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Language is the most important evolutionary invention of the last few million years. It was an adaptation
that helped our species to exchange information, make plans, express new ideas and totally change the
appearance of the planet. How human language evolved from animal communication is one of the most
challenging questions for evolutionary biology. The aim of this paper is to outline the major principles
that guided language evolution in terms of mathematical models of evolutionary dynamics and game
theory. I will discuss how natural selection can lead to the emergence of arbitrary signs, the formation of
words and syntactic communication.
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1. INTRODUCTION

Everyone who reads this paper knows of the order of
50 000 words of his primary language. These words are
stored in the `mental lexicon’ together with one or several
meanings, and some information about how they relate to
other words and how they ¢t into sentences. During the
¢rst 16 years of life we learn about one new word every
90 min of waking time: a six year old knows about 13 000
words (Nagy & Anderson 1984; Miller 1991; Pinker 1994,
1999; Nagy et al. 1993).

Words are strings of phonemes. Sentences are strings of
words. Language makes use of combinatorics on two
levels. This is what linguists call `duality of patterning’.
While words have to be learned, virtually every sentence
that a person utters is a brand-new combination. The
brain contains a programme that can build an unlimited
number of sentences out of a ¢nite list of words. This
programme is called `mental grammar’ ( Jackendo¡
1997). Children develop this grammar rapidly and
without formal instruction. Experimental observations
show that three-year-old children are already on target
90% of times when applying grammatical rules.

The most complicated mechanical motion that the
human body can perform is the activity of speaking.
While generating the sounds of spoken language, the
various parts of the vocal tract perform movements that
have to be accurate within millimetres and synchro-
nized to within a few hundredths of a second (Miller
1981).

Speech perception is another biological miracle of our
language faculty. The auditory system is so well adapted
to speech that we can understand 10^15 phonemes per
second during casual speech and up to 50 phonemes per
second in arti¢cially speeded-up speech. These numbers
are surprising given the physical limitations of our audi-
tory system: if a sound like a click is repeated at a rate of
about 20 s71, we no longer hear it as a sequence of sepa-
rate sounds, but as a continuous buzz. Hence we appar-
ently do not perceive phonemes as consecutive bits of
sound, but each moment of spoken sound must have

several phonemes packed into it, and our brain knows
how to unzip them (Miller 1967; Liberman et al. 1967;
Cole & Jakimik 1980).

The preceding paragraphs show that human language
is an enormously complex trait. Our language perfor-
mance relies on precisely coordinated interactions of
various parts of our neural and other anatomy, and we
are amazingly good at it. We can all speak without
thinking. In contrast, we cannot perform basic mathema-
tical operations without concentration. Why is doing
mathematics or playing chess painfully di¤cult for most
of us, when the computational tasks necessary for gener-
ating or interpreting language are arguably more compli-
cated? A plausible answer is that evolution designed some
parts of our brain speci¢cally for dealing with language.

Worldwide there are about 6000 di¡erent human
languages. Among all of these there is no `simple’ human
language. There may have been Stone Age societies, but
there was no Stone Age language. As Edward Sapir
wrote: `When it comes to linguistic form, Plato walks with
the Macedonian swineherd, Confucius with the head-
hunting savage of Assam.’ The ubiquity of complex
language is for some linguists compelling evidence that
language is not a cultural invention, but an innate instinct.
Noam Chomsky, who revolutionized linguistic research,
argues that all human languages have the same under-
lying `universal grammar’ and that this universal
grammar is the product of an innate `language organ’
(which need not be seen as a localized organ but an
ensemble of language-speci¢c neuronal circuitry within
the human brain).

For Chomsky the necessity for innate components of
language also comes from what he calls `the poverty of
input’. Children learn the grammatical rules of their
native language by hearing a small subset of correct
sentences. Since the number of possible rule systems is
unlimited, how could they deduce the correct rule system
without any preformed expectation that restricts the
number of possibilities? According to Chomsky (1965,
1972), children have an innate expectation of universal
grammar. Their learning of the grammar is given by the
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task of acquiring certain parameters of their particular
language while the principles are innate.

The observation that only humans but no animals have
complex language led Chomsky (1972, 1988) and others
to question how language could have arisen by Darwi-
nian evolution (Bickerton 1990). Perspectives on language
evolution have ranged from language being the by-
product of a big brain, or language being the consequence
of a single dramatic mutation, all the way to language
being incompatible with Darwinian evolution. Such views
are surprising for evolutionary biologists who would
argue that gradual adaptation is the only mechanism by
which biology can build a trait as complex as human
language (Pinker & Bloom 1990; Newmeyer 1991;
Brandon & Hornstein 1986; Corballis 1991). The observa-
tion that primates, who are our closest living relatives,
apparently do not have complex language does not
contradict its evolution. Instead, the implication is that
complex language must have originated in our ancestral
lines after the separation from chimpanzees, that is in the
last seven million years. Thus evolution had about
350 000 generations to build our language instinct from
material that was already present in our ancestor species
at that time.

For Darwin, there was no question that human language
originated from animal communication. He was also
fascinated by the analogy between human languages and
biological species. In his book,The descent of man (1871), he
writes: `The formation of di¡erent languages and of
distinct species, and the proofs that both have developed
through a gradual process, are curiously the same. . . .
Dominant languages and dialects spread widely and lead
to gradual extinction of other tongues. . . . A language,
like a species, when once extinct never reappears.’

Evolution relies on the transfer of information from one
generation to the next. For billions of years this process
was limited to the transfer of genetic information.
Language facilitates the transfer of non-genetic informa-
tion and thus leads to a new mode of evolution. Therefore
the emergence of language can be seen as a major transi-
tion in evolutionary history (Maynard Smith &
Szathmäry 1995, 1999), being of comparable importance
to the origin of genetic replication, the ¢rst cells, or the
emergence of multicellular organisms.

Attempts to shed light on the evolution of language
have come from many areas, including studies of primate
social behaviour (Seyfarth et al. 1980; Burling 1993;
Cheney & Seyfarth 1990) or animal communication
(Von Frisch 1967; Hauser 1996; Smith 1977), the diversity
of existing human languages (Greenberg 1971; Cavalli-
Sforza & Cavalli-Sforza 1995), the development of
language in children (Newport 1990; Bates 1992; Hurford
1991), the genetic and anatomical correlates of language
competence (Lieberman 1984; Nobre et al. 1994; Aboitiz
& Garcia 1997; Hutsler & Gazzaniga 1997; Deacon 1997;
Gopnik & Crago 1991), theoretical studies of cultural
evolution (Cavalli-Sforza & Feldman 1981; Yasuda et al.
1974; Aoki & Feldman 1989; Cavalli-Sforza 1997) and
learning theory (Niyogi & Berwick 1996; Niyogi 1998).
Our objective here and in several related papers (Nowak
& Krakauer 1999; Nowak 2000; Nowak et al. 1999a,b,
2000; Grassly et al. 2000; Krakauer 2000) is to bring
discussions of language evolution within the precise

mathematical framework of modern evolutionary biology.
For mathematical models of language evolution see also
Hurford (1989), Hurford et al. (1998), and Steels (1997).

In ½ 2, we describe how evolution can design a very
basic communication system where arbitrary signals refer
to speci¢c objects (or concepts) of the world. We study the
e¡ect or errors during language acquisition. In ½ 3, we
study errors during communication and show how such
errors limit the repertoire of a simple communication
system. In ½ 4, we show that word formation can over-
come this error limit. In ½ 5, we design a framework for
the population dynamics of words, de¢ne the basic repro-
ductive ratio of words and calculate the maximum size of
a lexicon. ½ 6 outlines how natural selection can guide the
emergence of syntactic communication and ½ 7 is a
conclusion.

2. THE EVOLUTION OF THE SIMPLEST

COMMUNICATION SYSTEM

Let us ¢rst study the basic requirements for the evolu-
tion of the simplest possible communication system. We
imagine a group of individuals (humans or other
animals) using a number of arbitrary signals to communi-
cate information about a number of objects (or concepts)
of their perceived world. We will de¢ne an association
matrix, a pay-o¡ function, and ¢nally study evolutionary
dynamics.

(a) The association matrix
Suppose that the communicative behaviour of each

individual is characterized by an association matrix, A. If
there are n objects and m signals, then A is an n £ m
matrix. The entries, aij, can be non-negative real numbers
(or integers) and denote the strength of the association
between object i and signal j.

A speaker is described by a P matrix. The element p ij

denotes the probability of using signal j for object i. A
hearer is described by a Q matrix. The element qij

denotes the probability of interpreting signal j as referring
to object i. The P and Q matrices are derived from the A
matrix by normalizing rows and columns respectively. We
have

p i j ˆ aij

m

jˆ1

ai j,

qi j ˆ aij

n

iˆ1

ai j.

(1)

The denominators have to be greater than zero; other-
wise simply take p ij or qij as zero. The assumption here is
that both speaking and hearing are derived from the
same association matrix.

(b) A pay-o¡ function
Let us now consider two individuals I and J with asso-

ciation matrices AI and AJ. We can de¢ne the pay-o¡ for
I communicating with J as

F(AI , AJ) ˆ (1=2)
n

iˆ1

m

jˆ1

(p (I)
ij q(J)

ji ‡ p (J)
i j q(I)

ij ). (2)
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The term m
jˆ1 p (I)

i j q(J)
ij denotes the probability that

individual I will successfully communicate `object i’ to
individual J. This probability is then summed over all
objects and averaged over the situation where individual I
signals to individual J and vice versa. Note that
equation (2) also assumes that communication about each
object occurs with the same frequency.

If both individuals use the same matrix A then

F(A, A) ˆ
n

iˆ1

m

jˆ1

p i jqij. (3)

The maximum pay-o¡ is obtained if P is a permutation
matrix (that is, it has exactly one entry of unity per row
and column, all other entries being zero) and P ˆ Q . The
maximum pay-o¡ is the smaller of n or m (Trapa &
Nowak 2000).

Intuitively, our pay-o¡ function characterizes the total
amount of information that can be exchanged between
two individuals. For each correct information transfer,
both speaker and listener obtain a pay-o¡ of one point.
Other assumptions for the pay-o¡ function are possible.
In particular, it need not be the case that communication
is of advantage to both speaker and listener. An alarm
call, for example, may be of bene¢t to the receiver, but
may even constitute a cost for the sender. The opposite
extreme is if a sender uses a signal to deceive or manipu-
late another individual. Then the positive pay-o¡ will be
with the sender, while the receiver gets a negative pay-o¡.
Thus equation (2) can be generalized to include the possi-
bility that communication about di¡erent objects leads to
di¡erent pay-o¡ values for sender and receiver:

F(AI , AJ) ˆ (1=2)
n

iˆ1

m

jˆ1

(¬ip
(I)
i j q(J)

ij ‡  ip
(J)
ij q(I)

ij ). (4)

Here ¬i and  i are positive or negative numbers and
denote, respectively, the pay-o¡ to sender and receiver for
correct communication about object i.

(c) Evolutionary dynamics with errors during
language acquisition

The model can be used to study how signals can
become associated with arbitrary meaning (Hurford
1989). Consider a population of size N. Each individual is
characterized by an A matrix. The ¢tness is evaluated
according to equation (2). Every individual talks to every
other individual with equal probability. For the next
generation, individuals produce children proportional to
their pay-o¡. This is the standard assumption of evolu-
tionary game theory; the pay-o¡ of the game is related to
¢tness (Maynard Smith 1982). In the context of language
evolution, it means that successful communication
increases the survival probability or performance during
life history and hence enhances the expected number of
o¡spring. Thus, language is of adaptive value and contri-
butes to biological ¢tness.

Children inherit from their parents a language acquisi-
tion device: this is a strategy for acquiring language.
Children are born with an A matrix containing only zero
entries. They sample their parents’ language and thereby
form their own A matrix. The language acquisition
device will determine how accurately the child will learn

the association matrix of its parent. The accuracy of this
process will in turn determine whether or not a popula-
tion can evolve a coherent language.

Let us for simplicity consider binary A matrices. If
ai j ˆ 1 there is an association between object i and signal
j; if aij ˆ 0 there is none. Let w0 denote the probability
for the child’s A matrix to have an entry of unity at a
place where the parent’s A matrix has a zero entry. Let
w1 denote the probability for the child’s A matrix to have
a zero entry at a place where the parent’s A matrix has
an entry of unity. Hence w0 and w1 represent the error
rates of the language acquisition device. The parameter
w1 denotes the probability of losing an association, while
w0 denotes the probability of forming a new, possibly
erroneous, association.

Figure 1 shows how the ability to evolve a coherent
communication system depends on the error rates w0 and
w1. The population size is N ˆ 100. There are n ˆ 10
objects and m ˆ 10 signals. Hence each individual is
characterized by a 10 £ 10 binary A matrix. The ¢gure
shows the average pay-o¡ of the population as a function
of the error rate w1, for two choices of w0. The average
pay-o¡ of the population is given by ·f ˆ (1=N) I fI,
where fI ˆ ‰1=(N ¡ 1)Š J 6ˆ I F(AI , AJ) is the average
pay-o¡ of individual I. The function F(AI , AJ) is given
by equation (2). If all individuals speak the same p̀erfect’
language with n signals referring uniquely to n objects,
then the average ¢tness is n. For w0 ˆ 0:0001, the average
pay-o¡ declines with increasing error-rate, w1. To main-
tain a perfect language of a given size n, the error-rate w1

has to be below a critical value. Similarly, w0 has to be
less than a critical value to get any evolutionary adapta-
tion. For w0 ˆ 0:005, the average pay-o¡ never increases
above four and even declines for very low values of w1 ;
this is a consequence of individuals accumulating too
many entries of unity in the association matrix.

For large population sizes, N, the evolutionary
dynamics can be modelled by a system of ordinary di¡er-
ential equations. Denote by xI the frequency of indivi-
duals with matrix AI . There are ¸ ˆ 2nm binary A
matrices of size n £ m. The evolutionary dynamics can be
formulated as

_xI ˆ
¸

Jˆ1

fJxJWIJ ¡ ¿xI , I ˆ 1, : : :, ¸. (5)

The ¢tness of individuals J is given by

fJ ˆ
¸

I ˆ1

F(LJ , LI )xI . (6)

This assumes that individual J talks to I with probability
xI . The quantity fJ denotes the expected pay-o¡ of all
interactions of individual J. The average ¢tness of the
population is given by

¿ ˆ
¸

I ˆ1

fI xI . (7)

For equation (5), the total population size is constant. We
set I xI ˆ 1. The parameter WIJ denotes the probability
that someone learning from an individual with AJ will
end up with AI. Thus, WII denotes the probability of
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correct learning, while WIJ with I 6ˆ J denotes learning
with mistakes.

Equation (5) is an interesting extension of the quasi-
species equation (Eigen & Schuster 1979). Standard
quasispecies theory has constant ¢tness values, whereas
our equation has frequency-dependent ¢tness values.
Thus equation (5) can be considered to be at the interface
between quasispecies theory and evolutionary game
dynamics.

Equation (5) can be used to calculate the maximum
error rates that are compatible with language evolution
(Komarova & Nowak 2001). Such relationships allow us
to understand the basic requirements of a language acqui-
sition device for the evolution and stability of simple
communication systems.

3. ERRORS DURING COMMUNICATION

In this section, we analyse the consequences of errors
during communication.We will show that such errors limit
the maximum ¢tness of a language irrespective of the total
number of objects that are being described by the
language. If communication about di¡erent objects leads
to di¡erent pay-o¡ contributions, then the maximum

¢tness of a language can be achieved by concentrating only
on a small number of the most valuable objects, all other
objects being ignored (Nowak & Krakauer 1999; Nowak et
al. 1999a).

Denote by uij the probability of mistaking signal i for
signal j. The corresponding error matrix, U, is a stochastic
m £ m matrix. Its rows sum to unity. The diagonal values,
uii, de¢ne the probabilities of correct communication.
Given this error matrix, the ¢tness of a languagebecomes

F ˆ
n

iˆ1

m

jˆ1

m

kˆ1

p i jujkqik. (8)

In the best possible case, the language is given by a
permutation matrix (assuming m ˆ n) and the ¢tness is
simply given by the sum over the diagonal entries of the
error matrix,

F ˆ
n

iˆ1

uii. (9)

The error matrix can be de¢ned in terms of similarity
between signals. Denote by sij the similarity between
signals i and j. `Similarity’ should be a number between
zero and unity, with unity denoting `identity’. Thus we
have sii ˆ 1. The probability of mistaking signal i for j is
now given by ui j ˆ sij=

n
kˆ1 sik ; hence, the probability of

mistaking signal i for j is de¢ned by how similar signal i
is to signal j compared to how similar signal i is to all
other signals in the language. The probability of correct
communication is given by uii ˆ 1=

n
kˆ1 sik. Thus, the

¢tness function in terms of similarity becomes

F ˆ
n

iˆ1

1
n

jˆ1

sij . (10)

Let us now imagine that signals (or, more speci¢cally,
`sounds’ if we consider a spoken language) can be
embedded in some metric space, and that dij denotes the
distance between sounds i and j. The similarity is a
monotonically decreasing function of their distance,
sij ˆ f (dij). If this function is strictly positive on some
interval ‰0, e), then it is possible to show that the
maximum ¢tness of a language is bounded by a constant
which is independent of n (Dress et al. 2001). In other
words, adding the possibility of describing more and
more objects (or concepts) to the repertoire of a language
cannot increase the maximum amount of information
transfer beyond a certain limit.

If, in addition, we assume that objects have di¡erent
values, then we ¢nd that the maximum ¢tness is usually
achieved by limiting the repertoire of the language to a
small number of objects. Increasing the repertoire of the
language can reduce ¢tness. Hence natural selection will
prefer communication systems with limited repertoires.

In ½ 3, the repertoire size of the language was limited
by errors during language learning. Here an error limit
arises as a consequence of errors during communication:
if signals can be mistaken for each other, it can be better
to have fewer signals that can be clearly identi¢ed.

In our current understanding, all animal communica-
tion systems seem to be based on fairly limited reper-
toires. Bees use a three-dimensional analogue system.
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Figure 1. The maximum size of a communication system
that can be stably maintained by a population depends on
the error rate during language acquisition. Each individual
is characterized by a binary association matrix, A, linking
arbitrary signals to objects (or concepts). There are n ˆ 10
objects and m ˆ 10 signals. A is a binary 10 £ 10 matrix.
The population size is N ˆ 100. In every generation, each
individual talks to every other individual and the pay-o¡s are
summed up. For the next generation, individuals produce
o¡spring who learn their language. The error rate, w0, is the
probability that a child will have an entry of unity in the A
matrix where the parent had a zero entry. Similarly, w1 is the
probability for the child to lose an entry of unity. The ¢gure
shows the averagepay-o¡ of the population averaged over
5000 generations. The average pay-o¡ is indicative of the
number of signals that can be maintained by the population.
If all individuals speak a `perfect’ language with n signals
referring uniquely to n objects, the average pay-o¡ of the
population is n. For w0 ˆ 0:001, the average pay-o¡ is a
declining function of w1. For w0 ˆ 0:005, the average pay-o¡
is a one-humped function; for very low w1, individuals
accumulate too many associations in their A matrix. For a
population to maintain a signalling system of size n £ n, both
error rates have to be below some critical threshold values.



Birds have alarm calls for a small number of predators.
Vervet monkeys have a handful of signals, their best
studied signals being `leopard’, `eagle’ and `snake’. In
contrast, human language has a nearly unlimited reper-
toire. How did we overcome the error limit?

4. WORD FORMATION

The error limit can be overcome by combining sounds
into words. We will provide a very simple and intuitive
argument: more detailed descriptions are possible.

Words are strings of sounds. Linguists call these sounds
p̀honemes’. Suppose there are n phonemes. Let us at ¢rst
only consider words of length two phonemes. There are n2

such words. We assume that the similarity between two
words is the product of the similarities between the
phonemes in corresponding positions. Thus if word Wij

consists of phonemes i and j, then the similarity between
the words Wij and Wkl is

S(Wij, Wkl) ˆ siksj l. (11)

The ¢tness of a language that contains n2 words to
describe the same number of objects is

F ˆ
n

iˆ1

n

jˆ1

1
n

kˆ1

n

lˆ1

siksj l . (12)

This can be rewritten as

F ˆ
n

iˆ1

1
n

jˆ1

si j

2

. (13)

Similarly for word-length K, we obtain

F ˆ
n

iˆ1

1
n

jˆ1

si j

K

. (14)

Hence, if Fmax(K) denotes the maximum ¢tness that can
be achieved for a given word-length K, we have

Fmax(K) ˆ Fmax(1)K . (15)

This equation describes the maximum ¢tness for a
language that contains words of constant length K. Hence
the maximum ¢tness increases exponentially with word-
length. Note that Fmax(1)51.

There is an interesting connection to a central result of
information theory. Shannon’s noisy coding theorem
states that for a discrete, memoryless channel with a
certain capacity, there exists a sequence of codes such that
with increasing length of the code word the maximum
error probability declines exponentially to zero. Shannon’s
framework is similar to ours: our P matrix describes
èncoding’, our Q matrix describes decoding, the error
matrix, U, is equivalent to Shannon’s channel. It is
possible to show that our ¢tness function is proportional
to unity minus Shannon’s maximum error probability.
Hence equation (15) is directly related to Shannon’s noisy
coding theorem (Plotkin & Nowak 2000).

If objects have di¡erent values, then word formation
leads to a much larger number of objects being described
at maximum ¢tness value.

5. POPULATION DYNAMICS OF WORDS

Let us now study the population dynamics of words.
Suppose a language contains n words. Each individual is
born not knowing any of the words, but can acquire
words by learning from other individuals. Individuals are
characterized by the subset of words they know. There are
2n possibilities for the internal lexicon of an individual.
Internal lexica are de¢ned by bit strings: unity means
that the corresponding word is known, zero means it is
not. Let us enumerate them by I ˆ 0, : : :, ¸ where
¸ ˆ 2n ¡ 1. The number I is the integer representation of
the corresponding bit string. Denote by xI the abundance
of individuals with internal lexicon I. The population
dynamics can be formulated as

_xI ˆ ¯I ¡ xI ‡ b
¸

Jˆ0

¸

K ˆ0

(xJxKQ JKI ¡ xIxJQ IJK),

I ˆ 0, : : :, ¸.

(16)

We have ¯0 ˆ 1 and ¯I ˆ 0 for I > 0; thus all individuals
are born not knowing any of the words. Individuals die at
a constant rate, which we set to unity, thereby de¢ning a
time-scale. The quantities Q IJK denote the probabilities
that individual I learning from J will become K.
Equations (16) can be studied analytically if we assume
that in any one interaction between two individuals only
a single new word can be acquired and if words are
memorized independently of each other. Thus the acquisi-
tion of the internal lexicon of each individual proceeds in
single steps. The parameter b is the total number of word
learning events per individual per lifetime. In this case,
we obtain for the population dynamics of xi, which is the
relative abundance of individuals who know word Wi,

_xi ˆ ¡xi ‡ Rixi(1 ¡ xi). (17)

Here Ri ˆ bq¿i is the basic reproductive ratio of word Wi.
It is the average number of individuals who acquire word
Wi from one individual who knows it. The parameter q is
the probability to memorize a single word, and ¿i is the
frequency of occurrence of word Wi in the (spoken)
language. If Ri > 1, then xi will converge to the equili-
brium x¤

i ˆ 1 ¡ 1=Ri. We can now derive an estimate for
the maximum size of a lexicon. From Ri > 1 we obtain
¿i > 1=(bq). Suppose Wi is the least frequent word. We
certainly have ¿i4 1=n, and hence the maximum number
of words is nmax ˆ bq. Note that this number is always less
than the total number of words, b, that are presented to a
learning individual. Hence, the combined lexicon of the
population cannot exceed the total number of word-
learning events for each individual.

A curious observation of English and other languages is
that the word frequency distributions follow Zipf ’s law
(Zipf 1935; Estoup 1916; Mandelbrot 1958): the frequency
of the ith most frequent word is given by a constant
divided by i.Therefore we have

¿i ˆ C=i. (18)

The constant is given by C ˆ 1= i (1=i). Nobody knows
the signi¢cance of Zipf ’s law for language. Miller &
Chomsky (1963), however, point out that a random
source emitting symbols and spaces will also generate
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word frequency distributions that follow Zipf ’s law. This
seems to suggest that Zipf ’s law is a kind of null hypoth-
eses of word distributions.

We can use Zipf ’s law to derive an improved equation
for the maximum lexicon size. Assuming that word
frequency distributions follow Zipf ’s law, we ¢nd that the
maximum number of words is approximately given by
the equation

nmax(® ‡ ln nmax) ˆ bq. (19)

We have used Euler’s gamma: ® ˆ 0:5772 . . .. Suppose
we want to maintain a language with n ˆ 100 words. If
the probability of memorizing a word after one encounter
is given by q ˆ 0:1, we need b º 5000 word-learning
events. For n ˆ 104 and q ˆ 0:1 we need b º 106.

6. THE EVOLUTION OF SYNTAX

Animal communication is believed to be non-syntactic:
signals refer to whole events. Human language is
syntactic: signals consist of components that have their
own meaning. Syntax allows us to formulate a nearly
unlimited number of sentences. Let us now use the math-
ematical framework of ½ 5 to study the transition from
non-syntactic to syntactic communication.

Imagine a group of individuals who communicate
about events in the world. Events are combinations of
objects, places, times and actions. (We use `object’ and
`action’ in a very general way as everything that can be
referred to by nouns and verbs of current human
languages.) For notational simplicity, suppose that each
event consists of one object and one action. Thus event Eij

consists of object i and action j. Denote by rij the rate of
occurrence of event Ei j. Denote by ¿i j the frequency of
occurrence of event Eij. We have ¿ij ˆ rij= ij rij. Non-
syntactic communication uses words for events, while
syntactic communication uses words for objects and
actions.

Let us ¢rst consider the population dynamics of non-
syntactic communication. The word, Wij, refers to event
Eij. The basic reproductive ratio of Wi j is given by
R(Wij) ˆ bq¿ij. If R(Wi j) > 1 then the word Wij will
persist in the population, and at equilibrium the relative
abundance of individuals who know this word is given by

x¤(Wij) ˆ 1 ¡ 1=R(Wij). (20)

As in ½ 5, the maximum number of words that can be
maintained in the population is limited by bq.

For natural selection to operate on language design,
language must confer ¢tness. Assume that correct
communication about events confers some ¢tness advan-
tage to the interacting individuals. In terms of our model,
the ¢tness contribution of a language can be formulated
as the probability that two individuals know the correct
word for a given event summed over all events and
weighted with the rate of occurrence of these events.
Hence, at equilibrium, the ¢tness of individuals using
non-syntactic communication is given by

Fns ˆ
i, j

x¤(Wi j)
2ri j. (21)

Let us now turn to syntactic communication. Noun Ni

refers to object i, and verb Vj refers to action j; hence the
event Eij is described by the sentence NiVj. For the basic
reproductive ratios we obtain R(Ni) ˆ (b=2)qs¿(Ni) and
R(Vj) ˆ (b=2)qs¿(Vj). The frequency of occurrence of
noun Ni is ¿(Ni) ˆ j ¿ij, and of verb Vj it is
¿(Vj) ˆ i ¿ij. The factor 1=2 appears because either the
noun or the verb is learned in any one of the b learning
events. The probability to memorize a noun or a verb is
given by qs. We expect qs to be (slightly) smaller than q,
which simply means that it is a more di¤cult task to
learn a syntactic signal than a non-syntactic signal. For
both signals, the (arbitrary) meaning has to be memor-
ized; for a syntactic signal one also has to memorize how
it relates to other signals (whether it is a noun or a verb,
for example).

For noun Ni to be maintained in the lexicon of the
population, we require R(Ni) > 1, which implies ¿(Ni)
4 2=(bqs). Similarly for verb Vj we ¢nd ¿(Vj) > 2=(bqs).
This means that the total number of nouns plus verbs is
limited by bqs, which is always less than b. The maximum
number of grammatical sentences, however, which consist
of one noun and one verb, is given by (bqs)

2=4. Hence
syntax makes it possible to maintain more sentences than
the total number of sentences, b, that are said to a
learning individual by all of his or her teachers together.
Therefore all words have to be learned, but syntactic
signals enable the formulation of new sentences that have
not been learned beforehand.

For calculating the ¢tness of syntactic communication,
note that two randomly chosen individuals can communi-
cate about event Ei j if they both know noun Ni and verb
Vj. Denote by x(NiVj) the relative abundance of indivi-
duals who know Ni and Vj. From equations (1) we obtain
the dynamics

_x(NiVj) ˆ ¡x(NiVj)‡ R(Ni)x(Ni)‰x(Vj) ¡ x(NiVj)Š
‡ R(Vj)x(Vj)‰x(Ni) ¡ x(NiVj)Š. (22)

If R(Ni) > 1 and R(Vj) > 1, the abundances converge to
the equilibrium

x¤(NiVj) ˆ
x¤(Ni)x¤(Vj)

1 ¡ 1=‰R(Ni) ‡ R(Vj)Š
. (23)

At equilibrium, the ¢tness of syntactic communication is
given by

Fs ˆ
i, j

x¤(NiVj)
2ri j. (24)

When does syntactic communication lead to a higher
¢tness than non-syntactic communication? Suppose there
are n objects and m actions. Suppose a fraction, p, of these
mn events occur, while the other events do not occur. In
this case R(Wi j) ˆ bq=( pmn) for those events that occur,
and R(Ni) ˆ bqs=(2n) and R(Vj) ˆ bqs=(2m). We make
the (somewhat rough) assumption that all nouns and all
verbs, respectively, occur on average at the same
frequency. If all involved basic reproductive ratios are
well above unity, we ¢nd that Fs > Fns leads to

m2n ‡ mn2

m2 ‡ mn ‡ n2
>

2q
pqs

. (25)
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If this inequality holds then syntactic communication will
be favoured by natural selection. Otherwise non-syntactic
communication will win. For m ˆ n, condition (25)
reduces to

n > 3q=( pqs). (26)

Therefore the size, n, of the communication system has to
exceed a threshold value before natural selection can see
the advantage of syntactic communication. This threshold
value depends crucially on the parameter p, which
describes the syntactic structure of the relevant events. If
p is small then most events are unique object^action pair-
ings and syntax will not evolve. The number np is the
average number of relevant events that contain a parti-
cular noun or verb. This number has to exceed three
before syntax could evolve.

`Relevant event’ means there is a ¢tness contribution
for communicating about this event. As the number of
such `relevant communication topics’ increased, natural
selection could begin to favour syntactic communication
and thereby lead to a language design where messages
could be formulated that were not learned beforehand.
Syntactic messages can encode new ideas or refer to extre-
mely rare but important events. Our theory, however,
does not suggest that syntactic communication is always
at an advantage. It is likely that many animal species
have a syntactic understanding of the world, but natural
selection did not produce a syntactic communication
system for these species, because the number of relevant
signals was below the threshold illustrated by
equation (25). Presumably the increase in the number of
relevant communication topics was caused by changes in
the social structure and interaction of those human ances-
tors who evolved syntactic communication.

7. CONCLUSIONS

We have outlined some basic mathematical models that
enable us to study a number of the most fundamental
steps that are necessary for the evolution of human
language by natural selection. We have studied the basic
requirements for a language acquisition device that are
necessary for the evolution of a coherent communication
system described by an association matrix that links
objects of the world (or concepts) to arbitrary signals.
Errors during language learning lead to evolutionary
change and adaptation of improved information transfer.
Misunderstandings during communication lead to an
error limit: the maximum ¢tness is achieved by a system
with a small number of signals referring to a small
number of relevant objects. This error limit can be over-
come by word formation, which represents a transition
from an analogue to a digital communication system.

Words are maintained in the lexicon of a language if
their basic reproductive ratio exceeds unity: a person who
knows a word must transmit knowledge of this word to
more than one new person on average. Since there is a
limit on how much people can say to each other and how
much they can memorize, this implies a maximum size
for the lexicon of a language (in the absence of written
records).

Words alone are not enough. The nearly unlimited
expressibility of human language comes from the fact that
we use syntax to combine words into sentences. In the
most basic form, syntax refers to a communication system
where messages consist of components that have their
own meaning. Non-syntactic communication, in contrast,
has signals that refer to whole situations. Natural selection
can only see the advantages of syntactic communication
if the size of the system is above a critical value. Below
this value non-syntactic communication is more e¤-
cient.

Throughout the paper we have assumed that language
is about information transfer. E¤cient and unambiguous
communication together with easy learnability of the
language is rewarded in terms of pay-o¡ and ¢tness.
While we think that these are absolutely fundamental
and necessary assumptions for much of language evolu-
tion, we also note the seemingly unnecessary complexity
of current languages. Certainly, systems designed by
evolution are often not optimized from an engineering
perspective. Moreover, it seems likely that at times evolu-
tionary forces were at work to make things more ambig-
uous and harder to learn, such that only a few selected
listeners could understand the message. If a good
language performance enhances the reputation within the
group, we can also imagine an arms race towards
increased and unnecessary complexity. Such a process can
drive the numbers of words and rules beyond what would
be best for e¤cient information exchange. This should be
the subject of papers to come.

This paper is dedicated to the 80th birthday of John Maynard
Smith. The ¢rst theoretical biology paper I ever read was a
Scienti¢c American article by John Maynard Smith on evolution-
ary game theory. The ¢rst time I came across questions of
language evolution was during a lecture delivered by John
Maynard Smith at the University of Oxford.
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