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A unifying computational framework for motor control
and social interaction
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Recent empirical studies have implicated the use of the motor system during action observation, imitation
and social interaction. In this paper, we explore the computational parallels between the processes that
occur in motor control and in action observation, imitation, social interaction and theory of mind. In
particular, we examine the extent to which motor commands acting on the body can be equated with
communicative signals acting on other people and suggest that computational solutions for motor control
may have been extended to the domain of social interaction.
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1. INTRODUCTION

Movement is the only way we have of interacting with the
world, whether foraging for food or attracting a waiter’s
attention. Direct information transmission between
people, through speech, arm gestures or facial expressions,
is mediated through the motor system which provides a
common code for communication. From this viewpoint,
the purpose of the human brain is to use sensory represen-
tations to determine future actions. Moreover, in recent
years the motor system has been implicated in many tra-
ditionally non-motor domains. An important idea is that
the perception of the action of others, including speech,
involves the motor system (Liberman & Whalen 2000).
The proposal is that others’ actions are decoded by activ-
ating one’s own action system at a sub-threshold level and
there appears to be a special neural mechanism for decod-
ing such information. Recently, these ideas have gained
empirical support in neuroscience with the finding of ‘mir-
ror neurons’ that respond to both self-generated actions
and the actions of others (Gallese et al. 1996; Rizzolatti &
Arbib 1998; Gallese 2003). Human neuroimaging and
magnetic stimulation studies have also shown that the
areas associated with action are also active during imi-
tation and observation (Fadiga et al. 1995, 2002; Iacoboni
et al. 1999; Grezes et al. 2001). Moreover, pre-motor sys-
tems are activated when subjects view manipulable tools
or even action verbs (Martin et al. 1996; Grafton et al.
1997). Such studies have brought the motor system to the
forefront in the investigation of action interpretation and
social interaction. In this paper, we explore the parallels
between the computations that occur in motor control and
in action observation, imitation, social interaction and
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theory of mind. In particular, we examine the extent to
which motor commands acting on the body can be
equated with communicative signals acting on other
people. We suggest that computational solutions that
developed for motor control could have been extended to
the domain of social interaction.

2. THE SENSORIMOTOR AND SOCIAL
INTERACTION LOOPS

The study of motor control is fundamentally the study
of sensorimotor transformations. We can view the motor
system as forming a loop in which motor commands cause
muscle contractions, with consequent sensory feedback,
which in turn influences future motor commands
(Wolpert & Ghahramani 2000) (figure 1a). The trans-
formation from motor commands to their sensory conse-
quences is governed by the physics of the musculoskeletal
system, the environment and the sensory receptors. The
descending motor command generates contractions in the
muscles and causes the musculoskeletal system to change
its configuration. However, the same motor command can
have very different consequences in different situations.
For example, the same motor command will generate less
muscle contraction when the muscles are fatigued. More-
over, the same motor command can lead to very different
changes in body configuration depending on the nature
of the physical objects we interact with. To describe the
variables that specify the configuration of the body, such
as joint angles or hand position, we use the word state. In
general, a state is a set of variables which vary over time
and when taken together with fixed parameters of the sys-
tem, such as the mass of body segments, and the equations
governing the physics of the musculoskeletal system and
the world are sufficient to predict the system’s future
behaviour. In general, the state, for example the set of acti-
vations of groups of muscles (synergies) or the position
and velocity of the hand, changes rapidly and continuously
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Figure 1. The sensorimotor and social interaction loops. The motor control loop (a) involves generating motor commands
that cause changes in the state of my own body. Depending on this new state and the outside world I receive sensory
feedback. The social interaction loop (b) involves me generating motor commands that cause communicative signals. These
signals when perceived by another person can cause changes in their internal mental state. These changes can lead to actions
which are, in turn, perceived by me.

within a movement. However, other key parameters
change discretely, like the identity of a manipulated
object, or, on a slower time-scale, like the mass of a limb.
We refer to such discrete or slowly changing parameters
as the context of the movement. Finally, dependent on sen-
sory feedback the CNS can generate a new motor com-
mand or update the current motor command, thereby
completing the sensorimotor loop.

For accurate control the CNS has to adapt the motor
command to both the current context and state of the
body. However, this information is not directly available
to the CNS and these variables are refereed to as hidden
variables in the engineering literature. Instead the CNS has
access to sensory feedback from which it may be able to
estimate the state of the body. For example, there is no
sensory receptor that directly tells us the location of our
hand in space, but many proprioceptive and tactile sensors
from the arm can be used to make an estimate of this state
variable. Similarly the weight of an object to be picked up
can be estimated visually on the basis of prior experience
and then updated during the handling of the object.

Motor control is, therefore, concerned with inputs and
outputs from a controlled object (e.g. the arm) that is part
of our own body. When interacting with another person
we can think of an analogous social interaction loop in
which the controlled object is the other person rather than
part of our own body (figure 1b). Again, our motor com-
mands cause muscle contractions and these lead to motor
consequences which generate communicative signals, such
as speech or gestures. When perceived by another person
these can have influences on their hidden (mental) state,
which constitutes the set of parameters that determine
their behaviour. We can regard the other person as having
a state in the same way that our own body has a state. If
we know the state of someone else and have a model of
their behaviour, we should be able to predict their
response to a given input that we or the environment pro-
vides. Given the other person’s state, the motor command
we have generated, and the context provided by the
environment, the other person will generate motor com-
mands causing consequences. We can perceive these
consequences and these can be used to determine our next
motor command, thereby closing a social interaction loop.
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Therefore, in social interactions, by controlling someone
else rather than our own body, we can estimate their hid-
den state including their mental state rather than the state
of our own body.

3. WHAT MAKES MOTOR CONTROL AND SOCIAL
INTERACTION DIFFICULT?

There are several features of the neural circuitry and
musculoskeletal system that significantly complicate our
ability to produce accurate and fast movements. First,
there are considerable time delays in both the transduction
and transport of sensory signals to the CNS. For example,
visual feedback can take ca. 100 ms to be processed. When
this sensory delay is combined with efferent delays asso-
ciated with movement, the combined delay is appreciable.
As a consequence, sensory information cannot be used to
guide the initial part of a movement and skilled perform-
ance requires feed-forward control. However, there is still
a problem of co-registering actions with their conse-
quences in time as these signals can be separated by sev-
eral hundred milliseconds. In addition to delays, the
sensory inputs and motor commands suffer from intrinsic
neural noise, or randomness, which limits the ability of the
system to perform rapid and accurate movements simul-
taneously (Harris & Wolpert 1998).

Not only are motor and sensory signals delayed and
noisy, but the relationship between the motor commands
and sensory consequences can be very complicated. The
equations relating the force produced by muscles and the
ensuing motion of the body are highly complex. For
example, the equations that determine the effect that a
single muscle acting on the elbow has on the subsequent
change in elbow angle will, owing to interactions between
body segments, have terms that depend in complex ways
on factors such as the orientation of the body with respect
to gravity, the rotation of the body in space and the
rotational velocity of the shoulder joint. Moreover, the
complexity of the musculoskeletal system is made worse
because it has nonlinear properties. Linear systems are
ones in which if you know how the system responds to
two different sequences of force acting on it, then it is very
easy to predict what will happen when the two series of
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forces are added and applied together. For example, a ball
on a table acted on by forces is a linear system. A sequence
of forces acting on the ball will cause the ball to take up
a sequence of positions on the table. Another sequence of
forces acting on the ball will cause the ball to take up a
different sequence of positions. If we add the two
sequences of forces and applied these to the ball it would
follow a path determined by the sum of the positions from
each sequence individually. However, the musculoskeletal
system is nonlinear and this makes motor control difficult
as knowing the consequence of a variety of motor com-
mands does not allow us easily to generalize to what will
happen to combinations of these motor commands. More-
over, the relationship between motor commands and
ensuing movement changes every time we interact with a
novel object. This property of being ever-changing is
known as non-stationarity. This requires that the command
sent to our body be tailored to the changing interactions
with the world.

Finally, the motor system has a high-dimensional state
(dimension refers to number of parameters required to
define the state). For example, the final control must be
exerted on the 600 or so muscles in the human body. Even
if we consider each, as being, for extreme simplicity, either
contracted or relaxed, this leads to 2600 possible motor
activation patterns, more than the number of atoms in the
known universe. When trying to represent such high-
dimensional data we run into the problem of the ‘curse of
dimensionality’ (Bellman 1957). It is implausible that the
CNS represents all possible configurations so it must
instead find simplifying rules during control and learning.

When considering the social interaction loop and
regarding another person as the controlled object, we
encounter similar, but usually more severe, problems.
First, the time delays between our action and the conse-
quences on our own body are of the order of hundreds of
milliseconds, whereas with other people the consequences
can be of the order of seconds to minutes or even days.
Moreover, the response of a person to our actions is not
easily predicted. There is usually a complex, noisy and
nonlinear relationship between our actions and the conse-
quences. In a similar way to the nonlinearity of the arm,
knowing how someone will respond to two separate
actions we perform does not allow us to predict accurately
the response to both actions performed simultaneously.
Moreover, in the same way that motor command and sen-
sory feedback are corrupted by noise we can regard the
other person as a nonlinear system with noise. There is
noise in both their perception of our actions and our per-
ception of their response. But moreover, there may be a
stochastic element in their response to the same action.
Part of this is due to their internal state to which we do
not have access, and part can be considered as a stochastic
element in their choice of response. In addition, whereas
the state of the human body has perhaps several hundred
degrees of freedom, the possible degrees of freedom of
another person’s brain are likely to be far greater.

Finally, in the same way that the motor system has to
deal with multiple contexts, such as multiple tools, social
interaction requires us to interact with multiple people.
Different tools have different dynamics, that is, different
response to forces we apply to them. Similarly, different
people will react in different ways to the same input.
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Therefore both control and social interaction have to take
into account the context, whether it is the identity of a
tool or the identity of another person.

However, although the behaviour of others given our
actions are more noisy, nonlinear, delayed and of higher
dimension than the response of our arm to our motor
command, they may not be fundamentally different in
terms of computational requirements.

4. INTERNAL MODELS OF THE LOOP
TRANSFORMATIONS

On the basis of computational studies it has been pro-
posed that the CNS internally simulates aspects of the
sensorimotor loop in planning, control and learning
(Kawato et al. 1987; Jordan 1995; Miall & Wolpert 1996;
Wolpert & Flanagan 2001). The neural circuits within the
CNS that perform such transformations are termed
internal models as they are internal to the CNS and model
aspects of the sensorimotor loop. Internal models that pre-
dict the sensory consequences of a motor command are
known as forward models as they model the causal
(forward) relationship between actions and their conse-
quences. A forward model, therefore, can be used to pre-
dict how the motor system’s state changes in response to
a given motor command. Therefore, whereas the
descending motor command acts on the actual sensori-
motor system, a copy of this motor command, termed eff-
erence copy can pass into a forward model which acts as a
neural simulator of the musculoskeletal system and
environment. A forward model can, therefore, be used as
a predictor or simulator of the consequences of an action.
An inverse model performs the opposite transformation to
a forward model, determining the motor command
required to achieve some desired outcome. Here, we will
use predictor and controller synonymously with forward
and inverse models, respectively.

Skilled motor behaviour relies on accurate predictive
models of both our own body and external objects and
environments. As the dynamics of our body changes dur-
ing development, and as we experience tools that have
their own intrinsic dynamics, we constantly need to
acquire new models and update existing models. Thus,
forward models are not fixed entities but must be learned
and updated through experience. Learning a predictive
model is relatively straightforward. By comparing the
predicted and actual outcome of a motor command a pre-
diction error can be generated. Well-established compu-
tational learning rules can be used to translate these errors
in prediction into changes in synaptic weights that will
improve any future predictions of a forward model. We
can consider a similar forward or predictive model for
social interaction. In this case another person’s response
to my motor commands or communicative behaviour is
modelled. Again, discrepancies between anticipated and
actual behaviour can be used to refine such a model.
Therefore, by monitoring one’s own action and the
response of others it is possible to learn a predictive model
of the likely behaviour of someone in response to our
actions.

Inverse models or controllers are in general more diffi-
cult to learn. Additional transformations may have to be
applied to the error signal before it can be used to train a
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controller. For example, when we throw a dart, the error
we receive is in visual coordinates. This sensory error must
be converted into motor command errors suitable for
updating the inverse model. The two principal methods
proposed in the motor control literature for solving this
problem are ‘distal supervised learning’ (Jordan & Rumel-
hart 1992) and ‘feedback error learning’ (Kawato 1990).
Distal supervised learning uses a predictive model of the
system to convert from sensory errors to the required
changes to the motor command, whereas feedback error
learning uses a simple feedback controller to achieve a
similar conversion of errors. In motor control a controller
often tries to achieve some desired state of the motor sys-
tem. Similarly, an inverse social model could be used to
try to achieve some hidden mental state, and hence behav-
iour, in another person. Again, learning such a model is
difficult in social interaction, as a discrepancy between
another person’s internal state and/or behaviour and what
you wanted does not directly allow you to determine how
to change your communicative signals to get nearer to the
desired outcome. As with motor control, a forward social
model could be used to determine the appropriate change
in our actions to achieve our desired result.

Although we can phrase the forward and inverse social
models in the same computational framework as motor
control this should not hide several differences which
makes learning such social models immensely more diffi-
cult. First, when the brain models (either forward or
inverse) the motor apparatus, regardless of noise, delay,
nonlinearity, the degrees of freedom are relatively small,
and although some states can be considered as hidden,
the depth to which they are hidden is not severe. This is
because our sensory system provides us with ample infor-
mation to determine the state of our arm and we have
relatively limited set of control parameters that we can
apply to our 600 or so muscles. Alternatively, when trying
to learn an internal model of another person, the degrees
of freedom are enormous, and the hidden variables are
more deeply hidden. We usually need to estimate inputs
and outputs of a system to model it. The brain’s inputs
and outputs are sensory feedbacks and motor commands.
Those of the other person’s brain are not available. My
communication signal transmitted to you and your per-
ceived communication signals may be too superficial to
train a good internal model of you. If these signals were
sufficient for a general algorithm to learn, then we would
expect there to be nothing special to human communi-
cation when compared with learning an internal model of
a pet dog or a humanoid robot. So, if exactly the same
computational algorithms as those used in motor control
are applied for communication problems, we believe the
task would be excessively difficult to solve. Another prob-
lem in terms of learning is that when learning how a sys-
tem responds to a set of inputs you normally want to
explore a large range of inputs to see the range of outputs.
Although this is possible when trying out commands on
your arm, you cannot give an arbitrary battery of inputs
to another person for system identification purposes, as
unlike your arm another person has the option to with-
draw communication once you have provided a ‘bad’
input (except, perhaps, in the case of infants and their
mothers).
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We propose that the reason we are able to solve the
problem of learning internal models of other people is
because of the similarity of brains across people. We pro-
pose that the uniqueness of human communication relies
on our brains being similar. This allows the brain to use
this fact to train a good internal model of another person’s
brain. We will review how having a similar motor system
(brain and musculoskeletal system) between two people
enables us to use the mappings between our actions and
our own mental states as a priori information to bootstrap
any learning of another person’s internal models. We will
illustrate these principles for a model of motor control: the
MOSAIC model that we have developed.

5. MULTIPLE INTERNAL MODELS FOR ACTION
PRODUCTION AND IMITATION

Humans demonstrate a remarkable ability to generate
accurate and appropriate motor behaviour under many
different and often uncertain environmental conditions. It
has been proposed that the CNS uses a modular approach
in which multiple controllers coexist and are selected
based on the movement context or state (Jacobs et al.
1991; Narendra et al. 1995; Narendra & Balakrishnan
1997; Ghahramani & Wolpert 1997). Therefore, when we
pick up an object with unknown dynamics we need to
identify the context and select the appropriate controller.
One possible solution to this identification and selection
problem has been proposed in the form of the MOSAIC
model (Wolpert & Kawato 1998; Haruno et al. 2001;
Doya et al. 2002). The idea is that the brain simul-
taneously runs multiple forward models that predict the
behaviour of the motor system to determine the current
dynamics of the body which will change when interacting
with different objects. Consider a very simple example in
which there are only two contexts: that a teapot to be lifted
is either full or empty (figure 2). When a motor command
is generated, an efference copy of the motor command is
used to simulate the sensory consequences under the two
possible contexts. The predictions based on an empty tea-
pot suggest that lift-off will take place early compared with
a full teapot and that the lift will be higher. These predic-
tions are compared with actual feedback. As the teapot is,
in fact, empty the sensory feedback matches the predic-
tions of the empty teapot context. This leads to a high
likelihood for the empty teapot and a low likelihood of the
full teapot. Each predictor can, therefore, be regarded as
a hypothesis tester for the context that it models. The
smaller the error in prediction, the more likely the context.
Moreover, each predictor is paired with a corresponding
controller forming a predictor–controller pair. The
MOSAIC model is able to learn a set of predictors to
cover the experienced behaviours and also ensures that the
each paired controller is the appropriate controller to use
in the context for which paired predictor is tuned (Haruno
et al. 2001). If the prediction of one of the forward models
closely matches the actual sensory feedback, then its
paired controller will be selected and used to determine
subsequent motor commands. In computational terms,
the sensory prediction error from a given forward model
is represented as a probability; if the error is small then
the probability that the forward model is appropriate is
high. The set of probabilities, termed responsibilities, from
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Figure 2. The MOSAIC architecture. A schematic of context estimation with just two contexts: that a teapot is empty or full.
In this highly simplified example, a module consists of a controller–predictor pair. In this case two controller–predictor pairs
exist: one tuned for a full teapot and one for an empty teapot. The outputs of the controllers are weighted by the likelihood
that each is appropriate, to determine the final motor command. When this motor command is generated, an efference copy
of the motor command is used to simulate, using the two predictors, the sensory consequences under the two possible
contexts. The predictions based on an empty teapot suggest that lift-off will take place early compared with a full teapot and
that the lift will be higher. These predictions are compared with actual feedback and the errors are normalized to turn them
into likelihood or responsibilities. As the teapot is, in fact, empty the sensory feedback matches the predictions of the empty
teapot context. This leads to a high likelihood for the empty teapot and a low likelihood of the full teapot. These
responsibilities are used to adjust the weightings of the controllers so as to generate motor commands appropriate for an
empty teapot. In addition, the responsibilities are used to gate the learning of the predictors and controllers (not shown).

an array of forward models is used to weight the outputs
of the paired controllers.

Learning by imitation is an essential part of human
motor behaviour and seems very limited in other animals,
even chimpanzees. Although seemingly a trivial task of
‘copying’ somebody’s action, learning by imitation poses
a series of computational challenges including:

(i) how to map the perceptual variables (e.g. visual and
auditory input) into corresponding motor variables;

(ii) how to compensate for the difference in the physical
properties and control capability of the demon-
strator and imitator; and

(iii) how to understand the intention of action (e.g.
objective function in optimal control) from obser-
vation of the resulting movements (see Schaal et
al. 2003).

In the MOSAIC model the consequences of a move-
ment are compared with multiple predictions as a form of
hypothesis testing as to the dynamics of the current state
or context. Each predictor tests the hypothesis that the
current dynamic is well captured by the predictor. The set
of errors are transformed into responsibilities
(probabilities) and provide rich information about the
likely state the system is in. A natural extension of the
model is to compare the predictions, not with one’s own
state, but with the state of a system that is being observed.
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We hypothesize that, in this way, during action obser-
vation the motor system can be used to understand the
actions of others. This could be an efficient process
because our CNS has learned to predict the consequences
of actions on our own body and this can be used to make
accurate prediction about others. The use of our own
motor system in understanding actions could underlie our
extraordinary ability to detect and identify biological
motion (Johansson 1973).

For the actor, at a given time only one or a small set
of modules generates a motor output (figure 3a). To use
MOSAIC to imitate movements requires three stages.
First, the visual information of the actor’s movement must
be converted into a format that can be used as inputs to
the system such as the motor system. This requires that
the visual processing system obtains something akin to
state (e.g. joint angles) over time which can then be used
by the MOSAIC (we do not deal with this visual problem
here). The second stage is that each controller in the
observer generates the motor command which it would
produce given the observed trajectory and current state
of the actor. Rather than these commands acting on the
observer’s own musculoskeletal system, the output of each
controller forms the input to its paired predictor, thereby
generating a prediction of the next likely state (figure 3b).
Therefore the observer uses his own multiple modules to
try to simulate the observed percept. This next state pre-
diction can be compared with the actor’s next state to pro-
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Figure 3. The MOSAIC for action observation. During action production (a), at a given time only one or a small set of
modules generates a motor output. In this example of balancing a walking stick on a finger, the modules are activated in a
particular sequence such as 1 → 3 → 2 → 4 → 2 → 1. For action production the outputs of the controllers are combined
and predictions of the consequences of the motor command are compared with sensory feedback from my own body to
determine future control. For action observation (b) each controller in the observer generates the motor command that it
would produce given the observed trajectory and current state of the observed person. Rather than these commands acting on
the observer’s own musculoskeletal system, the output of each controller forms the input to its paired predictor, thereby
generating a prediction of the likely next state. Therefore, the observer uses her own multiple modules to try to simulate the
observed percept. These predictions are compared with the observed next state of the performer, leading to the likelihood that
each of the observer’s controllers would have generated the behaviour. Therefore, the observer encodes this as a symbolic
stream, for example 2 → 4 → 3 → 1 → 2 → 4, representing the sequence of modules that needs to be used to generate the
observed behaviour. The observer can use this information in imitation either by replacing their usual sequence of module
activation or by biasing the selection.

duce prediction errors. Again, these prediction errors can
be converted into responsibilities determining which of my
controllers has to be active to generate the motion I see
you perform. Therefore, the identities of the modules
which best account for the percept form a symbolic code
of the hidden state of the actor. When the actor generates
a continuous trajectory (by activating modules
2 → 1→3 → 1→4 …), the observer encodes this as a sym-
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bolic stream (e.g. module 1 → 3→4 → 2→1 …) rep-
resenting which module needs to be used to generate the
observed behaviour. This symbolic representation cap-
tures a representation of the observed movement, which
has fewer dimensions than would be needed to store the
entire trajectory. Moreover, the movement is represented
in the observer’s private lexicon. If the MOSAIC of the
actor and observer are identical (which is never likely to
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be the case) then the symbolic representations should be
identical. The more different the MOSAICs the harder it
may be for the observer to represent the actor’s behaviour.
The final stage is for the observer to use the symbolic
sequence in imitation. By using the extracted symbolic
sequence of module activations to activate her modules
over time she is able to generate the behaviour. This infor-
mation can either replace the observer’s usual sequence of
module activation or be used to bias it towards a better
action. Preliminary simulations show that the MOSAIC
can be used in this way to learn a simple acrobot task
(swinging up a jointed stick to the vertical) through action
observation and imitation (Doya et al. 2000). Therefore,
the MOSAIC architecture could form the basis of a sys-
tem for action production and action imitation.

This method of action observation contrasts with pre-
vious methods of imitation learning that use several heu-
ristic methods for storing features of movement patterns,
for example, points of high curvature or discontinuity
(Kuniyoshi et al. 1994; Wada et al. 1995; Miyamoto et al.
1996). The current approach could provide a more gen-
eral principle for segmenting continuous movement pat-
terns: a local trajectory that is well predicted by a pair of
controllers and predictors could be regarded as a primi-
tive motion.

Although action observation and understanding could
be achieved by purely sensory approaches we suggest that
there are computational benefits to using the motor sys-
tem in approaches such as with the MOSAIC model. For
example, HMMs have been used extensively for automatic
segmentation of motion capture data of full body motion.
Multiple HMMs have the same probabilistic and modular
architecture as MOSAIC, and a long history of moderately
successful application to fields such as speech recognition.
The essential difference between MOSAIC and HMMs is
that controllers are involved. Inclusion of controllers may
be beneficial for two reasons. First, the communication
signals such as speech, facial expressions or body langu-
age, are generated by controllers. Thus, MOSAIC is a bet-
ter model than HMM as a generative model of these
communicative signals. Second, given the similarity of
brains within the human species, my MOSAIC should be
a much better approximation than any arbitrary recurrent
or feed-forward neural network or HMM as a model of
another person’s brain.

6. HIERARCHY FOR THE CONTROL AND
EXTRACTION OF INTENTIONS

Hierarchy plays a key role in human motor control. We
can generate a variety of motor sequences in a very coher-
ent manner despite the different conditions and contexts
in which we have to act. For example, the kinematics of
writing is preserved when using different effectors and
when the dynamics of the pen are varied. This suggests
that high-level representations of the characters may exist
and that the lower levels are concerned with compensating
for different dynamics. An interesting question is how
such hierarchical motor control can be learned and used?

A feature lacking in the current formulation of the
MOSAIC model is the hierarchical and bi-directional con-
trol of the modules’ activity. To incorporate such control,
we have proposed a new conceptual architecture, the
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HMOSAIC consisting of several layers of MOSAIC
(Haruno et al. 2003) (figure 4). Bi-directional information
processing between layers of HMOSAIC can be phrased
within a Bayesian statistical framework. The input of
higher-level modules is the (bottom-up) responsibility sig-
nals (posterior probability) from the subordinate modules,
which represent the currently selected modules given the
current behavioural situation. The output of higher-level
modules is a set of (top-down) prior probabilities of the
subordinate modules, which act to prioritize lower-level
module selection. More precisely, the higher control
model learns to output the prior probabilities to lower
modules given the current behavioural situation and poss-
ibly an abstract (symbolic) desired behaviour. By contrast,
the higher predictive model learns to anticipate the pos-
terior probability of the lower level at the next time step.
The precision of the prediction is used to weight the out-
puts from control models as well as the learning signal for
both predictive and control models. Thus, the lower- and
higher-level modules interact bidirectionally during learn-
ing and control of hierarchically organized movements.
The HMOSAIC architecture can learn both elementary
movements (lower-level chunking) and their hierarchical
temporal order (higher-level sequencing) through sensori-
motor learning. Simulations have shown that the HMO-
SAIC can learn how to control multiple objects and learn
how the object is likely to change over time, thereby learn-
ing temporal sequences (Haruno et al. 2003). The
hierarchical architecture embodies a way of reconciling
top-down plans and bottom-up constraints. This is a fun-
damental problem in hierarchical decision systems, often
called a ‘symbol grounding’ problem.

Conceptually the lowest level in the hierarchy learns the
elements of control for different contexts or states. The
next level up learns how to put elemental sequences
together: for example, learning how to control transitions
between the modules, thereby learning elemental
sequence patterns. Progressively higher levels learn more
abstract representations, with the higher levels learning
goals or intentions. Therefore the activations of a higher-
level goal such as to get a drink of water, would activate
lower levels in such a way as to finally generate the appro-
priate commands to reach for a glass of water. An
important feature of the hierarchy is the tree-like structure
so that higher levels could have multiple paths to activat-
ing lower levels, and the choice of path, or way of achiev-
ing a goal, can be biased by higher-level factors. By
including recurrent networks within the modules at higher
levels in HMOSAIC, the architecture should be able to
generate arbitrary combinations of the lowest primitives,
using a finite set of primitives to generate a possibly vast
repertoire of actions, in a similar way to the role of
recursion in language (Hauser et al. 2002).

In § 5 we proposed that the flat MOSAIC could be used
for low-level imitation of the modules which would
directly reproduce the kinematics (trajectory) of a move-
ment. However, using the HMOSAIC we could propagate
up the responsibility signal during action observation to
estimate which module at the various levels of the HMO-
SAIC would need to be active to generate the observed
behaviour. Using such an architecture it may be possible
to have several representations of the observed action,
from the low-level kinematics of movement (which mod-
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Figure 4. The hierarchical MOSAIC for action generation. Three layers of a simple HMOSAIC are shown in which each
block is a module, representing a predictor–controller pair, with the lowest levels represented by two flat MOSAIC structures.
The input of higher-level modules is the (bottom-up) responsibility signals (posterior probability) from the subordinate
modules, which represent the currently selected modules given the current behavioural situation. The output of higher-level
modules is a set of (top-down) prior probabilities of the subordinate modules, which act to prioritize lower-level module
selection. The HMOSAIC architecture can learn both elementary movements (lower-level chunking) and their hierarchical
temporal order (mid-level sequencing) through sensorimotor learning. Progressively higher levels learn more abstract
representations, with the higher-level learning goals or intentions. Therefore the activations of a higher-level goal, such as to
pick up an object, would activate lower-level modules (dark) in such a way as to finally generate the appropriate commands to
reach for an object.

ules are active in the lowest level), to representing
sequences of actions (intermediate levels) to the goal
(highest level). The degree to which propagation up the
hierarchy is possible depends on the extent to which a
coherent account of an observed action can be made using
the observer’s HMOSAIC. The more similar the
observer’s HMOSAIC is to the actor’s HMOSAIC the
easier it will be to make coherent, and unique interpret-
ations at higher levels. Therefore, a movement that has a
clear goal (which is also a goal that I have represented
in my HMOSAIC) could be understood at all levels and
imitation of the goal, even with different effectors, would
be possible. However, a meaningless movement, or one
for which the observer does not have a goal, could be
understood only at lower levels, with imitation slavishly
replicating kinematics or sequences (Wohlschläger et al.
2003). The key idea is that having similar computational
structures to generate movement, such as HMOSAIC,
dramatically reduces the computational problems in
action understanding. We have yet to simulate the hier-
archical action understanding.

7. COMMUNICATION AS CLOSING THE LOOP

So far we have discussed the use of MOSAIC and
HMOSAIC in an unidirectional manner, in that the actor
pays no attention to the observer’s actions. In true com-
munication the actor (the transmitter) is responsive to
misperception by the observer (the receiver). One way to
close the communication loop is as follows. The transmit-
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ter uses his internal symbolic stream to generate a series
of motor commands that in turn cause movements. The
receiver decodes the movements he sees into his internal
symbols and then also generates a series of motor com-
mands (attempting to imitate the transmitter). The trans-
mitter then sees these imitative movements and interprets
them back into his own symbols. He can then compare
the symbols he wished to transmit with the symbols he
believes he has transmitted. This discrepancy error can
then be used by the transmitter to determine a new
sequence of motor commands in an attempt to get the
receiver to internalize these symbols more accurately. So,
for example, if the symbols were responsibilities he could
generate an action using the original responsibilities aug-
mented with the error. Alternatively, to learn the internal
structure of the MOSAIC of others we could use the dis-
crepancy error to update the structure of our own
MOSAIC to more closely match those of others.

One of the necessary conditions for exact and rigorous
communication at symbolic levels is to have an identity
mapping in the closed loop of my symbols → my
action → your symbols → your imitation → my
perception → my interpretation of your symbols = my
original symbols.

There is, therefore, no need in principle why your
MOSAIC and my MOSAIC should have similar struc-
tures. However, we expect that if they have identical struc-
tures you and I will be able to communicate anything we
wish. The more dissimilar the structure the more things
we will get confused about during communication. In
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either case there is no need for the modules to be num-
bered or related—just the fact that you have a module
somewhere that does the same job as one of mine is good
enough. If discrepancies exist between the responsibilities
used for generation and the responsibilities during percep-
tion, these could be used to update my MOSAIC, to make
it more like yours.

Analogous to the state of our own system is the state of
someone else’s mind, being the set of parameters that are
required to predict the behaviour of the person given
inputs and their dynamics. Although in the case of our
own arm we may be able to monitor fully the inputs of
the system, for another person we may only know some
of the inputs. Knowing the system dynamics requires us
to learn how, given a particular internal state and input,
the other persons will respond. A default is, as described
already, to use our own HMOSAIC to estimate other
people’s hidden states. This allows us to use a single sys-
tem to interpret the actions of all other people. However,
there are situations in which it is inappropriate to assign
the same set of internal state to action mappings to every-
one. An alternative is to learn a new HMOSAIC for other
people. One possibility is that our own HMOSAIC could
be augmented by structures that aim to model the differ-
ence between our HMOSAIC and others. Such a system
would allow a representation of others’ internal mental
state separately from our own HMOSAIC structure and
may therefore form a basis for theory of mind.

8. CONCLUSION

We have explored the computational parallels between
the computations that occur in motor control and in social
interaction. In particular we examined how models of
motor control, such as the HMOSAIC, could be used for
action observation, imitation, social interaction and theory
of mind. We suggest that using our motor system in action
understanding is an efficient mechanism for performing
the computations needed in social interaction.

This work was supported by the McDonnell Foundation, Well-
come Trust and Human Frontiers Science Programme.
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GLOSSARY

CNS: central nervous system
HMM: hidden Markov model
HMOSAIC: hierarchical modular selection and identifi-

cation for control
MOSAIC: modular selection and identification for control


