to give the user a satisfying estimate.
Furthermore, memory and computational complexity inherent
to Markov models limit the maximal order to four with SR, and
six and LD.

RESULTS AND DISCUSSION

Interpreting results

Here, we will present two short examples, the first one showing
an academic test on biologically known patterns and the
second one detailing a sample output.

Table 2 shows ZW
LD statistics for patterns known to be

restriction enzyme recognition sites and chi patterns in three
bacterial genomes. The statistic is given for orders from 0 to 3.
As expected, all of these patterns have very high significance;
restriction sites are largely under-represented ( p-value close
to 10	341 for example with a z-score of 	39.5) and chi
patterns are largely over-represented ( p-value around 10	1134

with a z-score of þ72.2). We can also see that this z-score has
a great dependence with the order of the chosen model (which
is not a surprise). Therefore, it is quite clear that a user who
wants to rank a set of patterns should be aware of this and
perform at least two different computations for two different
orders.

In Figure 1, we can see a sample of ranked output. For more
convenience, two tables, listing respectively the most over- and
under-represented words are joined in the output. For each
pattern is indicated its number of occurrences, the method used
(LD or SR), the computed z-score and the rank. As we observe
here highly significant patterns, the large deviation provide the
best results and that is why there is no use of SR methods in
that output. Many patterns among the over-represented ones
are closely related to gctggtgg the chi of Escherichia coli
(gctggt, ctggtg, ggtggt) or to its inverse ccaccagc

(ccagca, ccagcg). For under-represented patterns, we can
see the restriction site ccgccg well ranked (rank 15) as well
as many palindromes (ggcgcc, gcatgc, . . . ). Finally, we
can observe that there is a great difference between that
statistical ranking and the frequencies ranking. This can show
the value of performing this kind of statistical analysis rather
than simple frequency comparison.

Table 1. Complete description of patterns for different string definitions Table 2. z-scores computed through the large deviation for restriction sites and
chi patterns with various Markov model orders
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Methods comparison

Here we want to take into account the limitations highlighted
in the section on web interface, as well as the accuracy of the
different approaches, in order to help the users to make a
choice between the two methods.

As we need to compute our results with both the methods,
we have chosen to work with a not too long sequence
consisting of the first 100 kb of E.coli. All the 4096 words of
length six are studied and the results are plotted in Figure 2.

Overall, the two methods appear to give similar results.
As expected, the large deviation fail to give correct answers
for words with a high p-value (above 1% which means
jz-scorej � 2.3). We also know that the LD z-score gets more
accurate as the jz-scorej grows and that is exactly what we
observe. When the z-score >5, SR and LD do equally well,
and the ranking is preserved; it is a reliable region for LD. For
negative z-scores, very small probability sums induce compu-
tational errors with the SR method; this explains the four
words present on the extreme left of Figure 2. As we prefer
ranking preservation rather than exact results, we decided to
cut the reliable region for SR at 	2.5.

For a given pattern on a sequence whose length n is in SR
requirement (n� 100 kb, we propose to do the following: first
we perform an evaluation using LD and if the z-score is in the

range [	2.5; þ5] another computation using SR is then
performed.

CONCLUSION

The value of using statistical significance rather than
frequencies to rank patterns has been shown many times.
The usual problem is that there are many different methods and
programs to compute those statistics. With our user friendly
web interface, we provide a simple way to access two of these
methods (large deviation approximations and exact computa-
tions using simple recurrence) and we also facilitate the choice
with an empirical decision rule.

In the near future, we plan to integrate more methods in SPA
(Gaussian and compound Poisson approximations, generative
series) to improve both speed and accuracy of the tool. We also
plan to use exact computation of the expectation value and the
variance of NW provided by RMES (10) to make an easier
choice between the different methods.
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Figure 1. Sample output from SPA for the following request: all words of
length h¼ 6 in the first 100 kb of the complete genome of E.coli with a
Markov model of order 1.

Figure 2. Comparison of the z-scores obtained through large deviation (LD)
and simple recurrence (SR) methods for all words of length h¼ 6 on the first
100 kb of E.coli genome for Markov model of order m¼ 1.
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