Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2003 Apr 29;358(1432):649–655. doi: 10.1098/rstb.2002.1255

Bidirectional synaptic plasticity: from theory to reality.

Mark F Bear 1
PMCID: PMC1693164  PMID: 12740110

Abstract

Theories of receptive field plasticity and information storage make specific assumptions for how synapses are modified. I give a personal account of how testing the validity of these assumptions eventually led to a detailed understanding of long-term depression and metaplasticity in hippocampal area CA1 and the visual cortex. The knowledge of these molecular mechanisms now promises to reveal when and how sensory experience modifies synapses in the cerebral cortex.

Full Text

The Full Text of this article is available as a PDF (396.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abraham W. C., Bear M. F. Metaplasticity: the plasticity of synaptic plasticity. Trends Neurosci. 1996 Apr;19(4):126–130. doi: 10.1016/s0166-2236(96)80018-x. [DOI] [PubMed] [Google Scholar]
  2. Abraham W. C., Goddard G. V. Asymmetric relationships between homosynaptic long-term potentiation and heterosynaptic long-term depression. Nature. 1983 Oct 20;305(5936):717–719. doi: 10.1038/305717a0. [DOI] [PubMed] [Google Scholar]
  3. Arai A., Kessler M., Lynch G. The effects of adenosine on the development of long-term potentiation. Neurosci Lett. 1990 Oct 30;119(1):41–44. doi: 10.1016/0304-3940(90)90750-4. [DOI] [PubMed] [Google Scholar]
  4. Arai A., Larson J., Lynch G. Anoxia reveals a vulnerable period in the development of long-term potentiation. Brain Res. 1990 Mar 19;511(2):353–357. doi: 10.1016/0006-8993(90)90184-d. [DOI] [PubMed] [Google Scholar]
  5. Barria A., Muller D., Derkach V., Griffith L. C., Soderling T. R. Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation. Science. 1997 Jun 27;276(5321):2042–2045. doi: 10.1126/science.276.5321.2042. [DOI] [PubMed] [Google Scholar]
  6. Barrionuevo G., Schottler F., Lynch G. The effects of repetitive low frequency stimulation on control and "potentiated" synaptic responses in the hippocampus. Life Sci. 1980 Dec 15;27(24):2385–2391. doi: 10.1016/0024-3205(80)90509-3. [DOI] [PubMed] [Google Scholar]
  7. Bear M. F., Cooper L. N., Ebner F. F. A physiological basis for a theory of synapse modification. Science. 1987 Jul 3;237(4810):42–48. doi: 10.1126/science.3037696. [DOI] [PubMed] [Google Scholar]
  8. Bear M. F., Malenka R. C. Synaptic plasticity: LTP and LTD. Curr Opin Neurobiol. 1994 Jun;4(3):389–399. doi: 10.1016/0959-4388(94)90101-5. [DOI] [PubMed] [Google Scholar]
  9. Bienenstock E. L., Cooper L. N., Munro P. W. Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J Neurosci. 1982 Jan;2(1):32–48. doi: 10.1523/JNEUROSCI.02-01-00032.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Bliss T. V., Collingridge G. L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature. 1993 Jan 7;361(6407):31–39. doi: 10.1038/361031a0. [DOI] [PubMed] [Google Scholar]
  11. Bliss T. V., Lomo T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol. 1973 Jul;232(2):331–356. doi: 10.1113/jphysiol.1973.sp010273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Cline H. T., Debski E. A., Constantine-Paton M. N-methyl-D-aspartate receptor antagonist desegregates eye-specific stripes. Proc Natl Acad Sci U S A. 1987 Jun;84(12):4342–4345. doi: 10.1073/pnas.84.12.4342. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Collingridge Graham L. The induction of N-methyl-D-aspartate receptor-dependent long-term potentiation. Philos Trans R Soc Lond B Biol Sci. 2003 Apr 29;358(1432):635–641. doi: 10.1098/rstb.2002.1241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Cooper L. N., Liberman F., Oja E. A theory for the acquisition and loss of neuron specificity in visual cortex. Biol Cybern. 1979 Jun 29;33(1):9–28. doi: 10.1007/BF00337414. [DOI] [PubMed] [Google Scholar]
  15. Dudek S. M., Bear M. F. A biochemical correlate of the critical period for synaptic modification in the visual cortex. Science. 1989 Nov 3;246(4930):673–675. doi: 10.1126/science.2573152. [DOI] [PubMed] [Google Scholar]
  16. Dudek S. M., Bear M. F. Bidirectional long-term modification of synaptic effectiveness in the adult and immature hippocampus. J Neurosci. 1993 Jul;13(7):2910–2918. doi: 10.1523/JNEUROSCI.13-07-02910.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Dudek S. M., Bear M. F. Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-D-aspartate receptor blockade. Proc Natl Acad Sci U S A. 1992 May 15;89(10):4363–4367. doi: 10.1073/pnas.89.10.4363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ehlers M. D. Reinsertion or degradation of AMPA receptors determined by activity-dependent endocytic sorting. Neuron. 2000 Nov;28(2):511–525. doi: 10.1016/s0896-6273(00)00129-x. [DOI] [PubMed] [Google Scholar]
  19. Fujii S., Saito K., Miyakawa H., Ito K., Kato H. Reversal of long-term potentiation (depotentiation) induced by tetanus stimulation of the input to CA1 neurons of guinea pig hippocampal slices. Brain Res. 1991 Jul 26;555(1):112–122. doi: 10.1016/0006-8993(91)90867-u. [DOI] [PubMed] [Google Scholar]
  20. Hesse G. W., Teyler T. J. Reversible loss of hippocampal long term potentiation following electronconvulsive seizures. Nature. 1976 Dec 9;264(5586):562–564. doi: 10.1038/264562a0. [DOI] [PubMed] [Google Scholar]
  21. Heynen A. J., Quinlan E. M., Bae D. C., Bear M. F. Bidirectional, activity-dependent regulation of glutamate receptors in the adult hippocampus in vivo. Neuron. 2000 Nov;28(2):527–536. doi: 10.1016/s0896-6273(00)00130-6. [DOI] [PubMed] [Google Scholar]
  22. Huber K. M., Kayser M. S., Bear M. F. Role for rapid dendritic protein synthesis in hippocampal mGluR-dependent long-term depression. Science. 2000 May 19;288(5469):1254–1257. doi: 10.1126/science.288.5469.1254. [DOI] [PubMed] [Google Scholar]
  23. Kameyama K., Lee H. K., Bear M. F., Huganir R. L. Involvement of a postsynaptic protein kinase A substrate in the expression of homosynaptic long-term depression. Neuron. 1998 Nov;21(5):1163–1175. doi: 10.1016/s0896-6273(00)80633-9. [DOI] [PubMed] [Google Scholar]
  24. Kirkwood A., Bear M. F. Hebbian synapses in visual cortex. J Neurosci. 1994 Mar;14(3 Pt 2):1634–1645. doi: 10.1523/JNEUROSCI.14-03-01634.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kirkwood A., Bear M. F. Homosynaptic long-term depression in the visual cortex. J Neurosci. 1994 May;14(5 Pt 2):3404–3412. doi: 10.1523/JNEUROSCI.14-05-03404.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kirkwood A., Dudek S. M., Gold J. T., Aizenman C. D., Bear M. F. Common forms of synaptic plasticity in the hippocampus and neocortex in vitro. Science. 1993 Jun 4;260(5113):1518–1521. doi: 10.1126/science.8502997. [DOI] [PubMed] [Google Scholar]
  27. Kirkwood A., Rioult M. C., Bear M. F. Experience-dependent modification of synaptic plasticity in visual cortex. Nature. 1996 Jun 6;381(6582):526–528. doi: 10.1038/381526a0. [DOI] [PubMed] [Google Scholar]
  28. Kleinschmidt A., Bear M. F., Singer W. Blockade of "NMDA" receptors disrupts experience-dependent plasticity of kitten striate cortex. Science. 1987 Oct 16;238(4825):355–358. doi: 10.1126/science.2443978. [DOI] [PubMed] [Google Scholar]
  29. Lee H. K., Barbarosie M., Kameyama K., Bear M. F., Huganir R. L. Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity. Nature. 2000 Jun 22;405(6789):955–959. doi: 10.1038/35016089. [DOI] [PubMed] [Google Scholar]
  30. Lee H. K., Kameyama K., Huganir R. L., Bear M. F. NMDA induces long-term synaptic depression and dephosphorylation of the GluR1 subunit of AMPA receptors in hippocampus. Neuron. 1998 Nov;21(5):1151–1162. doi: 10.1016/s0896-6273(00)80632-7. [DOI] [PubMed] [Google Scholar]
  31. Lisman J. A mechanism for the Hebb and the anti-Hebb processes underlying learning and memory. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9574–9578. doi: 10.1073/pnas.86.23.9574. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Malinow Roberto, Malenka Robert C. AMPA receptor trafficking and synaptic plasticity. Annu Rev Neurosci. 2002 Mar 4;25:103–126. doi: 10.1146/annurev.neuro.25.112701.142758. [DOI] [PubMed] [Google Scholar]
  33. Morris R. G., Anderson E., Lynch G. S., Baudry M. Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. 1986 Feb 27-Mar 5Nature. 319(6056):774–776. doi: 10.1038/319774a0. [DOI] [PubMed] [Google Scholar]
  34. Mulkey R. M., Endo S., Shenolikar S., Malenka R. C. Involvement of a calcineurin/inhibitor-1 phosphatase cascade in hippocampal long-term depression. Nature. 1994 Jun 9;369(6480):486–488. doi: 10.1038/369486a0. [DOI] [PubMed] [Google Scholar]
  35. Philpot B. D., Sekhar A. K., Shouval H. Z., Bear M. F. Visual experience and deprivation bidirectionally modify the composition and function of NMDA receptors in visual cortex. Neuron. 2001 Jan;29(1):157–169. doi: 10.1016/s0896-6273(01)00187-8. [DOI] [PubMed] [Google Scholar]
  36. Quinlan E. M., Philpot B. D., Huganir R. L., Bear M. F. Rapid, experience-dependent expression of synaptic NMDA receptors in visual cortex in vivo. Nat Neurosci. 1999 Apr;2(4):352–357. doi: 10.1038/7263. [DOI] [PubMed] [Google Scholar]
  37. Rittenhouse C. D., Shouval H. Z., Paradiso M. A., Bear M. F. Monocular deprivation induces homosynaptic long-term depression in visual cortex. Nature. 1999 Jan 28;397(6717):347–350. doi: 10.1038/16922. [DOI] [PubMed] [Google Scholar]
  38. Staubli U., Lynch G. Stable depression of potentiated synaptic responses in the hippocampus with 1-5 Hz stimulation. Brain Res. 1990 Apr 9;513(1):113–118. doi: 10.1016/0006-8993(90)91096-y. [DOI] [PubMed] [Google Scholar]
  39. Stent G. S. A physiological mechanism for Hebb's postulate of learning. Proc Natl Acad Sci U S A. 1973 Apr;70(4):997–1001. doi: 10.1073/pnas.70.4.997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Wiesel T. N. Postnatal development of the visual cortex and the influence of environment. Nature. 1982 Oct 14;299(5884):583–591. doi: 10.1038/299583a0. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES