Abstract
A single molecule of F1-ATPase is by itself a rotary motor in which a central gamma-subunit rotates against a surrounding cylinder made of alpha3beta3-subunits. Driven by the three betas that sequentially hydrolyse ATP, the motor rotates in discrete 120 degree steps, as demonstrated in video images of the movement of an actin filament bound, as a marker, to the central gamma-subunit. Over a broad range of load (hydrodynamic friction against the rotating actin filament) and speed, the F1 motor produces a constant torque of ca. 40 pN nm. The work done in a 120 degree step, or the work per ATP molecule, is thus ca. 80 pN nm. In cells, the free energy of ATP hydrolysis is ca. 90 pN nm per ATP molecule, suggesting that the F1 motor can work at near 100% efficiency. We confirmed in vitro that F1 indeed does ca. 80 pN nm of work under the condition where the free energy per ATP is 90 pN nm. The high efficiency may be related to the fully reversible nature of the F1 motor: the ATP synthase, of which F1 is a part, is considered to synthesize ATP from ADP and phosphate by reverse rotation of the F1 motor. Possible mechanisms of F1 rotation are discussed.
Full Text
The Full Text of this article is available as a PDF (789.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abrahams J. P., Leslie A. G., Lutter R., Walker J. E. Structure at 2.8 A resolution of F1-ATPase from bovine heart mitochondria. Nature. 1994 Aug 25;370(6491):621–628. doi: 10.1038/370621a0. [DOI] [PubMed] [Google Scholar]
- Berg H. C., Turner L. Torque generated by the flagellar motor of Escherichia coli. Biophys J. 1993 Nov;65(5):2201–2216. doi: 10.1016/S0006-3495(93)81278-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Block S. M. Kinesin: what gives? Cell. 1998 Apr 3;93(1):5–8. doi: 10.1016/s0092-8674(00)81138-1. [DOI] [PubMed] [Google Scholar]
- Boekema E. J., van Breemen J. F., Brisson A., Ubbink-Kok T., Konings W. N., Lolkema J. S. Connecting stalks in V-type ATPase. Nature. 1999 Sep 2;401(6748):37–38. doi: 10.1038/43369. [DOI] [PubMed] [Google Scholar]
- Boyer P. D. The ATP synthase--a splendid molecular machine. Annu Rev Biochem. 1997;66:717–749. doi: 10.1146/annurev.biochem.66.1.717. [DOI] [PubMed] [Google Scholar]
- Boyer P. D. The binding change mechanism for ATP synthase--some probabilities and possibilities. Biochim Biophys Acta. 1993 Jan 8;1140(3):215–250. doi: 10.1016/0005-2728(93)90063-l. [DOI] [PubMed] [Google Scholar]
- Cross R. L., Grubmeyer C., Penefsky H. S. Mechanism of ATP hydrolysis by beef heart mitochondrial ATPase. Rate enhancements resulting from cooperative interactions between multiple catalytic sites. J Biol Chem. 1982 Oct 25;257(20):12101–12105. [PubMed] [Google Scholar]
- DeRosier D. J. The turn of the screw: the bacterial flagellar motor. Cell. 1998 Apr 3;93(1):17–20. doi: 10.1016/s0092-8674(00)81141-1. [DOI] [PubMed] [Google Scholar]
- Dominguez R., Freyzon Y., Trybus K. M., Cohen C. Crystal structure of a vertebrate smooth muscle myosin motor domain and its complex with the essential light chain: visualization of the pre-power stroke state. Cell. 1998 Sep 4;94(5):559–571. doi: 10.1016/s0092-8674(00)81598-6. [DOI] [PubMed] [Google Scholar]
- Fillingame R. H., Jones P. C., Jiang W., Valiyaveetil F. I., Dmitriev O. Y. Subunit organization and structure in the F0 sector of Escherichia coli F1F0 ATP synthase. Biochim Biophys Acta. 1998 Jun 10;1365(1-2):135–142. doi: 10.1016/s0005-2728(98)00053-x. [DOI] [PubMed] [Google Scholar]
- Funatsu T., Harada Y., Tokunaga M., Saito K., Yanagida T. Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution. Nature. 1995 Apr 6;374(6522):555–559. doi: 10.1038/374555a0. [DOI] [PubMed] [Google Scholar]
- Galkin M. A., Vinogradov A. D. Energy-dependent transformation of the catalytic activities of the mitochondrial F0 x F1-ATP synthase. FEBS Lett. 1999 Apr 1;448(1):123–126. doi: 10.1016/s0014-5793(99)00347-6. [DOI] [PubMed] [Google Scholar]
- Gelles J., Landick R. RNA polymerase as a molecular motor. Cell. 1998 Apr 3;93(1):13–16. doi: 10.1016/s0092-8674(00)81140-x. [DOI] [PubMed] [Google Scholar]
- Goldman Y. E. Wag the tail: structural dynamics of actomyosin. Cell. 1998 Apr 3;93(1):1–4. doi: 10.1016/s0092-8674(00)81137-x. [DOI] [PubMed] [Google Scholar]
- HUXLEY A. F. Muscle structure and theories of contraction. Prog Biophys Biophys Chem. 1957;7:255–318. [PubMed] [Google Scholar]
- Hausrath A. C., Grüber G., Matthews B. W., Capaldi R. A. Structural features of the gamma subunit of the Escherichia coli F(1) ATPase revealed by a 4.4-A resolution map obtained by x-ray crystallography. Proc Natl Acad Sci U S A. 1999 Nov 23;96(24):13697–13702. doi: 10.1073/pnas.96.24.13697. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hisabori T., Kondoh A., Yoshida M. The gamma subunit in chloroplast F(1)-ATPase can rotate in a unidirectional and counter-clockwise manner. FEBS Lett. 1999 Dec 10;463(1-2):35–38. doi: 10.1016/s0014-5793(99)01602-6. [DOI] [PubMed] [Google Scholar]
- Holmes K. C., Popp D., Gebhard W., Kabsch W. Atomic model of the actin filament. Nature. 1990 Sep 6;347(6288):44–49. doi: 10.1038/347044a0. [DOI] [PubMed] [Google Scholar]
- Hunt A. J., Gittes F., Howard J. The force exerted by a single kinesin molecule against a viscous load. Biophys J. 1994 Aug;67(2):766–781. doi: 10.1016/S0006-3495(94)80537-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Häsler K., Engelbrecht S., Junge W. Three-stepped rotation of subunits gamma and epsilon in single molecules of F-ATPase as revealed by polarized, confocal fluorometry. FEBS Lett. 1998 Apr 24;426(3):301–304. doi: 10.1016/s0014-5793(98)00358-5. [DOI] [PubMed] [Google Scholar]
- Junge W., Lill H., Engelbrecht S. ATP synthase: an electrochemical transducer with rotatory mechanics. Trends Biochem Sci. 1997 Nov;22(11):420–423. doi: 10.1016/s0968-0004(97)01129-8. [DOI] [PubMed] [Google Scholar]
- Kagawa Y. Biophysical studies on ATP synthase. Adv Biophys. 1999;36:1–25. doi: 10.1016/s0065-227x(99)80003-3. [DOI] [PubMed] [Google Scholar]
- Kaim G., Dimroth P. ATP synthesis by F-type ATP synthase is obligatorily dependent on the transmembrane voltage. EMBO J. 1999 Aug 2;18(15):4118–4127. doi: 10.1093/emboj/18.15.4118. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kato Y., Sasayama T., Muneyuki E., Yoshida M. Analysis of time-dependent change of Escherichia coli F1-ATPase activity and its relationship with apparent negative cooperativity. Biochim Biophys Acta. 1995 Oct 10;1231(3):275–281. doi: 10.1016/0005-2728(95)00087-y. [DOI] [PubMed] [Google Scholar]
- Kinosita K., Jr Linear and rotary molecular motors. Adv Exp Med Biol. 1998;453:5–14. doi: 10.1007/978-1-4684-6039-1_2. [DOI] [PubMed] [Google Scholar]
- Kinosita K., Jr Real time imaging of rotating molecular machines. FASEB J. 1999 Dec;13 (Suppl 2):S201–S208. doi: 10.1096/fasebj.13.9002.s201. [DOI] [PubMed] [Google Scholar]
- Kinosita K., Jr, Yasuda R., Noji H., Ishiwata S., Yoshida M. F1-ATPase: a rotary motor made of a single molecule. Cell. 1998 Apr 3;93(1):21–24. doi: 10.1016/s0092-8674(00)81142-3. [DOI] [PubMed] [Google Scholar]
- Kitamura K., Tokunaga M., Iwane A. H., Yanagida T. A single myosin head moves along an actin filament with regular steps of 5.3 nanometres. Nature. 1999 Jan 14;397(6715):129–134. doi: 10.1038/16403. [DOI] [PubMed] [Google Scholar]
- Livnah O., Bayer E. A., Wilchek M., Sussman J. L. Three-dimensional structures of avidin and the avidin-biotin complex. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):5076–5080. doi: 10.1073/pnas.90.11.5076. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lohman T. M., Thorn K., Vale R. D. Staying on track: common features of DNA helicases and microtubule motors. Cell. 1998 Apr 3;93(1):9–12. doi: 10.1016/s0092-8674(00)81139-3. [DOI] [PubMed] [Google Scholar]
- Läuger P. Ion transport and rotation of bacterial flagella. Nature. 1977 Jul 28;268(5618):360–362. doi: 10.1038/268360a0. [DOI] [PubMed] [Google Scholar]
- Mandelkow E., Johnson K. A. The structural and mechanochemical cycle of kinesin. Trends Biochem Sci. 1998 Nov;23(11):429–433. doi: 10.1016/s0968-0004(98)01278-x. [DOI] [PubMed] [Google Scholar]
- Matsui T., Muneyuki E., Honda M., Allison W. S., Dou C., Yoshida M. Catalytic activity of the alpha3beta3gamma complex of F1-ATPase without noncatalytic nucleotide binding site. J Biol Chem. 1997 Mar 28;272(13):8215–8221. doi: 10.1074/jbc.272.13.8215. [DOI] [PubMed] [Google Scholar]
- Milgrom Y. M., Murataliev M. B., Boyer P. D. Bi-site activation occurs with the native and nucleotide-depleted mitochondrial F1-ATPase. Biochem J. 1998 Mar 1;330(Pt 2):1037–1043. doi: 10.1042/bj3301037. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Muneyuki E., Hirata H. Kinetic analysis of proton translocation catalyzed by F0F1 ATPase. FEBS Lett. 1988 Jul 18;234(2):455–458. doi: 10.1016/0014-5793(88)80137-6. [DOI] [PubMed] [Google Scholar]
- Noji H., Häsler K., Junge W., Kinosita K., Jr, Yoshida M., Engelbrecht S. Rotation of Escherichia coli F(1)-ATPase. Biochem Biophys Res Commun. 1999 Jul 14;260(3):597–599. doi: 10.1006/bbrc.1999.0885. [DOI] [PubMed] [Google Scholar]
- Noji H., Yasuda R., Yoshida M., Kinosita K., Jr Direct observation of the rotation of F1-ATPase. Nature. 1997 Mar 20;386(6622):299–302. doi: 10.1038/386299a0. [DOI] [PubMed] [Google Scholar]
- Omote H., Sambonmatsu N., Saito K., Sambongi Y., Iwamoto-Kihara A., Yanagida T., Wada Y., Futai M. The gamma-subunit rotation and torque generation in F1-ATPase from wild-type or uncoupled mutant Escherichia coli. Proc Natl Acad Sci U S A. 1999 Jul 6;96(14):7780–7784. doi: 10.1073/pnas.96.14.7780. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oosawa F., Hayashi S. The loose coupling mechanism in molecular machines of living cells. Adv Biophys. 1986;22:151–183. doi: 10.1016/0065-227x(86)90005-5. [DOI] [PubMed] [Google Scholar]
- Rastogi V. K., Girvin M. E. Structural changes linked to proton translocation by subunit c of the ATP synthase. Nature. 1999 Nov 18;402(6759):263–268. doi: 10.1038/46224. [DOI] [PubMed] [Google Scholar]
- Sabbert D., Engelbrecht S., Junge W. Intersubunit rotation in active F-ATPase. Nature. 1996 Jun 13;381(6583):623–625. doi: 10.1038/381623a0. [DOI] [PubMed] [Google Scholar]
- Sambongi Y., Iko Y., Tanabe M., Omote H., Iwamoto-Kihara A., Ueda I., Yanagida T., Wada Y., Futai M. Mechanical rotation of the c subunit oligomer in ATP synthase (F0F1): direct observation. Science. 1999 Nov 26;286(5445):1722–1724. doi: 10.1126/science.286.5445.1722. [DOI] [PubMed] [Google Scholar]
- Sase I., Miyata H., Ishiwata S., Kinosita K., Jr Axial rotation of sliding actin filaments revealed by single-fluorophore imaging. Proc Natl Acad Sci U S A. 1997 May 27;94(11):5646–5650. doi: 10.1073/pnas.94.11.5646. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shingyoji C., Higuchi H., Yoshimura M., Katayama E., Yanagida T. Dynein arms are oscillating force generators. Nature. 1998 Jun 18;393(6686):711–714. doi: 10.1038/31520. [DOI] [PubMed] [Google Scholar]
- Shirakihara Y., Leslie A. G., Abrahams J. P., Walker J. E., Ueda T., Sekimoto Y., Kambara M., Saika K., Kagawa Y., Yoshida M. The crystal structure of the nucleotide-free alpha 3 beta 3 subcomplex of F1-ATPase from the thermophilic Bacillus PS3 is a symmetric trimer. Structure. 1997 Jun 15;5(6):825–836. doi: 10.1016/s0969-2126(97)00236-0. [DOI] [PubMed] [Google Scholar]
- Stock D., Leslie A. G., Walker J. E. Molecular architecture of the rotary motor in ATP synthase. Science. 1999 Nov 26;286(5445):1700–1705. doi: 10.1126/science.286.5445.1700. [DOI] [PubMed] [Google Scholar]
- Suzuki Y., Yasunaga T., Ohkura R., Wakabayashi T., Sutoh K. Swing of the lever arm of a myosin motor at the isomerization and phosphate-release steps. Nature. 1998 Nov 26;396(6709):380–383. doi: 10.1038/24640. [DOI] [PubMed] [Google Scholar]
- Taylor E. W. Mechanism of actomyosin ATPase and the problem of muscle contraction. CRC Crit Rev Biochem. 1979;6(2):103–164. doi: 10.3109/10409237909102562. [DOI] [PubMed] [Google Scholar]
- Tsunoda S. P., Muneyuki E., Amano T., Yoshida M., Noji H. Cross-linking of two beta subunits in the closed conformation in F1-ATPase. J Biol Chem. 1999 Feb 26;274(9):5701–5706. doi: 10.1074/jbc.274.9.5701. [DOI] [PubMed] [Google Scholar]
- Wang H., Oster G. Energy transduction in the F1 motor of ATP synthase. Nature. 1998 Nov 19;396(6708):279–282. doi: 10.1038/24409. [DOI] [PubMed] [Google Scholar]
- Wang M. D., Schnitzer M. J., Yin H., Landick R., Gelles J., Block S. M. Force and velocity measured for single molecules of RNA polymerase. Science. 1998 Oct 30;282(5390):902–907. doi: 10.1126/science.282.5390.902. [DOI] [PubMed] [Google Scholar]
- Weber J., Wilke-Mounts S., Lee R. S., Grell E., Senior A. E. Specific placement of tryptophan in the catalytic sites of Escherichia coli F1-ATPase provides a direct probe of nucleotide binding: maximal ATP hydrolysis occurs with three sites occupied. J Biol Chem. 1993 Sep 25;268(27):20126–20133. [PubMed] [Google Scholar]
- Wilkens S., Capaldi R. A. ATP synthase's second stalk comes into focus. Nature. 1998 May 7;393(6680):29–29. doi: 10.1038/29908. [DOI] [PubMed] [Google Scholar]
- Yasuda R., Noji H., Kinosita K., Jr, Yoshida M. F1-ATPase is a highly efficient molecular motor that rotates with discrete 120 degree steps. Cell. 1998 Jun 26;93(7):1117–1124. doi: 10.1016/s0092-8674(00)81456-7. [DOI] [PubMed] [Google Scholar]