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ABSTRACT

GenePublisher, a system for automatic analysis of
data from DNA microarray experiments, has been
implemented with a web interface at http://www.
cbs.dtu.dk/services/GenePublisher. Raw data are
uploaded to the server together with a specification
of the data. The server performs normalization,
statistical analysis and visualization of the data.
The results are run against databases of signal
transduction pathways, metabolic pathways and
promoter sequences in order to extract more infor-
mation. The results of the entire analysis are
summarized in report form and returned to the user.

INTRODUCTION

Recent years have seen an explosion in the number of
published methods for microarray data analysis (reviewed in
1). While many of these methods compete for the best way to
analyse the same data, a general consensus can be extracted: (i)
normalization should use signal-dependent transformation of
data; (ii) expression should be estimated using a global
background and not using a locally estimated background; (iii)
a statistical analysis that takes into account replicate variation
and multiple testing must be performed.

Thus, it is possible to devise a general analysis strategy,
using proven peer-reviewed methods, that will be appropriate
for many, if not most, microarray data. Such a general analysis
strategy can be automated, saving the user time. In addition,
the analysis can be followed up with further bioinformatic
analysis of the resulting genes found to be differentially
expressed with statistical significance. Standard chips, such as
those offered by Affymetrix, can be pre-annotated with
various databases to help the biological interpretation of the
results.

Other efforts at automating analysis and pre-annotating chips
like NetAffx (2) and ExpressionProfiler (3) are available on the
web. What is novel about our approach is that the entire
analysis from submission of raw data to generation of a

formatted report is performed automatically without user
intervention. This report can then be a starting point for
further analysis tailored to the problem at hand or it can be
used to suggest experiments for verification of the results.
GenePublisher does not check for spatial bias on the array
surface. That should be checked during image analysis and
processing.

The purpose of GenePublisher is not to replace thorough
explorative analysis that has been tailored to the biological
problem and the organism used. Automatic analysis cannot
compete against this. Rather, it is to offer a rapid first analysis
that will help both the novice and experienced user in the
interpretation and planning of further experiments.

MATERIALS AND METHODS

Initial processing

The web server takes as input gzip (www.gzip.org) compressed
CEL files from an Affymetrix experiment or a ‘genetable’ of
raw image analysis intensities from a number of experiments
performed with other array equipment [referred to as spot
quantitation matrix in the MIAME standard (4) and defined
there as a tab-delimited ascii file].

The initial data analysis including normalization, back-
ground correction, expression index calculation and visualiza-
tion of chip-to-chip variation is performed using the affy
package of Bioconductor (www.bioconductor.org, manuscript
in preparation). By default, qspline (5) is used for normal-
ization, Li-Wong (6) used for expression index calculation, and
a global background is calculated using bg.adjust in the affy
package. For genetables, only qspline normalization is
performed. M versus A plots are used to visualize chip-to-
chip variation before and after normalization:

M ¼ log
chip1

chip2

� �

A ¼
logðchip1 � chip2Þ

2

where log is the logarithm base 2.
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Statistical analysis

After initial processing, the R statistical programming
environment is used to perform a statistical analysis.
Principal component analysis and hierarchical clustering is
performed on the chips to visualize any obvious structure in the
data. A t-test is performed on each gene if the user has
specified only two categories whereas an analysis of variance is
performed if the user has specified more than two categories.
After a Bonferroni correction for multiple testing with a user-
specified cutoff, the list of genes with significant differential
expression is output, and log fold changes calculated. A
correspondence analysis (7) is performed between significant
genes and experiments, attempting to capture associations
between particular genes and experiments.

Classifier

A general classifier is built from the data and the categorization
of the data given by the user in the input. A K nearest neighbor
classifier, available as knn.cv as part of the R project, is run
with a leave-one-out cross-validation in order to estimate its
performance. Distance between neighbors is calculated as
Euclidian distance between chips, each consisting of as many
measurements as there are probe sets on the chip. So the
Euclidian distance is calculated in multidimensional space
where the number of dimensions equals the number of genes
on the chip. To avoid overfitting of the classifier, no selection
of genes is performed. No training or selection of parameters is
performed with this method, except for the choice of K
neighbors. GenePublisher by default runs one classifier for
K¼ 1 and one classifier for K¼ 3. The numbers of K¼ 1 and
K¼ 3 are chosen to accommodate small datasets with few
replicates among each category and to avoid vote ties which
could result from an even number of K.

Annotation

If the chip specified is an Affymetrix chip already implemented
in GenePublisher, the list of differentially expressed genes
is annotated with description of the genes and links to
the LocusLink database, as well as Gene Ontology (www.
geneontology.org) annotation (8). If the chip used is not
standard, any annotation included in column 2 of the genetable
will be used instead.

Linking to other databases

The genes found significant in the statistical analysis are linked
to a number of databases in order to aid the biological
interpretation of the results. Any genes matching the KEGG
database of metabolic pathways (9) are shown as well as genes
matching the TRANSPATH database of signal transduction
pathways (10). For genes participating in more than one
pathway, only one pathway is shown.

For those genes where a gene ontology number has not been
assigned and the function has not been inferred by homology
to another protein, an attempt is made at predicting the
function using the ProtFun (11) method. ProtFun predicts the
function, not based on homology, but based on properties
of the protein sequence as well as predicted features such as

post-translational modification. This analysis requires that the
full amino acid sequence is available. For all genes on a chip,
those labeled ‘unknown’ or labeled as originating from a
cDNA sequencing project are extracted from GenBank, and
the amino acid sequence parsed from the GenBank entry.
ProtFun is then used to predict the function based on the
parsed amino acid sequence.

Clustering

ClustArray, a Unix command-line tool for clustering of array
data was implemented in Cþþ. It allows different choices of
clustering algorithm and distance metric. GenePublisher by
default runs a hierarchical clustering based on the WPGMA
method (12) on the top ranking genes. A K-means clustering is
also run on the top ranking genes. The optimal number of
clusters K is chosen as the one which results in the smallest
ratio of within-cluster to between-cluster variance. Previously,
figure of merit has been used to select K (13). The distance
between genes is calculated as vector angle distances [non-
centric correlation coefficient (14)] of log fold changes:

1 �

PN
i¼1 aibiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1 a2
i

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 b2

i

q

where ai is the log fold change of gene a in experiment i
relative to the average of its expression in the control
experiments. ClustArray automatically chooses a color scale
to capture the spectrum of variation in the data.

Promoter databases

A database of human upstream regions (5000 bp) was created
using the annotated genes in ENSEMBL [version 9.30 (15)]
using the BioPython package (www.biopython.org) where each
sequence was screened and masked for interspersed repeats
with RepeatMasker (Smit,A.F.A. and Green,P., http://ftp.
genome.washington.edu/RM/RepeatMasker.html). The upstream
regions were matched to Affymetrix human chips (HU6800,
HG_U95Av2 and HG-U133A) via the accession numbers
listed for each probeset.

A promoter database for Saccharomyces cerevisiae was
constructed for the Affymetrix expression chip YG_S98 which
contains probe spots for �9000 different sequences. From the
Affymetrix documentation, which includes references on each
of the 9336 probe sets on the chip, a total of 8475 sequences
were identified as belonging to S.cerevisiae choromosomes I to
XVI. Of the remaining 861 sequences most are either
mitochondrial sequences or sequences from other organisms,
included on the chip for reference purposes. The 500 bp region
located directly upstream from each of the 8475 sequences
(most often the open reading frame), was extracted from
GenBank entries NC_001133 through NC_001148. This
resulted in a database containing 8475 upstream regions, of
which 8190 were unique. The redundancy was primarily
caused by those few instances in which several probesets exist
for the same sequence.
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Promoter analysis

Promoters are scanned for known and unknown regulatory
elements using three different methods that use different
strategies:

1. The software program saco_ patterns (16) identifies patterns
significantly overrepresented in the upstream regions
relative to a background set of upstream regions from the
same organism. saco_ patterns looks for conserved (iden-
tical) patterns in sequences, it does not allow for
degeneration of the pattern.

2. The Gibbs sampler (17) looks for overrepresentation of
degenerate patterns which it tries to capture with a weight
matrix description. The Gibbs sampler starts with a new
random matrix every time and is non-deterministic, mean-
ing that it may give different results every time it is run. A
Python script is used to compare the frequency of
occurrence of the resulting matrices in the positive set
compared to a negative background set which consists of all

other upstream regions for the organism. The P-value of
overrepresentation in one set against the other is calculated
using the hypergeometric distribution.

3. The known transcription factor binding sites in the public
version of the TRANSFAC database (18) are matched
against the same upstream regions. Factor matrices with hits
more than 95% of the maximal score of the matrix are
recorded.

All of the above algorithms were embedded in Python, gawk
and shell scripts that perform the necessary database handling,
statistical analysis and result table generation.

LaTeX report generation

The results of all the analysis methods are summarized in a
LaTeX report automatically formatted based on the analysis
performed and parameters chosen. The report is converted to

Figure 1. Overview of the GenePublisher system. The shell script calls all
other programs and databases and coordinates their execution. The script reads
a parameter file with user adjustable parameters and reads the data input. The
script, in turn, can be called via a Makefile or via a web interface.

Figure 2. A list of all signal transduction pathways in which genes were found
on the chip. The x-axis shows the unadjusted P-value of each gene assigned to
each pathway. Low P-values indicate differential expression. Pathways with
differential expression should stand out from the background level.

Table 1. Predictions of the K nearest neighbor classifier

Chip
(K¼ 3)

Assigned
category

Predicted category
(K¼ 1)

Predicted
category

Ctrl1 A A A
Ctrl2 A A A
Ctrl3 A A A

HIV1 B B B
HIV1 B B B
HIV1 B B B
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Portable Document Format (PDF) and returned to the user via
the web interface. Also returned to the user is a table of nor-
malized intensities and P-values of all genes in all experiments.

Implementation

GenePublisher version 1.0 was implementated under SGI Irix
in a Unix Bourne shell script that integrates individual modules
implemented in R, C, Cþþ, gawk, Perl and Python. The

GenePublisher script reads a parameter file (Fig. 1) and can be
run directly from the command line, from a Unix Makefile that
allows partial execution or from a web server. The Makefile
command ‘make report’ performs a complete analysis, but
the analysis can also be broken down into smaller targets:
‘make checkfiles normalization bonferroni cluster annotation
protfun KEGG transpath promoter latex’. Makefile, script,
parameter, ClustArray and saco_patterns are available from the
author upon request. They require installation and customiza-

Figure 3. The cancernet pathway from TRANSPATH. The significantly regulated Fas receptor is found in the lower right corner of the cell.

Table 2. Weight matrices describing Gibbs patterns in upstream regions of K-means clusters

Base 1 2 3 4 5 6 7 8 9 10 11

Cluster number 1
HYP -2.869441 i¼ 6, m¼ 748, N¼ 4428, n¼ 19
Consensus: GAGGCTGAGGC
Found in genes 56 49 49 22 89 27 27 44 44 44 44
A 0 94 0 0 0 13 0 88 0 0 0
C 0 0 0 6 94 0 0 0 0 0 69
G 100 6 100 94 0 19 100 13 100 100 0
T 0 0 0 0 6 69 0 0 0 0 31

Cluster number 2
HYP -2.594074 i¼ 11, m¼ 941, N¼ 4447, n¼ 38
Consensus: GAGGCTGAGGC
Found in genes 46 46 5 5 5 68 9 9 9 90 90 84 84 51 51 14 14 29 54 54 80
A 0 83 13 0 0 3 10 100 0 0 0
C 3 0 0 0 93 20 3 0 0 7 67
G 97 17 87 100 0 37 87 0 100 90 0
T 0 0 0 0 7 40 0 0 0 3 33

The hypergeometric sample statistics is given as the logarithm of the P-value, where i is the number of times the matrix matches the positive set
above threshold, m is the number of times the matrix matches the negative set above threshold, and N and n are the sizes of the negative and positive sets,
respectively. For each pattern, the genes in which it was found are listed.
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Figure 4. A list of all KEGG pathways in which genes were found on the chip. The x-axis shows the unadjusted P-value of each gene assigned to each pathway.
Low P-values indicate differential expression. Pathways with differential expression should stand out from the background level.
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tion of all third party packages and databases by an
experienced Unix system administrator.

RESULTS

An example of a report generated from a set of chips from
an HIV infection experiment [three replicate HIV-infected
cultures of T cells versus three replicate control cultures
without HIV (3)] is available for download from the server
web site. Selected output is shown here as well.

Classifier

The results of leave-one-out cross-validation of two K nearest
neighbor classifiers are shown in Table 1. The first classifier
uses K¼ 1, the second uses K¼ 3. Classifier performance is,
in both cases, 100%. The ability to classify a sample from
an in vitro cell culture as being infected with HIV or not is
of no practical interest, but if the samples had been taken
from cancer patients versus normal patients, or from different
stages of a cancer, the automatically built classifier would
have given an interesting indication of the potential for
classifying such samples using the simplest classifier possible.
Because no adjustment of parameters takes place in this
classifier, it is not unreasonable to use leave-one-out
cross-validation, which otherwise can be a deceptive test of
an overfitted model.

KEGG and TRANSPATH

The top ranking genes above the significance cutoff are
searched against local installations of the public KEGG and
TRANSPATH databases of metabolic pathways and signal
tranduction pathways. The purpose of this search is to report if
one or more components of a pathway are significantly up- or
downregulated. The results of this analysis is shown in table
format (see report on server web site). In addition, all genes on
the chip are searched against the same pathways and plotted
according to their P-value and the pathway in which they
occur. The purpose of this is to reveal whether more than one
gene in a pathway is significantly affected in the experiment.
Some of the affected genes may have a P-value just below the
cutoff. Especially for metabolic pathways in bacteria, where
several genes may be regulated in coordination, this can be a
very useful tool. For the experiment used in this report, HIV
infected T cells, the most significantly affected signal
transduction gene is the downregulation of Fas receptor
involved in apoptosis (cancer pathway, Figs 2 and 3). The
most significantly affected metabolic pathway (Fig. 4) is
sphingoglycolipid metabolism, where the gene encoding
arylsulfatase is upregulated.

Promoter analysis

A K-means clustering of the top ranking significant genes is
performed for different values of K, in order to identify the
clustering that optimizes the ratio of between-cluster variance
to within-cluster variance. For the number of clusters, K, with
the highest ratio, all genes in each cluster are analysed in their
upstream regions in order to identify conserved elements.

Three tables are generated, one consisting of the output of
saco_patterns, if any, one consisting of the output from the
Gibbs sampler (Table 2) and one showing matches to the
TRANSFAC database.
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