Abstract
Plants are able to survive prolonged exposure to sub-zero temperatures; this ability is enhanced by pre-exposure to low, but above-zero temperatures. This process, known as cold acclimation, is briefly reviewed from the perception of cold, through transduction of the low-temperature signal to functional analysis of cold-induced gene products. The stresses that freezing of apoplastic water imposes on plant cells is considered and what is understood about the mechanisms that plants use to combat those stresses discussed, with particular emphasis on the role of the extracellular matrix.
Full Text
The Full Text of this article is available as a PDF (186.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aguilar P. S., Hernandez-Arriaga A. M., Cybulski L. E., Erazo A. C., de Mendoza D. Molecular basis of thermosensing: a two-component signal transduction thermometer in Bacillus subtilis. EMBO J. 2001 Apr 2;20(7):1681–1691. doi: 10.1093/emboj/20.7.1681. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ashworth E. N., Abeles F. B. Freezing behavior of water in small pores and the possible role in the freezing of plant tissues. Plant Physiol. 1984 Sep;76(1):201–204. doi: 10.1104/pp.76.1.201. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ashworth E. N. The Formation and Distribution of Ice within Forsythia Flower Buds. Plant Physiol. 1990 Mar;92(3):718–725. doi: 10.1104/pp.92.3.718. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baardsnes J., Davies P. L. Sialic acid synthase: the origin of fish type III antifreeze protein? Trends Biochem Sci. 2001 Aug;26(8):468–469. doi: 10.1016/s0968-0004(01)01879-5. [DOI] [PubMed] [Google Scholar]
- Baardsnes J., Jelokhani-Niaraki M., Kondejewski L. H., Kuiper M. J., Kay C. M., Hodges R. S., Davies P. L. Antifreeze protein from shorthorn sculpin: identification of the ice-binding surface. Protein Sci. 2001 Dec;10(12):2566–2576. doi: 10.1110/ps.ps.26501. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baardsnes J., Kondejewski L. H., Hodges R. S., Chao H., Kay C., Davies P. L. New ice-binding face for type I antifreeze protein. FEBS Lett. 1999 Dec 10;463(1-2):87–91. doi: 10.1016/s0014-5793(99)01588-4. [DOI] [PubMed] [Google Scholar]
- Bailey-Serres J. Selective translation of cytoplasmic mRNAs in plants. Trends Plant Sci. 1999 Apr;4(4):142–148. doi: 10.1016/s1360-1385(99)01386-2. [DOI] [PubMed] [Google Scholar]
- Baker S. S., Wilhelm K. S., Thomashow M. F. The 5'-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression. Plant Mol Biol. 1994 Mar;24(5):701–713. doi: 10.1007/BF00029852. [DOI] [PubMed] [Google Scholar]
- Baldi P., Grossi M., Pecchioni N., Valè G., Cattivelli L. High expression level of a gene coding for a chloroplastic amino acid selective channel protein is correlated to cold acclimation in cereals. Plant Mol Biol. 1999 Sep;41(2):233–243. doi: 10.1023/a:1006375332677. [DOI] [PubMed] [Google Scholar]
- Braam J., Davis R. W. Rain-, wind-, and touch-induced expression of calmodulin and calmodulin-related genes in Arabidopsis. Cell. 1990 Feb 9;60(3):357–364. doi: 10.1016/0092-8674(90)90587-5. [DOI] [PubMed] [Google Scholar]
- Buer C. S., Weathers P. J., Swartzlander G. A., Jr Changes in Hechtian strands in cold-hardened cells measured by optical microsurgery. Plant Physiol. 2000 Apr;122(4):1365–1377. doi: 10.1104/pp.122.4.1365. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carpenter C. D., Kreps J. A., Simon A. E. Genes encoding glycine-rich Arabidopsis thaliana proteins with RNA-binding motifs are influenced by cold treatment and an endogenous circadian rhythm. Plant Physiol. 1994 Mar;104(3):1015–1025. doi: 10.1104/pp.104.3.1015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carpita N., Sabularse D., Montezinos D., Delmer D. P. Determination of the pore size of cell walls of living plant cells. Science. 1979 Sep 14;205(4411):1144–1147. doi: 10.1126/science.205.4411.1144. [DOI] [PubMed] [Google Scholar]
- Chandler J., Wilson A., Dean C. Arabidopsis mutants showing an altered response to vernalization. Plant J. 1996 Oct;10(4):637–644. doi: 10.1046/j.1365-313x.1996.10040637.x. [DOI] [PubMed] [Google Scholar]
- Chang C., Shockey J. A. The ethylene-response pathway: signal perception to gene regulation. Curr Opin Plant Biol. 1999 Oct;2(5):352–358. doi: 10.1016/s1369-5266(99)00004-7. [DOI] [PubMed] [Google Scholar]
- Chen H. H., Li P. H., Brenner M. L. Involvement of abscisic Acid in potato cold acclimation. Plant Physiol. 1983 Feb;71(2):362–365. doi: 10.1104/pp.71.2.362. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cheng A., Merz K. M., Jr Ice-binding mechanism of winter flounder antifreeze proteins. Biophys J. 1997 Dec;73(6):2851–2873. doi: 10.1016/S0006-3495(97)78315-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chou K. C. Energy-optimized structure of antifreeze protein and its binding mechanism. J Mol Biol. 1992 Jan 20;223(2):509–517. doi: 10.1016/0022-2836(92)90666-8. [DOI] [PubMed] [Google Scholar]
- DeVries A. L. Antifreeze peptides and glycopeptides in cold-water fishes. Annu Rev Physiol. 1983;45:245–260. doi: 10.1146/annurev.ph.45.030183.001333. [DOI] [PubMed] [Google Scholar]
- DeVries A. L., Komatsu S. K., Feeney R. E. Chemical and physical properties of freezing point-depressing glycoproteins from Antarctic fishes. J Biol Chem. 1970 Jun 10;245(11):2901–2908. [PubMed] [Google Scholar]
- DeVries A. L., Wohlschlag D. E. Freezing resistance in some Antarctic fishes. Science. 1969 Mar 7;163(3871):1073–1075. doi: 10.1126/science.163.3871.1073. [DOI] [PubMed] [Google Scholar]
- Devries A. L., Lin Y. Structure of a peptide antifreeze and mechanism of adsorption to ice. Biochim Biophys Acta. 1977 Dec 20;495(2):388–392. doi: 10.1016/0005-2795(77)90395-6. [DOI] [PubMed] [Google Scholar]
- Ding J. P., Pickard B. G. Modulation of mechanosensitive calcium-selective cation channels by temperature. Plant J. 1993 May;3(5):713–720. [PubMed] [Google Scholar]
- Doucet C. J., Byass L., Elias L., Worrall D., Smallwood M., Bowles D. J. Distribution and characterization of recrystallization inhibitor activity in plant and lichen species from the UK and maritime Antarctic. Cryobiology. 2000 May;40(3):218–227. doi: 10.1006/cryo.2000.2241. [DOI] [PubMed] [Google Scholar]
- Duman J. G. Antifreeze and ice nucleator proteins in terrestrial arthropods. Annu Rev Physiol. 2001;63:327–357. doi: 10.1146/annurev.physiol.63.1.327. [DOI] [PubMed] [Google Scholar]
- Duman J. G. Antifreeze and ice nucleator proteins in terrestrial arthropods. Annu Rev Physiol. 2001;63:327–357. doi: 10.1146/annurev.physiol.63.1.327. [DOI] [PubMed] [Google Scholar]
- Dunn M. A., Brown K., Lightowlers R., Hughes M. A. A low-temperature-responsive gene from barley encodes a protein with single-stranded nucleic acid-binding activity which is phosphorylated in vitro. Plant Mol Biol. 1996 Mar;30(5):947–959. doi: 10.1007/BF00020806. [DOI] [PubMed] [Google Scholar]
- Dunn M. A., Goddard N. J., Zhang L., Pearce R. S., Hughes M. A. Low-temperature-responsive barley genes have different control mechanisms. Plant Mol Biol. 1994 Mar;24(6):879–888. doi: 10.1007/BF00014442. [DOI] [PubMed] [Google Scholar]
- Dunn M. A., Morris A., Jack P. L., Hughes M. A. A low-temperature-responsive translation elongation factor 1 alpha from barley (Hordeum vulgare L.). Plant Mol Biol. 1993 Oct;23(1):221–225. doi: 10.1007/BF00021434. [DOI] [PubMed] [Google Scholar]
- Fletcher G. L., Hew C. L., Davies P. L. Antifreeze proteins of teleost fishes. Annu Rev Physiol. 2001;63:359–390. doi: 10.1146/annurev.physiol.63.1.359. [DOI] [PubMed] [Google Scholar]
- Fletcher G. L., Hew C. L., Davies P. L. Antifreeze proteins of teleost fishes. Annu Rev Physiol. 2001;63:359–390. doi: 10.1146/annurev.physiol.63.1.359. [DOI] [PubMed] [Google Scholar]
- Freemont P. S. RING for destruction? Curr Biol. 2000 Jan 27;10(2):R84–R87. doi: 10.1016/s0960-9822(00)00287-6. [DOI] [PubMed] [Google Scholar]
- Gilmour S. J., Sebolt A. M., Salazar M. P., Everard J. D., Thomashow M. F. Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol. 2000 Dec;124(4):1854–1865. doi: 10.1104/pp.124.4.1854. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gilmour S. J., Thomashow M. F. Cold acclimation and cold-regulated gene expression in ABA mutants of Arabidopsis thaliana. Plant Mol Biol. 1991 Dec;17(6):1233–1240. doi: 10.1007/BF00028738. [DOI] [PubMed] [Google Scholar]
- Gilmour S. J., Zarka D. G., Stockinger E. J., Salazar M. P., Houghton J. M., Thomashow M. F. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J. 1998 Nov;16(4):433–442. doi: 10.1046/j.1365-313x.1998.00310.x. [DOI] [PubMed] [Google Scholar]
- Gosti F., Beaudoin N., Serizet C., Webb A. A., Vartanian N., Giraudat J. ABI1 protein phosphatase 2C is a negative regulator of abscisic acid signaling. Plant Cell. 1999 Oct;11(10):1897–1910. doi: 10.1105/tpc.11.10.1897. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Graether S. P., Kuiper M. J., Gagné S. M., Walker V. K., Jia Z., Sykes B. D., Davies P. L. Beta-helix structure and ice-binding properties of a hyperactive antifreeze protein from an insect. Nature. 2000 Jul 20;406(6793):325–328. doi: 10.1038/35018610. [DOI] [PubMed] [Google Scholar]
- Gray W. M., Ostin A., Sandberg G., Romano C. P., Estelle M. High temperature promotes auxin-mediated hypocotyl elongation in Arabidopsis. Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):7197–7202. doi: 10.1073/pnas.95.12.7197. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gómez J., Sánchez-Martínez D., Stiefel V., Rigau J., Puigdomènech P., Pagès M. A gene induced by the plant hormone abscisic acid in response to water stress encodes a glycine-rich protein. Nature. 1988 Jul 21;334(6179):262–264. doi: 10.1038/334262a0. [DOI] [PubMed] [Google Scholar]
- Hajela R. K., Horvath D. P., Gilmour S. J., Thomashow M. F. Molecular Cloning and Expression of cor (Cold-Regulated) Genes in Arabidopsis thaliana. Plant Physiol. 1990 Jul;93(3):1246–1252. doi: 10.1104/pp.93.3.1246. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harmon A. C., Gribskov M., Harper J. F. CDPKs - a kinase for every Ca2+ signal? Trends Plant Sci. 2000 Apr;5(4):154–159. doi: 10.1016/s1360-1385(00)01577-6. [DOI] [PubMed] [Google Scholar]
- Harris D. M., Myrick T. L., Rundle S. J. The Arabidopsis homolog of yeast TAP42 and mammalian alpha4 binds to the catalytic subunit of protein phosphatase 2A and is induced by chilling. Plant Physiol. 1999 Oct;121(2):609–617. doi: 10.1104/pp.121.2.609. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haymet A. D., Ward L. G., Harding M. M., Knight C. A. Valine substituted winter flounder 'antifreeze': preservation of ice growth hysteresis. FEBS Lett. 1998 Jul 3;430(3):301–306. doi: 10.1016/s0014-5793(98)00652-8. [DOI] [PubMed] [Google Scholar]
- Hightower R., Baden C., Penzes E., Lund P., Dunsmuir P. Expression of antifreeze proteins in transgenic plants. Plant Mol Biol. 1991 Nov;17(5):1013–1021. doi: 10.1007/BF00037141. [DOI] [PubMed] [Google Scholar]
- Hincha D. K., Bakaltcheva I., Schmitt J. M. Galactose-Specific Lectins Protect Isolated Thylakoids against Freeze-Thaw Damage. Plant Physiol. 1993 Sep;103(1):59–65. doi: 10.1104/pp.103.1.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hincha D. K., Meins Jr F., Schmitt J. M. [beta]-1,3-Glucanase Is Cryoprotective in Vitro and Is Accumulated in Leaves during Cold Acclimation. Plant Physiol. 1997 Jul;114(3):1077–1083. doi: 10.1104/pp.114.3.1077. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hincha D. K., Neukamm B., Sror H. A., Sieg F., Weckwarth W., Rückels M., Lullien-Pellerin V., Schröder W., Schmitt J. M. Cabbage cryoprotectin is a member of the nonspecific plant lipid transfer protein gene family. Plant Physiol. 2001 Feb;125(2):835–846. doi: 10.1104/pp.125.2.835. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hincha D. K., Oliver A. E., Crowe J. H. Lipid composition determines the effects of arbutin on the stability of membranes. Biophys J. 1999 Oct;77(4):2024–2034. doi: 10.1016/S0006-3495(99)77043-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hincha DK, Crowe JH. Trehalose Increases Freeze-Thaw Damage in Liposomes Containing Chloroplast Glycolipids. Cryobiology. 1998 May;36(3):245–249. doi: 10.1006/cryo.1998.2074. [DOI] [PubMed] [Google Scholar]
- Hon W. C., Griffith M., Mlynarz A., Kwok Y. C., Yang D. S. Antifreeze proteins in winter rye are similar to pathogenesis-related proteins. Plant Physiol. 1995 Nov;109(3):879–889. doi: 10.1104/pp.109.3.879. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Horiguchi G., Fuse T., Kawakami N., Kodama H., Iba K. Temperature-dependent translational regulation of the ER omega-3 fatty acid desaturase gene in wheat root tips. Plant J. 2000 Dec;24(6):805–813. doi: 10.1046/j.1365-313x.2000.00925.x. [DOI] [PubMed] [Google Scholar]
- Horvath D. P., Olson P. A. Cloning and characterization of cold-regulated glycine-rich RNA-binding protein genes from leafy spurge (Euphorbia esula L.) and comparison to heterologous genomic clones. Plant Mol Biol. 1998 Nov 1;38(4):531–538. doi: 10.1023/a:1006050208670. [DOI] [PubMed] [Google Scholar]
- Hurme R., Berndt K. D., Normark S. J., Rhen M. A proteinaceous gene regulatory thermometer in Salmonella. Cell. 1997 Jul 11;90(1):55–64. doi: 10.1016/s0092-8674(00)80313-x. [DOI] [PubMed] [Google Scholar]
- Hurme R., Rhen M. Temperature sensing in bacterial gene regulation--what it all boils down to. Mol Microbiol. 1998 Oct;30(1):1–6. doi: 10.1046/j.1365-2958.1998.01049.x. [DOI] [PubMed] [Google Scholar]
- Ichimura K., Mizoguchi T., Yoshida R., Yuasa T., Shinozaki K. Various abiotic stresses rapidly activate Arabidopsis MAP kinases ATMPK4 and ATMPK6. Plant J. 2000 Dec;24(5):655–665. doi: 10.1046/j.1365-313x.2000.00913.x. [DOI] [PubMed] [Google Scholar]
- Igarashi Y., Yoshiba Y., Takeshita T., Nomura S., Otomo J., Yamaguchi-Shinozaki K., Shinozaki K. Molecular cloning and characterization of a cDNA encoding proline transporter in rice. Plant Cell Physiol. 2000 Jun;41(6):750–756. doi: 10.1093/pcp/41.6.750. [DOI] [PubMed] [Google Scholar]
- Ingram J., Bartels D. THE MOLECULAR BASIS OF DEHYDRATION TOLERANCE IN PLANTS. Annu Rev Plant Physiol Plant Mol Biol. 1996 Jun;47(NaN):377–403. doi: 10.1146/annurev.arplant.47.1.377. [DOI] [PubMed] [Google Scholar]
- Ishitani M., Xiong L., Lee H., Stevenson B., Zhu J. K. HOS1, a genetic locus involved in cold-responsive gene expression in arabidopsis. Plant Cell. 1998 Jul;10(7):1151–1161. doi: 10.1105/tpc.10.7.1151. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ishitani M., Xiong L., Stevenson B., Zhu J. K. Genetic analysis of osmotic and cold stress signal transduction in Arabidopsis: interactions and convergence of abscisic acid-dependent and abscisic acid-independent pathways. Plant Cell. 1997 Nov;9(11):1935–1949. doi: 10.1105/tpc.9.11.1935. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jackson P. K., Eldridge A. G., Freed E., Furstenthal L., Hsu J. Y., Kaiser B. K., Reimann J. D. The lore of the RINGs: substrate recognition and catalysis by ubiquitin ligases. Trends Cell Biol. 2000 Oct;10(10):429–439. doi: 10.1016/s0962-8924(00)01834-1. [DOI] [PubMed] [Google Scholar]
- Jaglo-Ottosen K. R., Gilmour S. J., Zarka D. G., Schabenberger O., Thomashow M. F. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science. 1998 Apr 3;280(5360):104–106. doi: 10.1126/science.280.5360.104. [DOI] [PubMed] [Google Scholar]
- Jorgensen H., Mori M., Matsui H., Kanaoka M., Yanagi H., Yabusaki Y., Kikuzono Y. Molecular dynamics simulation of winter flounder antifreeze protein variants in solution: correlation between side chain spacing and ice lattice. Protein Eng. 1993 Jan;6(1):19–27. doi: 10.1093/protein/6.1.19. [DOI] [PubMed] [Google Scholar]
- Kasuga M., Liu Q., Miura S., Yamaguchi-Shinozaki K., Shinozaki K. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol. 1999 Mar;17(3):287–291. doi: 10.1038/7036. [DOI] [PubMed] [Google Scholar]
- Kenward K. D., Brandle J., McPherson J., Davies P. L. Type II fish antifreeze protein accumulation in transgenic tobacco does not confer frost resistance. Transgenic Res. 1999 Apr;8(2):105–117. doi: 10.1023/a:1008886629825. [DOI] [PubMed] [Google Scholar]
- Kiegle E., Moore C. A., Haseloff J., Tester M. A., Knight M. R. Cell-type-specific calcium responses to drought, salt and cold in the Arabidopsis root. Plant J. 2000 Jul;23(2):267–278. doi: 10.1046/j.1365-313x.2000.00786.x. [DOI] [PubMed] [Google Scholar]
- Knight C. A., Cheng C. C., DeVries A. L. Adsorption of alpha-helical antifreeze peptides on specific ice crystal surface planes. Biophys J. 1991 Feb;59(2):409–418. doi: 10.1016/S0006-3495(91)82234-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Knight C. A., Driggers E., DeVries A. L. Adsorption to ice of fish antifreeze glycopeptides 7 and 8. Biophys J. 1993 Jan;64(1):252–259. doi: 10.1016/S0006-3495(93)81361-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Knight H., Brandt S., Knight M. R. A history of stress alters drought calcium signalling pathways in Arabidopsis. Plant J. 1998 Dec;16(6):681–687. doi: 10.1046/j.1365-313x.1998.00332.x. [DOI] [PubMed] [Google Scholar]
- Knight H., Knight M. R. Abiotic stress signalling pathways: specificity and cross-talk. Trends Plant Sci. 2001 Jun;6(6):262–267. doi: 10.1016/s1360-1385(01)01946-x. [DOI] [PubMed] [Google Scholar]
- Knight H., Knight M. R. Imaging spatial and cellular characteristics of low temperature calcium signature after cold acclimation in Arabidopsis. J Exp Bot. 2000 Oct;51(351):1679–1686. doi: 10.1093/jexbot/51.351.1679. [DOI] [PubMed] [Google Scholar]
- Knight H., Trewavas A. J., Knight M. R. Cold calcium signaling in Arabidopsis involves two cellular pools and a change in calcium signature after acclimation. Plant Cell. 1996 Mar;8(3):489–503. doi: 10.1105/tpc.8.3.489. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Knight H., Veale E. L., Warren G. J., Knight M. R. The sfr6 mutation in Arabidopsis suppresses low-temperature induction of genes dependent on the CRT/DRE sequence motif. Plant Cell. 1999 May;11(5):875–886. doi: 10.1105/tpc.11.5.875. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Knight M. R., Campbell A. K., Smith S. M., Trewavas A. J. Transgenic plant aequorin reports the effects of touch and cold-shock and elicitors on cytoplasmic calcium. Nature. 1991 Aug 8;352(6335):524–526. doi: 10.1038/352524a0. [DOI] [PubMed] [Google Scholar]
- Kohorn B. D. Plasma membrane-cell wall contacts. Plant Physiol. 2000 Sep;124(1):31–38. doi: 10.1104/pp.124.1.31. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kovtun Y., Chiu W. L., Tena G., Sheen J. Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci U S A. 2000 Mar 14;97(6):2940–2945. doi: 10.1073/pnas.97.6.2940. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lang V., Mantyla E., Welin B., Sundberg B., Palva E. T. Alterations in Water Status, Endogenous Abscisic Acid Content, and Expression of rab18 Gene during the Development of Freezing Tolerance in Arabidopsis thaliana. Plant Physiol. 1994 Apr;104(4):1341–1349. doi: 10.1104/pp.104.4.1341. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee H., Xiong L., Gong Z., Ishitani M., Stevenson B., Zhu J. K. The Arabidopsis HOS1 gene negatively regulates cold signal transduction and encodes a RING finger protein that displays cold-regulated nucleo--cytoplasmic partitioning. Genes Dev. 2001 Apr 1;15(7):912–924. doi: 10.1101/gad.866801. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee H., Xiong L., Ishitani M., Stevenson B., Zhu J. K. Cold-regulated gene expression and freezing tolerance in an Arabidopsis thaliana mutant. Plant J. 1999 Feb;17(3):301–308. doi: 10.1046/j.1365-313x.1999.00375.x. [DOI] [PubMed] [Google Scholar]
- Leung Jeffrey, Giraudat Jerome. ABSCISIC ACID SIGNAL TRANSDUCTION. Annu Rev Plant Physiol Plant Mol Biol. 1998 Jun;49(NaN):199–222. doi: 10.1146/annurev.arplant.49.1.199. [DOI] [PubMed] [Google Scholar]
- Li Q. B., Haskell D. W., Guy C. L. Coordinate and non-coordinate expression of the stress 70 family and other molecular chaperones at high and low temperature in spinach and tomato. Plant Mol Biol. 1999 Jan;39(1):21–34. doi: 10.1023/a:1006100532501. [DOI] [PubMed] [Google Scholar]
- Liou Y. C., Tocilj A., Davies P. L., Jia Z. Mimicry of ice structure by surface hydroxyls and water of a beta-helix antifreeze protein. Nature. 2000 Jul 20;406(6793):322–324. doi: 10.1038/35018604. [DOI] [PubMed] [Google Scholar]
- Liu J., Zhu J. K. A calcium sensor homolog required for plant salt tolerance. Science. 1998 Jun 19;280(5371):1943–1945. doi: 10.1126/science.280.5371.1943. [DOI] [PubMed] [Google Scholar]
- Liu Q., Kasuga M., Sakuma Y., Abe H., Miura S., Yamaguchi-Shinozaki K., Shinozaki K. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell. 1998 Aug;10(8):1391–1406. doi: 10.1105/tpc.10.8.1391. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Llorente F., Oliveros J. C., Martínez-Zapater J. M., Salinas J. A freezing-sensitive mutant of Arabidopsis, frs1, is a new aba3 allele. Planta. 2000 Oct;211(5):648–655. doi: 10.1007/s004250000340. [DOI] [PubMed] [Google Scholar]
- Malone S. R., Ashworth E. N. Freezing stress response in woody tissues observed using low-temperature scanning electron microscopy and freeze substitution techniques. Plant Physiol. 1991 Mar;95(3):871–881. doi: 10.1104/pp.95.3.871. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maria Mastrangelo A, Baldi P, Marè C, Terzi V, V, Galiba G, Cattivelli L, Di Fonzo N The cold dependent accumulation of COR TMC-AP3 in cereals with contrasting, frost tolerance is regulated by different mRNA expression and protein turnover. Plant Sci. 2000 Jul 14;156(1):47–54. doi: 10.1016/s0168-9452(00)00228-4. [DOI] [PubMed] [Google Scholar]
- Maruyama K., Sato N., Ohta N. Conservation of structure and cold-regulation of RNA-binding proteins in cyanobacteria: probable convergent evolution with eukaryotic glycine-rich RNA-binding proteins. Nucleic Acids Res. 1999 May 1;27(9):2029–2036. doi: 10.1093/nar/27.9.2029. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McDonald S. M., Brady J. W., Clancy P. Molecular dynamics simulations of a winter flounder "antifreeze" polypeptide in aqueous solution. Biopolymers. 1993 Oct;33(10):1481–1503. doi: 10.1002/bip.360331002. [DOI] [PubMed] [Google Scholar]
- Mendoza J. A., Dulin P., Warren T. The lower hydrolysis of ATP by the stress protein GroEL is a major factor responsible for the diminished chaperonin activity at low temperature. Cryobiology. 2000 Dec;41(4):319–323. doi: 10.1006/cryo.2000.2287. [DOI] [PubMed] [Google Scholar]
- Meyer K., Keil M., Naldrett M. J. A leucine-rich repeat protein of carrot that exhibits antifreeze activity. FEBS Lett. 1999 Mar 26;447(2-3):171–178. doi: 10.1016/s0014-5793(99)00280-x. [DOI] [PubMed] [Google Scholar]
- Mizoguchi T., Hayashida N., Yamaguchi-Shinozaki K., Kamada H., Shinozaki K. Two genes that encode ribosomal-protein S6 kinase homologs are induced by cold or salinity stress in Arabidopsis thaliana. FEBS Lett. 1995 Jan 23;358(2):199–204. doi: 10.1016/0014-5793(94)01423-x. [DOI] [PubMed] [Google Scholar]
- Mizoguchi T., Irie K., Hirayama T., Hayashida N., Yamaguchi-Shinozaki K., Matsumoto K., Shinozaki K. A gene encoding a mitogen-activated protein kinase kinase kinase is induced simultaneously with genes for a mitogen-activated protein kinase and an S6 ribosomal protein kinase by touch, cold, and water stress in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 1996 Jan 23;93(2):765–769. doi: 10.1073/pnas.93.2.765. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Monroy A. F., Dhindsa R. S. Low-temperature signal transduction: induction of cold acclimation-specific genes of alfalfa by calcium at 25 degrees C. Plant Cell. 1995 Mar;7(3):321–331. doi: 10.1105/tpc.7.3.321. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Monroy A. F., Sarhan F., Dhindsa R. S. Cold-Induced Changes in Freezing Tolerance, Protein Phosphorylation, and Gene Expression (Evidence for a Role of Calcium). Plant Physiol. 1993 Aug;102(4):1227–1235. doi: 10.1104/pp.102.4.1227. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murai M., Yoshida S. Evidence for the cell wall involvement in temporal changes in freezing tolerance of Jerusalem artichoke (Helianthus tuberosus L.) tubers during cold acclimation. Plant Cell Physiol. 1998 Jan;39(1):97–105. doi: 10.1093/oxfordjournals.pcp.a029295. [DOI] [PubMed] [Google Scholar]
- Murata N., Los D. A. Membrane Fluidity and Temperature Perception. Plant Physiol. 1997 Nov;115(3):875–879. doi: 10.1104/pp.115.3.875. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Naqvi S. M., Park K. S., Yi S. Y., Lee H. W., Bok S. H., Choi D. A glycine-rich RNA-binding protein gene is differentially expressed during acute hypersensitive response following Tobacco Mosaic Virus infection in tobacco. Plant Mol Biol. 1998 Jun;37(3):571–576. doi: 10.1023/a:1006031316476. [DOI] [PubMed] [Google Scholar]
- Newton S. S., Duman J. G. An osmotin-like cryoprotective protein from the bittersweet nightshade Solanum dulcamara. Plant Mol Biol. 2000 Nov;44(5):581–589. doi: 10.1023/a:1026599028063. [DOI] [PubMed] [Google Scholar]
- Nishida I., Murata N. CHILLING SENSITIVITY IN PLANTS AND CYANOBACTERIA: The Crucial Contribution of Membrane Lipids. Annu Rev Plant Physiol Plant Mol Biol. 1996 Jun;47(NaN):541–568. doi: 10.1146/annurev.arplant.47.1.541. [DOI] [PubMed] [Google Scholar]
- Nishiyama H., Itoh K., Kaneko Y., Kishishita M., Yoshida O., Fujita J. A glycine-rich RNA-binding protein mediating cold-inducible suppression of mammalian cell growth. J Cell Biol. 1997 May 19;137(4):899–908. doi: 10.1083/jcb.137.4.899. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nordin K., Heino P., Palva E. T. Separate signal pathways regulate the expression of a low-temperature-induced gene in Arabidopsis thaliana (L.) Heynh. Plant Mol Biol. 1991 Jun;16(6):1061–1071. doi: 10.1007/BF00016077. [DOI] [PubMed] [Google Scholar]
- Orvar B. L., Sangwan V., Omann F., Dhindsa R. S. Early steps in cold sensing by plant cells: the role of actin cytoskeleton and membrane fluidity. Plant J. 2000 Sep;23(6):785–794. doi: 10.1046/j.1365-313x.2000.00845.x. [DOI] [PubMed] [Google Scholar]
- Osterlund M. T., Hardtke C. S., Wei N., Deng X. W. Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature. 2000 May 25;405(6785):462–466. doi: 10.1038/35013076. [DOI] [PubMed] [Google Scholar]
- Pearce R. S., Fuller M. P. Freezing of barley studied by infrared video thermography. Plant Physiol. 2001 Jan;125(1):227–240. doi: 10.1104/pp.125.1.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pearce RS, Houlston CE, Atherton KM, Rixon JE, Harrison P, Hughes MA, Alison Dunn M Localization of expression of three cold-induced genes, blt101, blt4. 9, and blt14, in different tissues of the crown and developing leaves of cold-acclimated cultivated barley . Plant Physiol. 1998 Jul;117(3):787–795. doi: 10.1104/pp.117.3.787. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Phillips J. R., Dunn M. A., Hughes M. A. mRNA stability and localisation of the low-temperature-responsive barley gene family blt14. Plant Mol Biol. 1997 Apr;33(6):1013–1023. doi: 10.1023/a:1005717613224. [DOI] [PubMed] [Google Scholar]
- Plieth C., Hansen U. P., Knight H., Knight M. R. Temperature sensing by plants: the primary characteristics of signal perception and calcium response. Plant J. 1999 Jun;18(5):491–497. doi: 10.1046/j.1365-313x.1999.00471.x. [DOI] [PubMed] [Google Scholar]
- Plieth C. Temperature sensing by plants: calcium-permeable channels as primary sensors--a model. J Membr Biol. 1999 Nov 15;172(2):121–127. doi: 10.1007/s002329900590. [DOI] [PubMed] [Google Scholar]
- Popova A. V., Schmitt J. M., Hincha D. K. Interactions of proline, serine, and leucine with isolated spinach thylakoids: solute loading during freezing is not related to membrane fluidity. Cryobiology. 1998 Aug;37(1):92–99. doi: 10.1006/cryo.1998.2105. [DOI] [PubMed] [Google Scholar]
- Rajashekar C. B., Burke M. J. Freezing Characteristics of Rigid Plant Tissues (Development of Cell Tension during Extracellular Freezing). Plant Physiol. 1996 Jun;111(2):597–603. doi: 10.1104/pp.111.2.597. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rajashekar C. B., Lafta A. Cell-Wall Changes and Cell Tension in Response to Cold Acclimation and Exogenous Abscisic Acid in Leaves and Cell Cultures. Plant Physiol. 1996 Jun;111(2):605–612. doi: 10.1104/pp.111.2.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raymond J. A., DeVries A. L. Adsorption inhibition as a mechanism of freezing resistance in polar fishes. Proc Natl Acad Sci U S A. 1977 Jun;74(6):2589–2593. doi: 10.1073/pnas.74.6.2589. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robinson M. J., Cobb M. H. Mitogen-activated protein kinase pathways. Curr Opin Cell Biol. 1997 Apr;9(2):180–186. doi: 10.1016/s0955-0674(97)80061-0. [DOI] [PubMed] [Google Scholar]
- Saijo Y., Hata S., Kyozuka J., Shimamoto K., Izui K. Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J. 2000 Aug;23(3):319–327. doi: 10.1046/j.1365-313x.2000.00787.x. [DOI] [PubMed] [Google Scholar]
- Sakamoto A., Murata N. The use of bacterial choline oxidase, a glycinebetaine-synthesizing enzyme, to create stress-resistant transgenic plants. Plant Physiol. 2001 Jan;125(1):180–188. doi: 10.1104/pp.125.1.180. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanders D, Brownlee C, Harper JF. Communicating with calcium . Plant Cell. 1999 Apr;11(4):691–706. doi: 10.1105/tpc.11.4.691. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sangwan V., Foulds I., Singh J., Dhindsa R. S. Cold-activation of Brassica napus BN115 promoter is mediated by structural changes in membranes and cytoskeleton, and requires Ca2+ influx. Plant J. 2001 Jul;27(1):1–12. doi: 10.1046/j.1365-313x.2001.01052.x. [DOI] [PubMed] [Google Scholar]
- Sato N. A cold-regulated cyanobacterial gene cluster encodes RNA-binding protein and ribosomal protein S21. Plant Mol Biol. 1994 Mar;24(5):819–823. doi: 10.1007/BF00029864. [DOI] [PubMed] [Google Scholar]
- Scarth G. W. DEHYDRATION INJURY AND RESISTANCE. Plant Physiol. 1941 Jan;16(1):171–179. doi: 10.1104/pp.16.1.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schwacke R., Grallath S., Breitkreuz K. E., Stransky E., Stransky H., Frommer W. B., Rentsch D. LeProT1, a transporter for proline, glycine betaine, and gamma-amino butyric acid in tomato pollen. Plant Cell. 1999 Mar;11(3):377–392. doi: 10.1105/tpc.11.3.377. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seki M., Narusaka M., Abe H., Kasuga M., Yamaguchi-Shinozaki K., Carninci P., Hayashizaki Y., Shinozaki K. Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell. 2001 Jan;13(1):61–72. doi: 10.1105/tpc.13.1.61. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sheen J. Ca2+-dependent protein kinases and stress signal transduction in plants. Science. 1996 Dec 13;274(5294):1900–1902. doi: 10.1126/science.274.5294.1900. [DOI] [PubMed] [Google Scholar]
- Shinozaki K., Yamaguchi-Shinozaki K. Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol. 2000 Jun;3(3):217–223. [PubMed] [Google Scholar]
- Sicheri F., Yang D. S. Ice-binding structure and mechanism of an antifreeze protein from winter flounder. Nature. 1995 Jun 1;375(6530):427–431. doi: 10.1038/375427a0. [DOI] [PubMed] [Google Scholar]
- Sidebottom C., Buckley S., Pudney P., Twigg S., Jarman C., Holt C., Telford J., McArthur A., Worrall D., Hubbard R. Heat-stable antifreeze protein from grass. Nature. 2000 Jul 20;406(6793):256–256. doi: 10.1038/35018639. [DOI] [PubMed] [Google Scholar]
- Sidebottom C., Buckley S., Pudney P., Twigg S., Jarman C., Holt C., Telford J., McArthur A., Worrall D., Hubbard R. Heat-stable antifreeze protein from grass. Nature. 2000 Jul 20;406(6793):256–256. doi: 10.1038/35018639. [DOI] [PubMed] [Google Scholar]
- Smallwood M., Worrall D., Byass L., Elias L., Ashford D., Doucet C. J., Holt C., Telford J., Lillford P., Bowles D. J. Isolation and characterization of a novel antifreeze protein from carrot (Daucus carota). Biochem J. 1999 Jun 1;340(Pt 2):385–391. [PMC free article] [PubMed] [Google Scholar]
- Steponkus P. L., Uemura M., Balsamo R. A., Arvinte T., Lynch D. V. Transformation of the cryobehavior of rye protoplasts by modification of the plasma membrane lipid composition. Proc Natl Acad Sci U S A. 1988 Dec;85(23):9026–9030. doi: 10.1073/pnas.85.23.9026. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stockinger E. J., Gilmour S. J., Thomashow M. F. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci U S A. 1997 Feb 4;94(3):1035–1040. doi: 10.1073/pnas.94.3.1035. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Strizhov N., Abrahám E., Okrész L., Blickling S., Zilberstein A., Schell J., Koncz C., Szabados L. Differential expression of two P5CS genes controlling proline accumulation during salt-stress requires ABA and is regulated by ABA1, ABI1 and AXR2 in Arabidopsis. Plant J. 1997 Sep;12(3):557–569. doi: 10.1046/j.1365-313x.1997.00557.x. [DOI] [PubMed] [Google Scholar]
- Suzuki I., Kanesaki Y., Mikami K., Kanehisa M., Murata N. Cold-regulated genes under control of the cold sensor Hik33 in Synechocystis. Mol Microbiol. 2001 Apr;40(1):235–244. doi: 10.1046/j.1365-2958.2001.02379.x. [DOI] [PubMed] [Google Scholar]
- Suzuki I., Los D. A., Kanesaki Y., Mikami K., Murata N. The pathway for perception and transduction of low-temperature signals in Synechocystis. EMBO J. 2000 Mar 15;19(6):1327–1334. doi: 10.1093/emboj/19.6.1327. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sönnichsen F. D., DeLuca C. I., Davies P. L., Sykes B. D. Refined solution structure of type III antifreeze protein: hydrophobic groups may be involved in the energetics of the protein-ice interaction. Structure. 1996 Nov 15;4(11):1325–1337. doi: 10.1016/s0969-2126(96)00140-2. [DOI] [PubMed] [Google Scholar]
- Tao D. L., Oquist G., Wingsle G. Active oxygen scavengers during cold acclimation of Scots pine seedlings in relation to freezing tolerance. Cryobiology. 1998 Aug;37(1):38–45. doi: 10.1006/cryo.1998.2096. [DOI] [PubMed] [Google Scholar]
- Thomashow Michael F. PLANT COLD ACCLIMATION: Freezing Tolerance Genes and Regulatory Mechanisms. Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50(NaN):571–599. doi: 10.1146/annurev.arplant.50.1.571. [DOI] [PubMed] [Google Scholar]
- Tomczak M. M., Hincha D. K., Estrada S. D., Feeney R. E., Crowe J. H. Antifreeze proteins differentially affect model membranes during freezing. Biochim Biophys Acta. 2001 Apr 2;1511(2):255–263. doi: 10.1016/s0005-2736(01)00281-4. [DOI] [PubMed] [Google Scholar]
- Uemura M., Gilmour S. J., Thomashow M. F., Steponkus P. L. Effects of COR6.6 and COR15am polypeptides encoded by COR (cold-regulated) genes of Arabidopsis thaliana on the freeze-induced fusion and leakage of liposomes. Plant Physiol. 1996 May;111(1):313–327. doi: 10.1104/pp.111.1.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Uemura M., Steponkus P. L. Effect of cold acclimation on the incidence of two forms of freezing injury in protoplasts isolated from rye leaves. Plant Physiol. 1989 Nov;91(3):1131–1137. doi: 10.1104/pp.91.3.1131. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ukaji N., Kuwabara C., Takezawa D., Arakawa K., Fujikawa S. Cold acclimation-induced WAP27 localized in endoplasmic reticulum in cortical parenchyma cells of mulberry tree was homologous to group 3 late-embryogenesis abundant proteins. Plant Physiol. 2001 Aug;126(4):1588–1597. doi: 10.1104/pp.126.4.1588. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ukaji N., Kuwabara C., Takezawa D., Arakawa K., Yoshida S., Fujikawa S. Accumulation of small heat-shock protein homologs in the endoplasmic reticulum of cortical parenchyma cells in mulberry in association with seasonal cold acclimation. Plant Physiol. 1999 Jun;120(2):481–490. doi: 10.1104/pp.120.2.481. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Urao T., Katagiri T., Mizoguchi T., Yamaguchi-Shinozaki K., Hayashida N., Shinozaki K. Two genes that encode Ca(2+)-dependent protein kinases are induced by drought and high-salt stresses in Arabidopsis thaliana. Mol Gen Genet. 1994 Aug 15;244(4):331–340. doi: 10.1007/BF00286684. [DOI] [PubMed] [Google Scholar]
- Urao T., Yakubov B., Satoh R., Yamaguchi-Shinozaki K., Seki M., Hirayama T., Shinozaki K. A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor. Plant Cell. 1999 Sep;11(9):1743–1754. doi: 10.1105/tpc.11.9.1743. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Urao T., Yakubov B., Yamaguchi-Shinozaki K., Shinozaki K. Stress-responsive expression of genes for two-component response regulator-like proteins in Arabidopsis thaliana. FEBS Lett. 1998 May 8;427(2):175–178. doi: 10.1016/s0014-5793(98)00418-9. [DOI] [PubMed] [Google Scholar]
- Urao T., Yamaguchi-Shinozaki K., Shinozaki K. Two-component systems in plant signal transduction. Trends Plant Sci. 2000 Feb;5(2):67–74. doi: 10.1016/s1360-1385(99)01542-3. [DOI] [PubMed] [Google Scholar]
- Urrutia M. E., Duman J. G., Knight C. A. Plant thermal hysteresis proteins. Biochim Biophys Acta. 1992 May 22;1121(1-2):199–206. doi: 10.1016/0167-4838(92)90355-h. [DOI] [PubMed] [Google Scholar]
- Vigh L., Los D. A., Horváth I., Murata N. The primary signal in the biological perception of temperature: Pd-catalyzed hydrogenation of membrane lipids stimulated the expression of the desA gene in Synechocystis PCC6803. Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):9090–9094. doi: 10.1073/pnas.90.19.9090. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wallis J. G., Wang H., Guerra D. J. Expression of a synthetic antifreeze protein in potato reduces electrolyte release at freezing temperatures. Plant Mol Biol. 1997 Oct;35(3):323–330. doi: 10.1023/a:1005886210159. [DOI] [PubMed] [Google Scholar]
- Wanner L. A., Junttila O. Cold-induced freezing tolerance in Arabidopsis. Plant Physiol. 1999 Jun;120(2):391–400. doi: 10.1104/pp.120.2.391. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Warren G., McKown R., Marin A. L., Teutonico R. Isolation of mutations affecting the development of freezing tolerance in Arabidopsis thaliana (L.) Heynh. Plant Physiol. 1996 Aug;111(4):1011–1019. doi: 10.1104/pp.111.4.1011. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Webb M. S., Gilmour S. J., Thomashow M. F., Steponkus P. L. Effects of COR6.6 and COR15am polypeptides encoded by COR (cold-regulated) genes of Arabidopsis thaliana on dehydration-induced phase transitions of phospholipid membranes. Plant Physiol. 1996 May;111(1):301–312. doi: 10.1104/pp.111.1.301. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Webb M. S., Uemura M., Steponkus P. L. A Comparison of Freezing Injury in Oat and Rye: Two Cereals at the Extremes of Freezing Tolerance. Plant Physiol. 1994 Feb;104(2):467–478. doi: 10.1104/pp.104.2.467. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wen D., Laursen R. A. A model for binding of an antifreeze polypeptide to ice. Biophys J. 1992 Dec;63(6):1659–1662. doi: 10.1016/S0006-3495(92)81750-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wierzbicki A., Knight C. A., Rutland T. J., Muccio D. D., Pybus B. S., Sikes C. S. Structure-function relationship in the antifreeze activity of synthetic alanine-lysine antifreeze polypeptides. Biomacromolecules. 2000 Summer;1(2):268–274. doi: 10.1021/bm000004w. [DOI] [PubMed] [Google Scholar]
- Wierzbicki A., Taylor M. S., Knight C. A., Madura J. D., Harrington J. P., Sikes C. S. Analysis of shorthorn sculpin antifreeze protein stereospecific binding to (2-1 0) faces of ice. Biophys J. 1996 Jul;71(1):8–18. doi: 10.1016/S0006-3495(96)79204-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Winter H., Huber S. C. Regulation of sucrose metabolism in higher plants: localization and regulation of activity of key enzymes. Crit Rev Biochem Mol Biol. 2000;35(4):253–289. doi: 10.1080/10409230008984165. [DOI] [PubMed] [Google Scholar]
- Wisniewski M., Davis G., Arora R. Effect of Macerase, Oxalic Acid, and EGTA on Deep Supercooling and Pit Membrane Structure of Xylem Parenchyma of Peach. Plant Physiol. 1991 Aug;96(4):1354–1359. doi: 10.1104/pp.96.4.1354. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wisniewski M., Davis G. Evidence for the involvement of a specific cell wall layer in regulation of deep supercooling of xylem parenchyma. Plant Physiol. 1989 Sep;91(1):151–156. doi: 10.1104/pp.91.1.151. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wisniewski M., Lindow S. E., Ashworth E. N. Observations of Ice Nucleation and Propagation in Plants Using Infrared Video Thermography. Plant Physiol. 1997 Feb;113(2):327–334. doi: 10.1104/pp.113.2.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wolfe J., Bryant G. Freezing, drying, and/or vitrification of membrane- solute-water systems. Cryobiology. 1999 Sep;39(2):103–129. doi: 10.1006/cryo.1999.2195. [DOI] [PubMed] [Google Scholar]
- Wolfraim L. A., Dhindsa R. S. Cloning and sequencing of the cDNA for cas17, a cold acclimation-specific gene of alfalfa. Plant Physiol. 1993 Oct;103(2):667–668. doi: 10.1104/pp.103.2.667. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Worrall D., Elias L., Ashford D., Smallwood M., Sidebottom C., Lillford P., Telford J., Holt C., Bowles D. A carrot leucine-rich-repeat protein that inhibits ice recrystallization. Science. 1998 Oct 2;282(5386):115–117. doi: 10.1126/science.282.5386.115. [DOI] [PubMed] [Google Scholar]
- Worrall D., Elias L., Ashford D., Smallwood M., Sidebottom C., Lillford P., Telford J., Holt C., Bowles D. A carrot leucine-rich-repeat protein that inhibits ice recrystallization. Science. 1998 Oct 2;282(5386):115–117. doi: 10.1126/science.282.5386.115. [DOI] [PubMed] [Google Scholar]
- Xin Z., Browse J. Eskimo1 mutants of Arabidopsis are constitutively freezing-tolerant. Proc Natl Acad Sci U S A. 1998 Jun 23;95(13):7799–7804. doi: 10.1073/pnas.95.13.7799. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xiong L., Ishitani M., Zhu J. K. Interaction of osmotic stress, temperature, and abscisic acid in the regulation of gene expression in Arabidopsis. Plant Physiol. 1999 Jan;119(1):205–212. doi: 10.1104/pp.119.1.205. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xiong Liming, Zhu Jian-Kang. Abiotic stress signal transduction in plants: Molecular and genetic perspectives. Physiol Plant. 2001 Jun;112(2):152–166. doi: 10.1034/j.1399-3054.2001.1120202.x. [DOI] [PubMed] [Google Scholar]
- Yamaguchi-Shinozaki K., Shinozaki K. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell. 1994 Feb;6(2):251–264. doi: 10.1105/tpc.6.2.251. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yeh S., Moffatt B. A., Griffith M., Xiong F., Yang D. S., Wiseman S. B., Sarhan F., Danyluk J., Xue Y. Q., Hew C. L. Chitinase genes responsive to cold encode antifreeze proteins in winter cereals. Plant Physiol. 2000 Nov;124(3):1251–1264. doi: 10.1104/pp.124.3.1251. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang W., Laursen R. A. Artificial antifreeze polypeptides: alpha-helical peptides with KAAK motifs have antifreeze and ice crystal morphology modifying properties. FEBS Lett. 1999 Jul 23;455(3):372–376. doi: 10.1016/s0014-5793(99)00906-0. [DOI] [PubMed] [Google Scholar]
- van Nocker S., Vierstra R. D. Two cDNAs from Arabidopsis thaliana encode putative RNA binding proteins containing glycine-rich domains. Plant Mol Biol. 1993 Feb;21(4):695–699. doi: 10.1007/BF00014552. [DOI] [PubMed] [Google Scholar]