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Ricard V. Solé1,2*, David Alonso1,3 and Alan McKane4

1Complex Systems Research Group, Department of Physics, FEN-UPC Campus Nord B4, 08034 Barcelona, Spain
2Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA

3Department of Ecology, Universitat de Barcelona, Diagonal 645, 08045 Barcelona, Spain
4Department of Theoretical Physics, University of Manchester, Manchester M13 9PL, UK

Why are some ecosystems so rich, yet contain so many rare species? High species diversity, together with
rarity, is a general trend in neotropical forests and coral reefs. However, the origin of such diversity and
the consequences of food web complexity in both species abundances and temporal fluctuations are not
well understood. Several regularities are observed in complex, multispecies ecosystems that suggest that
these ecologies might be organized close to points of instability. We explore, in greater depth, a recent
stochastic model of population dynamics that is shown to reproduce: (i) the scaling law linking species
number and connectivity; (ii) the observed distributions of species abundance reported from field studies
(showing long tails and thus a predominance of rare species); (iii) the complex fluctuations displayed by
natural communities (including chaotic dynamics); and (iv) the species–area relations displayed by rainfor-
est plots. It is conjectured that the conflict between the natural tendency towards higher diversity due to
immigration, and the ecosystem level constraints derived from an increasing number of links, leaves the
system poised at a critical boundary separating stable from unstable communities, where large fluctuations
are expected to occur. We suggest that the patterns displayed by species-rich communities, including
rarity, would result from such a spontaneous tendency towards instability.
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1. INTRODUCTION

Diversity in complex ecosystems results from different
processes operating on vastly different spatial and tem-
poral scales. The patterns resulting from these processes
provide different views of ecosystems: some populations
fluctuate wildly on a scale of months or years but some
large-scale features remain essentially unchanged in time.
Together with unpredictable fluctuations, we see stable,
macroscopic variables (such as biomass or productivity)
that barely change over long time-scales. Understanding
the nature of such fluctuations has important conse-
quences and can reveal the underlying laws of ecosystem
dynamics.

The biosphere is a complex adaptive system (Levin
1998). As such, it displays some universal features com-
mon to other far from equilibrium systems. In this con-
text, beyond the plethora of fine-scale details present in
any ecosystem, simple laws can account for well-defined
macroscopic patterns (MacArthur & Wilson 1967; May
1974; Brown 1995; Maurer 1999).

A vast literature on model ecosystems has been accumu-
lating over the past few decades (May 1974; Pimm 1991;
Ricklefs & Schulter 1993; Morin 1999) together with an
increasing understanding of how real ecologies are
organized. This constantly improving picture becomes
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more and more important as we start to realize that our
biosphere is actually experiencing a mass extinction event
of as yet unknown consequences (Leakey & Lewin 1996;
Levin 1999). Any useful forecast of future diversity losses
will need the support of model ecosystems. It is not poss-
ible to obtain detailed knowledge of even moderately
diverse biotas (not to mention the most endangered and
rich ones), but if strong regularities can be identified and
reproduced by simple, yet reasonably accurate, models
then we can hope to provide some real understanding of
how ecosystems emerge and how fragile they are.

Most of the available literature on multispecies com-
munities considers only one aspect of the whole picture.
Some analyse the dynamics of an ecological time-series
and its possible origins (Schaffer 1984; Ellner & Turchin
1995; Turchin & Ellner 1998; Gamarra & Solé 2000).
Others explore the statistical regularities present in mature
communities, such as the type of species–abundance
relations (May 1975; Brown 1995; Maurer 1999) exhib-
ited by different types of community. A number of struc-
tural regularities have also been identified concerning the
patterns of links among species, involving both the top-
ology of the underlying graph (Paine 1966; Pimm 1991;
Williams & Martinez 2000; Montoya & Solé 2002a,b) and
the patterns of interaction strengths (McCann et al. 1998).
Finally, one of most celebrated laws in ecology is the so-
called SAR: the number of species S found in a particular
area increases with the area size A as a power law:
S = �Az, where � is a constant and z a characteristic
exponent. Most models explore the possible origins of
these four properties by considering them in isolation. As
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a consequence, fairly different mechanisms can account
for the same regularities. This is a rather unsatisfactory
situation, since an appropriate understanding of ecological
patterns should involve all of them: the statistical patterns
are the outcome of underlying dynamical processes and a
link between them should be properly established.

We present a unified view of how complex ecosystems
become organized, involving all the previous aspects
within the same framework. A previous theoretical model
(McKane et al. 2000; Solé et al. 2000) is used as a starting
point. This model approach is based on a stochastic inter-
acting particle system (Durrett & Levin 1994; Durrett
1999) involving a community assembly process in time
and space (Drake 1990a,b). We propose that the observed
regularities common to a large number of ecological sys-
tems originate from the conflict between increasing diver-
sity (due to immigration or speciation) and decreasing
species richness, derived from increasing levels of interac-
tion.

This paper is organized as follows. In § 2 we summarize
some of the main regularities exhibited by real ecosystems
and the corresponding theoretical interpretations. In § 3
the two basic models are introduced and in § 4 the time
evolution of these models and the resulting final stationary
species–connectivity relations are presented, together with
our basic hypothesis. The spatial extension of the spatially
implicit models of § 3 is provided in § 5, where its SAR is
studied using numerical simulations. Our results, their fit
with real data and their possible implications are outlined
in § 6.

2. REGULARITIES IN REAL ECOSYSTEMS

(a) Stability and complexity
The quest for stability in real ecosystems has been tra-

ditionally linked with species diversity (McCann (2000)
and references therein). Arguments emerged suggesting
that stability is either reinforced (Odum 1953; Elton
1958) or jeopardized (May 1972, 1974) by diversity. Early
rigorous theoretical studies explore the problem of stab-
ility under the light of linear stability analyses (May 1974).
In those models, interactions among species are described
through Lotka–Volterra equations, i.e. a set of S differen-
tial equations:

dNi

dt
= �i(N ) = Ni(t)��i � �n

j = 1

�i j N j (t)�, (2.1)

where {Ni}; (i = 1,…,S) is the population size of each
species. Here �i and �ij are constants that introduce feed-
back loops and interactions among different species. The
community matrix A = (�ij) is assumed to have a con-
nectivity C�[0,1], defined as the fraction of nonzero
elements in A. Linear stability studies of these models
assumed that there was an equilibrium state N∗, such that
�i(N∗) = 0 and the system was considered unstable if
small deviations from N∗ were amplified under this
approximation.

One of the most important results obtained from these
models was a formal relation between stability and com-
plexity in model random ecosystems (May 1974). In
short, using Lotka–Volterra equations with random links
among species, May found that the probability of an S-
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Figure 1. Scaling relation between diversity (number of
species, S) and complexity (measured in terms of the
connectance, C). The data were obtained from 12 well-
defined ecological networks (Montoya & Solé (2002b) and
references therein). The observed exponent (inset, log–log
plot of the same data) strongly deviates from the standard
S � C�1 hyperbolic law.

species ecosystem being stable, P(S,�,C), displays a thres-
hold behaviour of the following kind:

if �2SC � 1 then P(S,�,C) → 1 as S → � ,

if �2SC 	 1 then P(S,�,C) → 0 as S → � .

Thus, a limit to species diversity is imposed by the criti-
cal boundary �2SC = 1. The first field tests of this theory
confirmed the presence of a scaling law between diversity
and connectivity, as predicted. In addition, this law was
also found to be present in more realistic models (Pimm
1982) and has motivated many studies (Winemiller 1990;
Polis 1991; Martinez 1992, 1994; Reagan & Wade 1996;
Montoya & Solé 2002b). Further re-analysis of model net-
works with some amount of hierarchical structure revealed
that a scaling law was present but allowed the stabilization
of a larger number of species (Hogg et al. 1989).

Further detailed analyses of real food webs demon-
strated that, in fact, the actual scaling law should be writ-
ten as

S � C�1 
 � (2.2)

where � � [0, 1/2] (figure 1). This is an important devi-
ation from the predicted hyperbolic law S � C�1. But what
is perhaps more interesting is the fact that the S–C dia-
gram suggests that all the observed systems seem to follow
a scaling relation. If collective community stability were a
global property to be optimized, one should expect to find
points scattered throughout the lower part of the diagram.
This is not the case. Why?

(b) Species–abundance relations
The second ingredient in the ecological theory of com-

plex ecosystems is provided by species–abundance distri-
butions (Pielou 1969; May 1975; Hubbell 1979;
Pachepsky et al. 2001). These distributions provide a stat-
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Figure 2. Power-law distribution of Mediterranean diatoms.
Margalef (1994) offers an ensemble inventory of
phytoplankton by putting together more than 2000 samples.
This includes 1 045 830 identified cells. Data obtained from
Pueyo (2002).

istical view of the whole community in terms of the relative
abundances of the different species. Species–abundance
distributions involve the number of species S(n) rep-
resented by n individuals. Obviously, the total number of
species S and the number of individuals N are obtained
from S(n) through

S = � �

0

S(n)dn, (2.3)

N = � �

0

nS(n)dn, (2.4)

where we have assumed that S(n) is given by a continuous
distribution. In spite of the potentially large number of
observable distributions, a few of them are ubiquitous: the
lognormal, the log series and the power laws. They share
a common trait: they display long tails indicating that a
few species are rather common and most are rare. The
long-tailed distributions displayed by real ecologies have
been interpreted in terms of stochastic multiplicative pro-
cesses governed by the conjunction of a variable number
of independent factors (May 1975). The power-law distri-
butions can be considered a limiting case of the lognormal
behaviour, and are observed in a number of ecological
scenarios, from rainforests to marine ecosystems (figure
2).

These types of distribution are commonly found in a
number of situations, including, for example, multiplicat-
ive processes (May 1975), coagulation–fragmentation
models (Camacho & Solé 2000), coherent noise
(Sneppen & Newman 1997) and in systems with inter-
acting units having a complex internal structure (Amaral
et al. 1998). In physics they are found at critical points
(Binney et al. 1993; Solé et al. 1996, 1999; Stanley et al.
1996). Possible candidates in population biology are
found in the spread of epidemics (Rhodes & Anderson
1996) and in the distribution of forest fires (Malamud et
al. 1998). In this context, it has been suggested that the
presence of power laws might indicate that the systems
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have self-organized themselves into a critical state (Bak et
al. 1987). Self-organized critical systems require a number
of strong constraints in order to operate (Jensen 1998),
and it is not clear whether such constraints can operate in
a broad range of situations (Solé et al. 1999; Solé & Good-
win 2001). However, partially inspired by ideas of this
kind, we propose a mechanism of ecosystem organization
in which the observed patterns result from the spon-
taneous driving of complex ecologies towards the marginal
instability boundary defined by the S–C relation.

(c) Fluctuations and chaos
The use of linear stability analysis in this context has a

number of drawbacks. The main one is of course the fact
that real populations are far from equilibrium (Hastings et
al. 1993; Ario & Pimm 1995). Complex fluctuations are
found in most species that have a characteristic lifespan,
and allow dynamical changes to be tracked as time
evolves. Fluctuations can be highly variable, and in some
cases have been identified as evidence of deterministic
chaos (Schaffer 1985; Gamarra & Solé 2000). An interest-
ing result, in our context, is the observation by Ellner &
Turchin (1995) of a characteristic trend exhibited by
many field and laboratory populations: when measuring
the largest Lyapunov exponent from these time-series, �L,
it was found to be clustered around zero (Ellner & Tur-
chin 1995). The exponent �L gives a quantitative estimate
of the degree of divergence of two initially close points
in phase space (here defined in terms of the underlying
populations) and thus is a measure of chaos. If �L � 0
then two trajectories will approach with time. If �L 	 0,
sensitive dependence will be present and thus chaotic
dynamics. The critical point �c

L = 0 defines the boundaries
between the two qualitative dynamical regimes. The fact
that it is close to zero seems to support the idea that these
systems might be close to that boundary.

3. STOCHASTIC MULTISPECIES MODELS

Many different types of mathematical and computer
model of multispecies ecosystems have been developed
over recent decades. One particularly useful approach is
provided by SCA, also called interacting particle systems
(Durrett & Levin 1994; Marro & Dickman 1999). In
SCA, an individual-based description of the units is intro-
duced at the simplest level. Several specific types of SCA
have played a major role in physics, chemistry and biology.
Examples are contact processes (Durrett & Levin 1994;
Levin 1999) or the FFM (Bak et al. 1990; Drossel &
Schwabl 1992). These models can be spatially implicit or
explicit. In the first case, global population mixing is
assumed, while in the second interactions occur on a given
spatial domain and are local in nature. SCA have been
widely used in theoretical ecology. Null models involving
simple particle interactions have been shown to be very
useful in providing insight into biodiversity dynamics
(Alonso & Solé 2000; Hubbell 2001).

The following two models involve a discrete definition
of individuals belonging to a given set of species. The
dynamics is essentially probabilistic at the microscopic
scale, but it leads to recognizable macroscopic patterns
both in space (see below) and time.
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(a) Model A
In two recent papers (McKane et al. 2000; Solé et al.

2000) we have proposed a simple model of species interac-
tions that has been shown to display several of the statisti-
cal properties previously mentioned (hereafter model A).
It corresponds to a generalization of Wright’s model
(Wright 1931; Hubbell 1979). The basic model is a mean-
field (spatially implicit) interacting particle system
(Durrett & Levin 1994; Durrett 1999). A system involving
N individuals is considered, together with a pool �(S ) of
S possible species. In particular, individuals belonging to
different species could share exactly the same life-history
traits. Thus, this modelling approach can also simulate
neutral models (Bell 2000, 2001). This set-up can be
understood in terms of a given area of a rainforest with a
finite number of sites that is invaded by individuals from
an outside pool. Interactions among individuals are intro-
duced through a random matrix 
. This matrix is fixed
and has a predefined connectivity C. Two basic rules
are defined.

(i) Immigration: a randomly chosen site occupied by
species B is replaced by a species randomly chosen
from the species pool, i.e. A��(S ):

B →
�

A. (3.1)

This occurs with a probability (of immigration) �.
(ii) Interaction: two randomly chosen individuals

belonging to species A,B � �(S ) � {0} will interact
if 
AB � 
BA (in particular this includes the case of
no interaction). The result of the interaction will be

A 
 B →



2A, (3.2)

if 
AB 	 
BA (and A 
 B → 2B otherwise).

(b) Model B
The previous model has been shown to be able to repro-

duce a broad number of basic, well-known field obser-
vations (McKane et al. 2000; Solé et al. 2000). However,
the mechanisms of interaction used are too abstract and
do not allow, in particular, the expansion of isolated spec-
ies into empty sites. The second model again involves a
set of S (possible) species plus empty sites (pseudospecies
labelled 0). This set (the species pool) �(S) is then a dis-
crete set:

�(S ) = {0,1,2,…,S�, (3.3)

where 0 indicates empty space, available to all species
from the pool. Three basic types of transition are allowed
to occur. Let us call A,B��(S ) two given species present
at a given step. These possible transitions are summarized
as follows.

(i) Immigration: an empty site is occupied by a species
randomly chosen from the set of (non-empty) spec-
ies, i.e. A � �(S )�{0}:

0 →
�i

A. (3.4)

This occurs with a probability of colonization (of
empty sites) �i. Notice that this colonization
depends on the particular species.

Phil. Trans. R. Soc. Lond. B (2002)

(ii) Death: All occupied sites can become empty with
some fixed probability ei:

A →
ei

0. (3.5)

(iii) Interaction: the same rule as in model A is used, but
here the probability of success Pij is weighted by the
coefficients of the interaction matrix. Here we use

Pij = �[
ij � 
ji], (3.6)

where �[x] = x when x 	 0 and zero otherwise. This
probability of an interaction occurring in the system
between species i and j is a measure of the interac-

tion strength linking interacting species.

In other words, the parameters defining the interactions,
colonization and extinction of species in model B are given
by two vectors,

� = (�0,�1,…,�S), (3.7)

e = (e0,e1,…,eS), (3.8)

the immigration and the extinction vectors respectively,
where here �0 = e0 = 0, and an (S 
 1) × (S 
 1) matrix 
,
which is such that 
0i = 0 for all i � �(S)�{0}. Additional
rules (such as the presence of trade-offs between coloniz-
ation and competition) can be easily introduced. Several
variations of the previous models have shown the same
basic patterns.

This model allows the simulation (as particular cases)
of a number of well-known problems. Let us mention five
of them.

(i) The predator–prey model (here empty sites, prey (1)
and predators (2) are considered) would be rep-
resented as � = (0,�1,�2), e = (0,e1e2) and the inter-
action matrix would be


 = � 0 0 0


10 0 0

0 
21 0�. (3.9)

(ii) The contact process would include only two types
of particle, active and inactive (exposed and
infective), with � = (0,0), e = (0,e1) and the interac-
tion matrix would be


 = � 0 0


10 0
�, (3.10)

where 
10 corresponds to the infection rate and e1
the recovery rate.

(iii) The FFM. Here the three states correspond to
ashes: (empty sites), green trees (1) and burning
trees (2). Two different types of model have been
considered: the BCT version and the DS version.
The only difference between them is that the second
allows for the spontaneous burning of green trees.
Now we have: � = (0,�1,�2), e = (0,0,1), with
�2 = 0 in BCT and �2 � 0 in the DS model. The
interaction matrix is
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 = �0 0 0

0 0 0

0 1 0�. (3.11)

(iv) The model of Tilman (1994) addresses the question
of the coexistence of a large number of species in
hierarchical competitive communities. In this model,
species i can colonize sites which are not occupied
by superior competitors, but is extinguished from
any site invaded by superior competitors. The model
involves the proportion of sites occupied by species
i (pi), species-specific colonization rates (ci) and
mortality rates (ei). The equation for species i is

dpi
dt

= ci pi�1 � �i
j = 1

pj� � ei pi � �i � 1

j = 1

cj pj pi. (3.12)

The stochastic counterpart of the deterministic
model described by equation (3.12) can also be re-
written as a particular case of the stochastic model
B, assuming no external immigration and with the
extinction vector being e = (0,e1,…,eS�1,eS). Notice
how the interaction matrix captures the hierarchical
structure of the competitive community:


 = �
0 0 % % % % 0

c1 0 c1 % % % c1
� � � � % % �

ci 0 % 0 ci % ci
� � � � � � �

cS�1 0 % 0 % 0 cS�1

cS 0 % 0 % 0 0

�. (3.13)

A later version of the model (Tilman et al. 1994),
introduced a habitat destruction parameter, D,
which allowed the investigation of how habitat
destruction causes species extinction.

(v) Hubbell’s neutral theory of biodiversity (Hubbell
2001) is also based on a stochastic model that can
be formalized as a particular case of model B. The
colonization vector must now be defined as
� = (�0,�1,…,�S), where �0 is the perturbation rate,
i.e. the probability of formation of a new gap in a
lattice site per time unit. The matrix 
 takes into
account only the ability of species to colonize empty
space, and therefore has the same entries for all
species. Species only differ in the immigration rate
(�i) from an external biogeographic pool. Internal
colonization of empty sites takes place in a way that
is proportional to the relative abundance of any
particular species in the lattice. Therefore, the
matrix 
 is written as


 = �
0 % % 0

c 0 % 0

� � � �

c 0 % 0
�. (3.14)
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Figure 3. An example of the time-series obtained from the
stochastic multiparticle model. (a) Fluctuations for different
species (here S = 30, N = 1000, � = 0.01 and C = 0.2). (b)
Reconstructed attractor for one of the previous time-series.

In Hubbell’s model, extinction takes place as a result
of an external perturbation. There are no species-
specific mortality rates. Therefore, the extinction
vector e = (e0,e1,…,eS) must be defined as a null vec-
tor.

The fact that these models exhibit a wide range of
dynamical patterns (from spiral waves and chaos to self-
organized critical behaviour) is important here. This wide
range of patterns validates our choice of a model in which
mechanisms of different kinds (which can create conflict-
ing constraints of different types) are explicitly included.

4. TIME EVOLUTION AND STEADY-STATE
PROPERTIES

(a) Time-series analysis
The first set of properties to be analysed are dynamic.

As reported in a previous analysis (Solé et al. 2000) com-
plex fluctuations are a common trait of model A. They
are also common (and exhibit the same basic features) in
model B. An example is shown in figure 3, where a small-
species system (S = 30) has been used. Complex dynami-
cal patterns are observable and in some cases they can be
identified as deterministic chaos (Gamarra & Solé 2000;
Turchin & Ellner 1998). In figure 3b we plot the recon-
structed attractor obtained from one of the species time-
series. Using standard techniques of time-series analysis
(Ellner 1988) it can be shown, for this particular case,
that a low-dimensional strange attractor is present, with a
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fractal dimension Df = 3.32 ± 0.12. In general, small sys-
tems with high connectivities display this type of deter-
ministic behaviour. This is not surprising since, under
these conditions, we are actually simulating small-species
systems under an individual-based approach. As the num-
ber of species increases or the connectivity becomes too
small, the observed dynamics becomes much more irregu-
lar and no low-dimensional patterns are observed. In fact,
the pattern of fluctuations displayed by these models
under low connectivities, or high immigration, are consist-
ent with a random-walk-like behaviour. It is important to
note that these differences are not present in other neutral
models, where the time-dependent dynamics exhibited by
the populations are always high dimensional.

A link between dynamics and statistical features can
easily be established by looking at the time evolution of
the species–rank distributions. This type of pattern dis-
played by ecological succession has been studied in a
number of well-known field studies (Bazzaz 1975; Hub-
bell 1979, 2001). This is displayed in figure 4, where the
evolution of these distributions is shown for both models
using � = 0.01, C = 0.1, N = 4 × 103 and a pool involving
S = 400 species. At T � 600 a stationary distribution is
observed (although species replacement takes place all the
time at the right-side of the curve). Both models behave
in a similar way, except for the eventual more limited
diversity achieved by model B. This is not surprising, since
empty spaces are more likely to be occupied by the most
common species already present.

A different aspect that can be studied in relation to tem-
poral patterns is the presence of scaling in time fluctu-
ations. The presence of scaling in natural populations has
been shown not only in year-to-year population variability
(Ariño & Pimm 1995) but also in lifetime distributions
(Keitt & Stanley 1998). Specifically, these authors find
that the lifetime distribution P(T) of local populations
scales as P(T) � T�� with � � 1.6 (Keitt & Stanley 1998).
The previous stochastic lattice model also shows this kind
of scaling property. In particular, using model B, lifetime
distributions clearly look long-tailed (figure 5), with sca-
ling exponents that depend on the parameters of the mod-
els, but that typically take a value � � 1.5 for large enough
interaction rates. The behaviour for model A is slightly
different: at low interaction rates, it shows random-walk
behaviour, � � 1.5, but when C increases, it shows devi-
ations from this quantity and moves towards � � 1.0. The
lower values seem to be consistent with the analysis by
Keitt and Marquet of the extinction patterns displayed by
the Hawaiian avifauna, for which they found � � 1
(Keitt & Marquet 1996), although the statistical signifi-
cance of their results might be small.

(b) Stationary distributions: mean field model
In order to obtain the expected asymptotic species–

abundance distributions, we can use model A and obtain
P(n) analytically, using a so-called mean field approxi-
mation. The mean field approximation considers a single,
average species (which is characterized by some average
properties) and the rest of the species defines a homo-
geneous, separated set. In some sense all species are con-
sidered equivalent and the fluctuations of this average
species can be analysed exactly. Of course, the mean field
approach does not take account of any correlations
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implicit in the matrix structure, but it can provide an
appropriate quantitative characterization when such corre-
lations are not very strong.

In order to obtain the stationary distribution of species–
abundance, we can consider the one-step birth and death
process (a particular class of Markovian processes) where
only single-unit changes are allowed. Let us start with the
master equation for this model. If P(n,t) is the probability
(for any species) of having n individuals at time t, the one-
step process is described by (van Kampen 1981; Ren-
shaw 1991)

dP(n,t)
dt

= rn 
 1P(n 
 1,t) 
 gn�1P(n � 1,t)

� (rn 
 gn)P(n,t), (4.1)

where rn 	 W(n � 1
n) and gn 	 W(n 
 1
n) are the tran-



Self-organized instability in complex ecosystems R. V. Solé and others 673
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different realizations of model B in the steady-state regime
(N = 4000, S = 200, � = 0.005 and ci = ei = 0.01 for all species,
with (a) C = 0.1; (b) C = 0.3; and (c) C = 0.5). The observed
slopes are indicated. For small interactin rates we obtain � � 1
and as C increases, values close to � � 3/2 are observed. Using
breeding bird populations in the USA, Keitt & Stanley (1998)
found a value of 1.61.
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(a) (b)

Figure 6. Mean field approximation applied to the
multispecies food web model. The real web (a) is replaced
by a mean-field system (b), where a given species (central
square) ‘sees’ the rest of the ecosystem as a homogeneous
system.

sition rates, i.e. the probability per unit time that, being
at n, a jump occurs to n � 1 or to n 
 1, respectively.

Two different processes will contribute to each tran-
sition rate in our model: those linked with internal interac-
tions through 
 and those due to immigration. As an
example, let us consider rn. Assuming a population of N
individuals, S species and a matrix connectivity C�, rn will
be decomposed into two terms:

rn 	 W(n � 1
n) = W
(n � 1
n) 
 W�(n � 1
n), (4.2)

where W
 and W� indicate interaction and immigration-
dependent transitions, respectively. It is not difficult to
show that

W�(n � 1
n) = ��1 �
1
S�nN (4.3)

W
(n � 1
n) = [1 � (1 � C�)2](1 � �)
n
N�N � n
N � 1�. (4.4)

The first of them is easily understandable: we choose
one individual from the species considered (with prob-
ability n/N) and replace it by another individual belonging
to a different species (with probability �). In order to
guarantee that it belongs to some other species, the factor
1 � 1/S is used.

The second term can also be derived from simple argu-
ments. In this case, we take, with probability 1 � �, two
individuals from the system, one from our species and
another from a different species. If they interact (with
probability C∗) then one of them wins, as defined by our
rules (two possible pairs are available and the probability
that the second wins over the first is just one half). The
probability C∗ is given by

C∗ = 1 � (1 � C�)2, (4.5)

which is easily understandable: since the elements of 

are chosen at random, the probability of no interaction is
P[
ij = 
ji = 0] = (1 � C�)2 and interaction will otherwise
occur. The final one-step transition rates are given by

rn = C∗(1 � �)
n
N
N � n
N � 1



�

S
(S � 1)

n
N

(4.6)

gn = C∗(1 � �)
n
N
N � n
N � 1



�

S�1 �
n
N�. (4.7)
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These one-step processes occur whenever the stochastic
dynamics consists of the birth and death of individuals.
The name does not imply that it is not possible for n to
jump by two or more units in a time �t, but only that the
probability for this to happen is O(�t2), and therefore neg-
ligible for small �t. The previous transition probabilities
are completed by the natural boundary conditions of mini-
mum zero population and maximum N population (i.e.
we have r0 = 0 (and can define g�1 = 0) and gN = 0 (and
define rN 
 1 = 0)).

Using standard methods from the theory of stochastic
processes (van Kampen 1981) it can be shown that the
stationary distribution reads:

Ps(n) =
gn � 1gn � 2%g0

rnrn � 1…r1
Ps(0); n = 1,…,N. (4.8)

The constant Ps(0) can be determined from the nor-
malization condition given by

�N
n = 0

Ps(n) = Ps(0) 
 �
n 	 0

Ps(n) = 1: (4.9)

(Ps(0))�1 = 1 
 �N
n = 1

gn � 1gn � 2%g0

rnrn � 1%r1
. (4.10)

It can be shown, after some algebra, that

(Ps((0))�1 = �N
n = 0

�N
n
��(n
 �∗)

�(�∗)
�(�∗ � n)

�(�∗)

= �N
n = 0

�N
n
�(�1)n

�(n
 �∗)
�(�∗)

�(1 � �∗)
�(n
 1 � �∗)

.
(4.11)

This sum takes the form of a Jacobi polynomial
P (�,�)
N (x) (Abramowitz & Stegun 1965) with � = ��∗,

� = �∗
�∗�(N
1) and x = �1, which can itself be
expressed in terms of gamma functions (�(x)) for this
value of x. Therefore, using equation (4.8) we find

Ps(n) = �N
n
��(n 
 �∗)

�(�∗)
�(�∗ � n)
�(�∗ � N )

�(�∗ 
 �∗ � N )
�(�∗ 
 �∗)

,

(4.12)

where the following notation has been used:

�∗ = �/[(1 � �)SC∗],�∗ = �∗(NH � 1 )
and v∗ = N 
 �∗(N � 1)(S � 1). (4.13)

When N 	 S � 1, N � 1 and N � n 	 0 (i.e. small
characteristic population values) and assuming in addition
that � is small, we find (McKane et al. 2000; Solé et al.
2000):

Ps(n) =
K

n
exp� ��

C∗(1 � �)
n�, (4.14)

where the normalization constant is given by

K = �∗� �

(1 � �)C∗��∗

. (4.15)

In figure 7, using simulations both in model A and B
for different immigration rates, we can see that, as the
immigration rate is reduced (and thus interactions domi-
nate in the dynamics) the distributions display long tails.
Together with the (non-realistic) Gaussian distribution,
we find the familiar lognormal and power-law shapes. As

Phil. Trans. R. Soc. Lond. B (2002)

we can see in inset plots, the scaling exponent for the
power law agrees both with the mean field prediction
(� = 1) and empirical data (figure 2). In fact, the mean
field model has been shown to provide Gaussian and log-
normal distributions for different parameter ranges
(McKane et al. 2000). For very high immigration rates or
very low connectivity values, the system is dominated by
the arrival of external immigrants, and species evolve ran-
domly without interacting with each other. In these
regimes Gaussian distributions are observed. For inter-
mediate values of immigration and connectivity values the
populations are dominated neither by external inputs nor
by internal dynamics, and lognormal distributions are
observed. Finally, for very low immigration values and
high connectivity values, the system is dominated by
internal dynamics, and power-law distributions are
observed (table 1).

(c) Species–connectivity relation
The second statistical feature that can be derived from

our analysis is the well-known scaling in the species–con-
nectivity relation. Our model confirms the conjecture that,
as the number of species reaches a given critical value (for
each given connectivity) then no further increase in spec-
ies number is possible. Species interact with an average of
ca. C�S� species and a constant turnover is observable. If
we artificially increase the diversity by dropping additional
species into the system, a rapid decrease in �S� is observed
until the critical number is recovered.

In this context, a qualitative argument can be provided
in order to illustrate this result. Let us consider a deter-
ministic mean field approach, where species interact
through a predefined matrix. Let S be the maximum
allowed number of species. The deterministic counterpart
of our model would read:

ds(t)
dt

= ��1 �
s(t)
S � � c(t)s(t), (4.16)

dc(t)
dt

= s(t)(C� � c(t)). (4.17)

These equations can be understood as follows. The two
terms on the right-hand side of equation (4.16) represent
the rate of change of species due to external immigration
and due to internal interaction. The first of these terms,
that due to external interaction, can, as a preliminary step,
be explained by considering the case S→ �. If the species
pool were infinitely large, every new immigrant individual
would belong to a new species and s(t) would increase by
one in time ��1. To correct this rate of increase for the
fact that S is finite, but still large, a linear decrease of the
form [1 � (s(t)/S)] has been assumed. The second term,
that due to internal interaction, is negative since any
internal interaction provides a chance for the number of
species in the system to decrease. It is proportional to the
probability of an internal interaction, c(t), and to the num-
ber of species present s(t). The second equation may be
understood by imagining that the probability of interac-
tion is very small. Thus, the number of species and the
probability of interaction will increase, since more species
means more opportunities to interact. However, if the
probability of interaction is large, the number of species
and the probability of interaction will start to decrease.
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Figure 7. Species–abundance distributions obtained from (a) model A and (b) model B. As the immigration rate decreases,
long-tailed distributions become more common. Here we show the lognormal distribution (open squares) and power laws
(filled circles). Both have been obtained using S = 200, N = 4000 and immigration rates of � = 0.05 (lognormal) and � = 0.005
(scale-free distribution). For model B, the death and colonization rates are set at e = 0.01 and c = 0.01 respectively, for all
species. The insets show a log–log plot of the power-law solutions. We can see that the exponents are consistent with field data (i.e.
� � 1).

Table 1. Comparison between field data and the stochastic model A.
(Model B and the spatially explicit model give similar statistics. HF: highly fluctuating. In the lifetime relationship, the lower
bound of the exponent is provided by Keitt & Marquet (1996).)

property field data model

species–connectivity S � kC�1
�, 0 � � � 0.5 S = kC�1
�(�)

scaling in diversity P(n) � n��, � � 1 P(n) � n��, � � 1
lifetimes N(T ) � T ��; � 1 � � � 1.6 N(T) � T ��; (1 � � � 3/2)
population dynamics HF, (�L � 0) HF, marginal
Gaussian distribution not observed C → 0, � → 1/2
lognormal distribution common C → 0.5, � � 0.1
power-law distribution observed C → 1, � → 0
SARs S � Az, 0 � z � 1 S � Az, 0 � z � 1

Phil. Trans. R. Soc. Lond. B (2002)
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These considerations lead to equation (4.17), where C� is
the equilibrium value of c(t). Two general observations
may be made which follow directly from equations (4.16)
and (4.17). (i) If no interactions were allowed to occur
(assuming a large number of individuals), then the num-
ber of species reaches a maximum value of S. (ii) If the
system evolves from small values of c(t), then it increases
with the number of species until it reaches the value C�,
imposed by the connectivity matrix. This limits the growth
rate of the number of species. In other words, interactions
inhibit further increase of diversity.

The model defined by equations (4.16) and (4.17) has
a single steady state:

(s∗,c∗) = � �S
C� S 
 �

,C��. (4.18)

In fact, we can see that the steady state associated with
the number of species follows a hyperbolic relation with
C� for large S and small immigration rates:

s∗ → �

C�

. (4.19)

It is interesting to note that our argument is not based in
linear stability arguments but on the presence of a positive
feedback from diversity to connectivity plus a reverse,
negative feedback in the other direction. This is in fact a
globally stable attractor. The Jacobi matrix for this system
is given by

L = �∂ṡ/∂s ∂ṡ/∂c

∂ċ/∂s ∂ċ/∂c�. (4.20)

At the fixed point, we have

L(s∗,c∗) = � ��/S � C� � s∗

0 � s∗
�, (4.21)

which trivially gives the two negative eigenvalues:
�1 = ��/S � C� and �2 = �s∗. Conversely, it is easy to
show that, if the initial connectivity is already C� (i.e. the
initial number of species already interact with a connectiv-
ity C), then the first equation allows us to solve for the
mean-field temporal evolution of s(t), assuming that no
species were present at t = 0. This so-called colonization
curve (MacArthur & Wilson 1967) is given by

s(t) =
�



(1 � e��t), (4.22)

where � 	 �/S 
 C� gives the speed at which the steady
state is reached. It is significant that the final result is simi-
lar to that derived from classic island biogeography theory
(MacArthur & Wilson 1967). Specifically, MacArthur &
Wilson’s derivation of the colonization curve was obtained
by integrating the difference between the time-curves of
the immigration I, and extinction E, rates, i.e.

s(t) = � t

0

(I(t) � E(t))dt.

A more controlled derivation of the actual scaling
relation can be obtained from the stochastic model
(McKane et al. 2000). As the number of species can be
written as �S� = (1 � Ps(0))S and it can be shown that
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Ps(0) = (�∗S )�∗N, for the range of parameters considered
in the derivation of the power law solution of equation
(4.8), it gives �S� = S�∗N ln(1/(�∗S)). Substituting in the
expression for �∗ gives

�S� =
�N

(1 � �)C∗
ln�1 � �

� � = lnC∗� � A(C∗)�1
� (�),

(4.23)

where � is given by

��1 = ln�1 � �

� � � ln
1
�

(4.24)

and A is a constant given by

A = N� � 1exp(���1). (4.25)

The additional conditions under which equation (4.23)
holds are �∗ � � and 
lnC∗
 � 
ln�
, where �∗ = �(N � 1)/
[(1 � �)SC∗].

In figure 8 we illustrate the simulated values for the
species–connectivity relation for two different immigration
rates. The log–log plot allows the presence of a scaling
relation to be appreciated, with a changing exponent that
depends on �, as expected.

5. SPATIALLY EXTENDED SYSTEMS

A further test of the generality of our model is provided
by the consideration of explicit spatial degrees of freedom
(Bascompte & Solé 1995, 1998; Durrett 1999). The most
important relation that can be investigated as a result of
this extension of the model is the relation between species
richness and the area covered by the ecosystem under con-
sideration.

SARs have been observed for a long time and are con-
sidered to be one of the few genuine laws of community
ecology. The standard (but not unique) form of this
relation is a power-law relation:

S = �Az, (5.1)

where � is a constant and S is the total number of species
observed within a given area A. The exponent of this
scaling relation, z, takes a range of values between zero
and one depending on a number of features. Within a
biogeographic region it takes typical values of 0.1–0.2.
Considering islands of different area, the z exponent
takes higher values (0.25–0.45), and comparing the
whole biotas of different biogeographic regions, the
exponent takes the highest values (0.9) (Rosenzweig
1995). The SAR has been used in many applications and
is particularly relevant for characterization of community
structure, estimation of species richness, and estimation
of species loss rates through habitat destruction, or to
determine reserve sizes.

To extend the previous model into space is relatively
easy. Both models A and B admit natural spatial exten-
sions. Let us construct the spatially explicit counterpart to
model A. The previous rules have now to be extended to a
lattice of sites that are occupied by individuals of different
species. Sij � � represents the species present at the (i, j )th
site (here 1 � i, j � L). Our rules now read:
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Figure 8. Species–connectivity relationship. Two simulations are presented for two immigration values. Plots (a) and (b) correspond
to a simulation with a higher value corresponding to plots (c) and (d). Although the mean field approach overestimates
systematically the average number of species at steady state, the qualitative hyperbolic behaviour of S – C curves is well captured.
Standard deviations from the ensemble average value are also shown. In (a) and (b), the conditions required for the approximation
given by equation (4.23) to be valid are not fulfilled. Apart from the simulated values, in this case the other plotted curve is the
exact mean field relation � S � = (1 � Ps(0))S. In contrast, in (c) and (d), the conditions needed to apply equation (4.23) are quite
well fulfilled and two other curves are plotted: the exact mean field relation (solid line) and the approximation (dotted line).

(i) Immigration: a randomly chosen site occupied by
species Sij is replaced by a species randomly chosen
from the species pool, i.e. S�

ij � �(S ):

Sij →
�

S�
ij, (5.2)

with a probability �—the same value for all species.
(ii) Interaction: given a randomly chosen site occupied

by a species Sij � � we select one of its q nearest
neighbours (here we take q = 8), say Srs � �, and
perform the replacement Sij = Srs if the interaction
matrix allows it (as defined in the non-spatial
counterpart).

Because the rules of interaction are now local
(immigration introduces non-local effects required in
order to maintain a stable diversity), we should expect to

Phil. Trans. R. Soc. Lond. B (2002)

observe spatial clusters of sites occupied by the same spec-
ies. An example of the obtained patterns is shown in figure
9. In order to define a colour scale, we have used a domi-
nance index �i for each species, defined from the interac-
tion matrix as follows:

�i =
1
S�

S

j = 1

�[
ij � 
ji], (5.3)

where �[x] = 1 when x 	 0 and zero otherwise. Here �i
�[0,1] indicates how probable it is that a species i will
invade (on average) a nearest-neighbour site occupied by
another species from �.

In both models, small immigration or larger C favour
the formation of larger connected patches of the same
type. As immigration or interaction rates increase
(allowing an easier invasion of patches) patch size
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Figure 9. Spatial snapshot generated by the stochastic model
on a 100 × 100 lattice for a system involving S = 150 species and
C = 0.2, � = 0.005. The grey scale has been generated by
using a parameter—the dominance index parameter of
equation (5.3)—that measures the colonization ability of
each species.

becomes smaller and species are more randomly scattered
through the lattice. This is reflected in the SARs, as shown
in figure 10. We can see that the exponent z increases with
� (model A) since higher immigration makes it easier to
find any species during the sampling. Conversely, as C
becomes smaller, and patches shrink in size, saturation
occurs more rapidly and larger z values are also observed.
The range of values obtained is consistent with field obser-
vations from rainforest plots (Condit et al. 1996; Plotkin
et al. 2000).

In summary, in table 1 the field data and model results
are compared with regard to the different well-established
regularities observed in natural systems that have been
addressed. A species–connectivity relationship is predicted
by model A at low immigration regimes. Highly fluctuat-
ing populations showing complex dynamics including
chaos, and scaling relations for species lifetime distri-
butions characterize temporal dynamics. The model in
different immigration regimes also recovers the different
shapes of abundance distribution curves. Finally, the
behaviour of the exponent z of the SAR is well captured by
the modelling approach presented: the exponent decreases
when the relative importance of interactions within the
system increases with respect to external immigration
events, in agreement with earlier theoretical studies
(Durrett & Levin 1996).

6. DISCUSSION

We have further explored a previously presented stoch-
astic model of multispecies communities. The aim of our
study was to analyse the robustness of our previous find-
ings, to extend them into a spatially explicit context and
to propose a new unifying framework able to include a
disparate number of features reported from complex ecol-
ogies. The present results can be summarized as follows.

(i) Our stochastic models display complex time fluctu-
ations, which can exhibit deterministic features
under low-diversity (S ) and high-connectivity (C )
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conditions. A general trend is the presence of more
complex and variable time-series as immigration
allows the simultaneous coexistence of many spec-
ies.

(ii) The species–abundance distributions obtained from
both models are able to reproduce the long-tailed
shapes characteristic of real ecologies. In particular,
for small immigration rates and not very small con-
nectivities, power-law and lognormal distributions
are obtained, in agreement with field data. The
dynamics of these distributions is also in agreement
with the patterns of species–rank distributions exhib-
ited by ecological succession.

(iii) The connectance and species diversity displayed by
the stationary states in both models are linked to the
observed scaling law S � C�1
�, with � dependent
upon immigration rates. This result and mean field
calculations indicate that the deviations from the
hyperbolic law S � C�1 are due to the fluctuations
arising from the presence of immigration.

(iv) The spatially extended counterparts of our models,
including limited dispersal and competition, leads to
a SAR S = �Az consistent with observed patterns in
rainforest plots. The exponent z increases with larger
immigration rates and decreases as the connectivity
increases. Therefore, in general, the exponent z is
greater the greater the relative importance of immi-
gration processes are with respect to internal dynam-
ics.

The driving force in ecology is the increase in diversity
due to either immigration or speciation: assuming a given
average C, as the number of species increases the system
interactions increase too, and competition and other
forces counterbalance the driving by triggering extinction
events as the interactions among components increase
(figure 11). The system is naturally poised at the critical
boundary. This observation would suggest that ecological
systems are self-organized critical. However, real ecosys-
tems (as happens to be the case with other complex
systems) lack some of the ingredients required in order to
define them as self-organized critical. First, they are, in
many cases, influenced by external perturbations of a dif-
ferent nature and cannot simply be considered as purely
driven by internal dynamics. Second, interactions happen
to occur in a non-homogeneous way (different species
interact with different strengths) and thus the local rules
of interaction might be very different from place to place.
Third, although the increase in diversity is a driving force
that pushes ecosystems towards the instability boundary,
such driving does not need to be very slow (which seems
to be a strong condition for SOC dynamics) and thus the
system does not necessarily have time to relax before a
new species enters the system. The last point makes it
possible to observe long-tailed distributions having some
characteristic maximum, as happens with the lognormal
shapes.

Here we propose a new concept, self-organized insta-
bility, as a unifying framework able to include the range
of patterns observed in ecological systems and provide a
complete view of the previous properties within a single
theoretical approximation. Under the constant immi-
gration of species, diversity increases until a critical num-
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Figure 11. Feedback loops leading to instability. For an
ecosystem, the constant addition of new species by
immigration increases the likelihood of interactions. Such
interactions limit diversity and trigger extinctions, thus
inhibiting further increases of diversity.

ber of resident species is reached. Now instability acts as a
barrier preventing further increases in diversity (although
species turnover is observed). The dynamical, structural
and statistical features of the simulated ecosystems result
from a single, basic mechanism of community organiza-
tion.

How different are the causal explanations presented
from those operating in natural systems? The simple mod-
els that we have considered are, of course, oversimplifica-
tions of reality. They do not include, as happens with most
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other ecological models, most of the details that define
species and their relationships between them and the
environment. No external fluctuations, physiology, ener-
getics or trade-offs are explicitly present. However, despite
these drawbacks, the power of our approximation seems
clear. Why is that? We can conjecture that nonlinear
dynamics and the dynamical features that emerge as a
consequence of stochastic dynamics and marginal stability
are much more important than thermodynamic consider-
ations (at least at the scales considered). This view is not
new in ecology: the constraints operating in food chain
lengths are a clear example (Morin (1999) and references
cited therein). Although thermodynamic arguments sug-
gest that longer chains will be observed at higher pro-
ductivities, in fact threshold instabilities arising from
nonlinear dynamics lead to shorter chains.

Perhaps this underlies the success of community models
based on dynamical systems approaches. In these models,
instability is ultimately responsible for the observed fluc-
tuations and these allow the macroscopic laws observable
in real ecosystems to be obtained. We do not know if our
approach can be translated into a broad range of situ-
ations, but it provides a well-defined mechanism that sug-
gests that our biosphere can have predictable properties
arising from complex fluctuations. There is indeed pre-
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dictability here: the overall features present in our models
correspond to observable regularities that indicate that
global patterns are actually ‘attractors’ of the dynamics.
In this sense, we can see that some kind of equilibrium
state can be defined at the community level. The changes
in species composition, the fluctuations of their popu-
lations as well as the presence of rarity are, however, the
fingerprint of the underlying instability. Under our
approximation, ecological complexity results from the
conflict between the tendency to higher diversity and the
negative feedbacks arising from interactions. Future stud-
ies including evolutionary responses might help to under-
stand the evolutionary consequences of these dynamical
patterns.
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Bascompte, J. & Solé, R. V. (eds) 1998 Modelling spatiotemporal
dynamics in ecology. Berlin: Springer.

Bazzaz, F. A. 1975 Plant species diversity in oldfield suc-
cessional ecosystems in southern Illinois. Ecology 56, 485–
488.

Bell, G. 2000 The distribution of abundance in neutral com-
munities. Am. Nat. 155, 606–616.

Bell, G. 2001 Neutral macroecology. Science 293, 2413–2418.
Binney, J. J., Dowrick, N. W., Fisher, A. J. & Newman,

M. E. J. 1993 The theory of critical phenomena. Oxford: Clar-
endon Press.

Brown, J. H. 1995 Macroecology. University of Chicago Press.
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Solé, R. V., Manrubia, S. C., Luque, B., Delgado, J. & Bas-
compte, J. 1996 Phase transitions and complex systems.
Complexity 1, 13–26.
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GLOSSARY

SAR: species–area relation
SCA: stochastic cellular automata
SOC: self-organized criticality
FFM: forest-fire model
BCT: Bak–Chen–Tang
DS: Drossel–Schwabl
HF: highly fluctuating


