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After reviewing six senses of abstraction, this article focuses on abstractions that take the form of summary
representations. Three central properties of these abstractions are established: (i) type–token interpret-
ation; (ii) structured representation; and (iii) dynamic realization. Traditional theories of representation
handle interpretation and structure well but are not sufficiently dynamical. Conversely, connectionist
theories are exquisitely dynamic but have problems with structure. Perceptual symbol systems offer an
approach that implements all three properties naturally. Within this framework, a loose collection of prop-
erty and relation simulators develops to represent abstractions. Type–token interpretation results from
binding a property simulator to a region of a perceived or simulated category member. Structured rep-
resentation results from binding a configuration of property and relation simulators to multiple regions
in an integrated manner. Dynamic realization results from applying different subsets of property and
relation simulators to category members on different occasions. From this standpoint, there are no perma-
nent or complete abstractions of a category in memory. Instead, abstraction is the skill to construct tem-
porary online interpretations of a category’s members. Although an infinite number of abstractions are
possible, attractors develop for habitual approaches to interpretation. This approach provides new ways of
thinking about abstraction phenomena in categorization, inference, background knowledge and learning.
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1. INTRODUCTION

Abstraction is a central construct in cognitive science.
Rather than just having one sense, abstraction has at least
six, as follows.

(i) Categorical knowledge. Abstraction can simply mean
that knowledge of a category has been abstracted
from experience, such as abstracting the category of
CHAIRS from the settings in which they occur.
(Italics will be used to indicate concepts, and quotes
will be used to indicate linguistic forms (words,
sentences). Thus, CHAIR indicates a concept, and
‘chair’ indicates the corresponding word. Within
concepts, uppercase words will represent categories,
whereas lowercase words will represent properties of
categories (e.g. CHAIR versus seat) and relations
between properties (e.g. above for the relation of the
CHAIR’s back to its seat).) Nearly all accounts of
knowledge are comfortable with this sense, including
rule-based, prototype, exemplar, connectionist and
embodied theories.

(ii) The behavioural ability to generalize across category
members. Another uncontroversial sense of abstrac-
tion is that people can summarize the properties of a
category’s members behaviourally. All theories agree
that people state generics, such as ‘cats have fur,’
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and quantifications, such as ‘some mammals swim’.
Behaviourally, people produce abstractions.

(iii) Summary representation. The cognitive bases of the
behavioural abstractions in sense (ii) are contro-
versial. In some theories, behavioural abstractions
reflect underlying summary representations of
category members in long-term memory. According
to these views, when people generalize behav-
iourally, they describe an underlying summary rep-
resentation, such as a declarative rule, a statistical
prototype or a connectionist attractor. Importantly,
the summary representations in sense (iii) are not
necessary to produce the behavioural abstractions in
sense (ii). For example, exemplar models store only
exemplars in memory—not summary represen-
tations—and produce behavioural abstractions by
scanning and summarizing exemplars online (e.g.
Hintzman 1986).

(iv) Schematic representation. A second controversial
sense is that schematic representations represent cat-
egories in memory, where ‘schematic’ refers to sum-
mary representations being sparser than exemplars.
Thus a schematic representation might abstract the
critical properties of a category’s exemplars and dis-
card the irrelevant properties (e.g. the geons of Bied-
erman 1987). Also, properties in a summary
representation may be distorted to idealize or carica-
ture a category, helping to distinguish the category
from others (e.g. Posner & Keele 1968; Rhodes et
al. 1987; also see Barsalou 1985; Palmeri & Nosof-
sky 2001).
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(v) Flexible representation. A third controversial sense of
abstraction is that summary representations can be
applied flexibly to many different tasks, including
categorization, inference, language comprehension,
reasoning, etc. From this perspective, increasing
abstractness allows a representation to become
increasingly flexible (e.g. Winograd 1975).

(vi) Abstract concepts. Finally, abstraction can refer to the
abstractness of concepts, ranging from concrete (e.g.
HAT) to abstract (e.g. COURAGE). When concepts
become detached from physical entities and more
associated with mental events, they become increas-
ingly abstract (e.g. Paivio 1986; Barsalou 1999;
Wiemer-Hastings et al. 2001).

Although all six senses of abstraction are important, the
focus here will be on one of its more controversial ones:
abstraction as summary representation (sense (iii) above).
In what follows, ‘abstraction’ will refer solely to this sense.
The goal of this article will be to develop an account of
summary representations within the framework of percep-
tual symbol systems (Barsalou 1999). For an extended
version of this article, see Barsalou (2004).

2. THREE PROPERTIES OF SUMMARY
REPRESENTATIONS

Three properties are central to abstractions that take the
form of summary representations: type–token interpret-
ation, structured representation and dynamic realization.

(a) Property 1: type–token interpretation
Pylyshyn (1973) proposed that cognition is inherently

an interpretive process. In the debate on mental imagery,
he argued that cognitive representations are not like the
holistic bit-mapped recordings in cameras, video recorders
and audio recorders. Many other perception researchers
would agree (e.g. Hochberg 1998). Instead, Pylyshyn
argued, cognitive representations are interpretations of
experience. To construct an interpretation, concepts in
memory type the components of sensory-motor experi-
ence to produce type–token propositions. On walking into
an office, for example, the concepts for COMPUTER,
TABLE and LAMP become bound to particular objects,
thereby creating type–token propositions of the sort
COMPUTER(object-89), TABLE(object-23), etc. Such
propositions essentially make claims about the world that
can be true or false, such as the belief that object-89 is a
COMPUTER (e.g. Church 1956).

A component of experience can be interpreted in infinite
ways. For example, object-89 could be interpreted alterna-
tively as ARTEFACT(object-89), OFFICE EQUIPMENT
(object-89), ELECTRONIC DEVICE(object-89), DEVICE
THAT REVOLUTIONIZED THE MODERN WORK-
PLACE(object-89) and so forth. An infinite number of true
interpretations of an individual exist and also an infinite
number of false interpretations, with each interpretation
providing a different perspective on the object.

Once a type–token proposition exists to interpret an
entity or event, the proposition provides extensive inferen-
tial knowledge. Once something is interpreted as a COM-
PUTER, inferences follow, such as that it requires
electricity, can be used for e-mail, is easily breakable and
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so forth. If the object were interpreted instead as SOME-
THING THAT THIEVES STEAL, different inferences
would follow (e.g. the computer should be locked to its
table). In all cases, these inferences constitute further
propositions that become linked to the type–token map-
pings that triggered them.

From this standpoint, propositions underlie represen-
tations of the world, not bit-mapped recordings (see Hau-
geland 1991; Dretske 1995; Barsalou 1999). A
representation of a computer is not a holistic recording,
but a set of propositions that interpret it. Most importantly
for the purpose of this paper, Pylyshyn assumes that
abstractions underlie the interpretive process. The types
in type–token propositions are abstractions for properties,
objects, events, relations and so forth. After a concept has
been abstracted from experience, its summary represen-
tation supports the later interpretation of experience.
Therefore, abstractions (as summary representations)
underlie interpretation.

(b) Property 2: structured representation
Concepts do not typically interpret experience individu-

ally but are organized into structured representations that
establish relations between individual type–token prop-
ositions. Rather than COMPUTER(object-89) and
TABLE(object-23) being independent, a spatial concept,
such as on, might organize them into a structured prop-
osition, such as

on(upper-region = COMPUTER(object-89),
lower-region = TABLE(object-23)).

Considerable empirical evidence indicates that structured
representations pervade human knowledge. Some of the
strongest evidence comes from work on concepts and cat-
egorization, where researchers have found robust evidence
for relational structure in experiments designed to detect
it (e.g. Goldstone & Medin 1994; Markman & Gentner
1997; also Barsalou 1992; Barsalou & Hale 1993). Cat-
egorizing exemplars, judging their similarity and drawing
categorical inferences all rely heavily on structured
relations—not only on independent properties. Addition-
ally, the process of combining individual concepts into
structured representations underlies the process of con-
ceptual combination (e.g. Rips 1995; Hampton 1997;
Wisniewski 1997).

Further evidence comes from analogy, where structured
representations are clearly implicated in people’s ability to
extend relational systems from one domain to another
(e.g. Gentner & Markman 1997; Holyoak & Thagard
1997). Similar evidence comes from language comprehen-
sion, where complex propositional structures underlie the
meanings of texts (e.g. Kintsch & van Dijk 1978; Graesser
et al. 1994). Finally, various theorists have argued that
structured representations are a hallmark of human cog-
nition, which any theory must explain (e.g. Fodor &
Pylyshyn 1988).

For these reasons, a second fundamental property of
abstractions is their participation in complex interpretive
systems. Abstractions do not simply interpret isolated
components of experience, but assemble into structured
representations that interpret complex structure in the
world.
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(c) Property 3: dynamic realization
The abstractions that represent a category are notori-

ously difficult to specify. In attempting to specify the
abstractions that represent particular categories, it is usu-
ally impossible to specify them fully (e.g. Barsalou 1993).
Artificial intelligence researchers often experience similar
difficulty in articulating abstractions when programming
knowledge into intelligent systems. In general, three prob-
lems arise when attempting to specify the abstractions that
underlie a category.

(i) Identifiability. What information about a category
should an abstraction include? For example, what
abstractions should be used to represent restaurant
visits (Schank & Abelson 1977)? Of everything that
could possibly occur in these visits, what should a
summary representation of them include? Only the
properties that are relatively invariant across res-
taurant visits? What about properties that are true
occasionally? How should differences between indi-
viduals and cultures be handled? How does a theor-
ist determine when an abstraction is complete? It is
a daunting task to specify the content of an abstrac-
tion completely.

(ii) Justification. How does a theorist justify the inclusion
of particular information in an abstraction? In arti-
ficial intelligence, knowledge engineers often select
abstractions intuitively that best serve a specific
application that they are trying to develop. Problem-
atically, however, no clear principles exist for justify-
ing the inclusion of particular information in
abstractions.

(iii) Rigidity. Typically, exceptions arise for an abstrac-
tion (e.g. Wittgenstein 1953). A frequent criticism
of the restaurant script of Schank & Abelson (1977)
was that it did not cover unexpected deviations and
unusual restaurant visits. In response, Schank and
Abelson suggested that different tracks through a
script handle special cases. Problematically, how-
ever, infinitely many tracks are required to handle
all possibilities. Furthermore, how do people process
novel cases, which they often handle relatively effort-
lessly (e.g. visiting a new type of restaurant)? To
date, we have no satisfactory account of how
abstractions can handle such variability.

The identifiability, motivation and rigidity problems
could be viewed as indicating that we simply need a better
methodology for discovering abstractions. Alternatively,
however, there may be no correct abstractions to discover.
Instead of a single abstraction representing a category, an
infinite number of abstractions may be constructed online
to represent a category temporarily (Barsalou 1987, 1989,
1993). If this latter conclusion is correct, then studying
the skill to construct temporary abstractions dynamically
may be more informative scientifically than attempting to
discover one particular abstraction that represents a cat-
egory. For this reason, I assume that a third important
property of abstractions is their dynamic realization. In the
literatures that address abstraction, this is not a standard
assumption.
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(d) Existing theories of summary representations
Classic theories of representation typically do a good job

of implementing the first two properties just discussed for
abstractions: type–token interpretation and structured
representations. Good examples of these theories and how
they implement these two properties can be found in Win-
ograd (1972), Newell & Simon (1972), Schank & Colby
(1973), Bobrow & Collins (1975), Collins & Loftus
(1975), Anderson (1976), Schank & Abelson (1977) and
Charniak & McDermott (1985) (also see the articles by
Zucker (2003) and Holte & Choueiry (2003)). Problem-
atically, however, these theories are poor at handling the
third property of abstractions, namely, dynamic realiz-
ation. As just reviewed, these theories typically have dif-
ficulty in identifying and justifying the content of
abstractions, and they produce abstractions that are
overly rigid.

By contrast, connectionist approaches to abstraction
succeed beautifully at handling the flexibility of abstrac-
tions and also at implementing simple type–token
interpretation. Where connectionist theories have dif-
ficulty is in implementing structured representations.
Although various proposals have been suggested, none has
convinced many researchers that it provides a psychologi-
cally plausible account. Barsalou (2004) presents a more
detailed discussion of these various theories, along with
their strengths and weaknesses.

This article’s theme is that a satisfactory and powerful
account of abstraction can be developed within the frame-
work of perceptual symbol systems (Barsalou 1999). This
theory implements structured interpretation naturally and
elegantly, while simultaneously implementing dynamic
realization.

The next section lays the groundwork for this approach
to abstraction. The final two sections then illustrate how
the various properties of abstraction arise within this
framework. The goal here is to outline the basic architec-
ture of this approach, and to show how it implements a
satisfactory account of abstraction. Although not pro-
vided, a computational implementation would be highly
desirable. Hopefully this initial sketch will lead to the
development of such implementations.

3. RE-ENACTMENT, SIMULATORS AND
SIMULATIONS

The central constructs in this approach to abstraction
are simulators and simulations. Before they can be
defined, it is first necessary to introduce the mechanism
of modality-specific re-enactment.

(a) Re-enactment in modality-specific systems
The basic idea behind this mechanism is that associ-

ation areas in the brain capture modality-specific states
during perception and action, and then reinstate them
later to represent knowledge. When a physical entity or
event is perceived, it activates feature detectors in the rel-
evant modality-specific areas. During visual processing of
a car, for example, populations of neurons fire for edges,
vertices and planar surfaces, whereas others fire for orien-
tation, colour and movement. The total pattern of acti-
vation over this hierarchically organized distributed system
represents the entity in vision (e.g. Zeki 1993; Palmer
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1999). Similar distributions of activation on other
modalities represent how the entity feels and sounds, and
the actions performed on it. A related account can be pro-
vided for introspective states that arise during the event.
Patterns of activation in the amygdala and orbito-frontal
areas, for example, represent emotional and affective reac-
tions.

Once a pattern becomes active in a feature area, con-
junctive neurons in an association area store the pattern’s
features for later use. Damasio (1989) refers to these
association areas as ‘convergence zones’, and assumes that
they exist at multiple hierarchical levels, ranging from pos-
terior to anterior in the brain. Simmons & Barsalou (2003)
present a more developed account of the convergence
zone architecture that explains lesion-based deficits of cat-
egorical knowledge.

The convergence zone architecture has the functional
ability to re-enact sensory-motor and introspective states:
once conjunctive neurons in a convergence zone capture
a pattern of activation in a feature area, these neurons can
later reinstate the pattern in the absence of bottom-up
stimulation. During the recollection of a perceived object,
for example, conjunctive neurons re-enact the sensory-
motor and introspective states that were active while
processing it originally. During the conceptualization of a
category, conjunctive neurons similarly re-enact the
modality-specific states characteristic of its members. No
re-enactment is ever complete, and various biases may dis-
tort its reactivation. However, at least some semblance of
the original state is partly reinstated.

This basic mechanism is widely viewed as underlying
mental imagery (e.g. Kosslyn 1994; Jeannerod 1995;
Farah 2000; Halpern 2001). The re-enactments it pro-
duces, however, are not necessarily conscious mental
images. On the contrary, unconscious re-enactments may
often underlie memory, conceptualization, comprehension
and reasoning (Barsalou 1999). Although explicit
attempts to construct mental imagery may create vivid re-
enactments, other cognitive processes may often rely on
less conscious re-enactments. In the account of
abstraction developed here, the neural re-enactment of
modality-specific states is the critical mechanism—not the
re-enactment of conscious mental images.

(b) Simulators
According to Barsalou (1999), the neural re-enactment

of modality-specific states underlies the conceptual sys-
tem. In this theory, simulators and simulations constitute
the central constructs. As different members of the same
category are encountered, they generally activate similar
neural patterns in feature areas (i.e. the statistically corre-
lated features in categories; Rosch & Mervis (1975)). As
a consequence of these shared feature activations, similar
populations of conjunctive neurons tend to store these
patterns in topographically related areas (Simmons & Bar-
salou 2003). As the category is learned, conjunctive neu-
rons integrate sensory-motor and introspective features
across its members, establishing a multi-modal represen-
tation of a category. Consider the category of CARS. Vis-
ual information about how cars look is integrated with
auditory information about how they sound, olfactory
information about how they smell, motor information
about driving them, somatosensory information about
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feeling the ride in them, and emotional information asso-
ciated with speed, dangerous situations, etc. The resulting
representation is a distributed system throughout the
brain’s association and modality-specific areas that estab-
lishes knowledge about CARS. In Barsalou (1999), this
distributed system is called a simulator.

(c) Simulations
A simulator is not a static representation of a category.

Instead, it is a generator of representations. Specifically, a
simulator re-enacts small subsets of its content as specific
simulations on particular occasions to represent the
respective category. The simulator’s entire content is
never activated all at once—only a small subset becomes
active that is tailored to the constraints of the current situ-
ation (cf. Barsalou 1987, 1989, 1993). As Barsalou (2003)
proposes, the active subset is configured to support the
current course of situated action, providing goal-relevant
inferences about objects, actions, mental states and the
background setting. On one occasion, the CAR simulator
might produce a simulation of travelling in car, whereas
on others it might produce simulations of repairing a car,
seeing a car park and so forth.

Simulations support a wide variety of functions in the
cognitive system. For example, simulations produce infer-
ences about category members that go beyond the infor-
mation perceived for them. More generally, simulations
constitute the representations that underlie memory, lang-
uage and thought. See Barsalou (1999, 2003) for further
detail.

(d) Property simulators
An infinitely large number of simulators can become

established in the brain. Barsalou (1999) proposed that a
simulator develops for any component of experience that
attention selects repeatedly (also Mandler 1992). If atten-
tion focuses repeatedly on a particular component of
experience across occasions, a simulator comes to rep-
resent it. As a result, simulators develop for various types
of object, location, event, action, mental state and so
forth. The flexibility of acquiring simulators is consistent
with the argument of Schyns et al. (1998) that new fea-
tures can be learned creatively. As these features become
relevant for categorization, attention focuses on them,
such that modality-specific information extracted from
them becomes integrated into memory.

In the theory developed here, property simulators and
relation simulators are central to the abstraction process.
Each is addressed in turn. A property simulator arises
from repeatedly processing a property of a category’s
members. Consider the property of noses. As attention
focuses on the noses of a category’s members (e.g.
HUMANS), feature areas represent the relevant sensory-
motor features in vision, and convergence zones capture
these patterns. Later, in the absence of seeing a nose, the
nose simulator can produce many different simulations
of noses.

This account assumes that property simulators have the
following four characteristics (for further detail, see Barsa-
lou 2004). First, these simulators capture multi-modal
information and produce multi-modal simulations. Simul-
ations of noses contain not just visual information but also
information from other relevant modalities, such as aud-
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ition, smell and movement. Second, property simulations
are typically not constructed in isolation. Rather than
simulating a nose in isolation, it is typically simulated in
the context of a background object or setting, such as a
face. Third, these simulations typically do not produce
global representations of a property that cover its form
across all relevant categories. Rather than simulating a
highly schematic nose, the nose simulator typically simu-
lates specific noses, such as those for humans, dogs, fishes,
and aeroplanes. Fourth, these specific simulations of a
property are organized in a dominance order, such that
some simulations are more likely to become active than
others. For noses, simulations of human noses are most
likely, with dog noses and aeroplane noses decreasing in
accessibility. Solomon & Barsalou (2001) provide evi-
dence for this account of property simulators. Related fin-
dings can also be found in Halff et al. (1976), Wisniewski
(1998), Martin et al. (2000), Martin (2001), Martin &
Chao (2001), Kan et al. (2003), Pecher et al. (2003a,b),
Solomon & Barsalou (2003) and Wu & Barsalou (2003).

In this theory, property simulators develop for the wide
variety of properties that people learn about categories.
Thus, property simulators develop not only for visual
properties (e.g. noses), but also for auditory properties (e.g.
barking), motor properties (e.g. pat), touch properties (e.g.
soft), smell properties (e.g. sweet), emotional categories
(e.g. happy) and so forth.

(e) Relation simulators
As just demonstrated, a property simulator represents

some aspect of a category’s members. Analogously, a
relation simulator represents multiple aspects of a catego-
ry’s members and their configuration (for further details,
see Barsalou 2004). Consider the above relation. For the
category of FACES, people not only acquire property
knowledge about noses and mouths, they also acquire the
knowledge that noses are above mouths. They also learn
that above applies to many other property configurations,
such as roofs being above walls in HOUSES, and branches
being above roots in TREES. In all cases, two regions of
the respective objects are relevant, where the focal region
is higher vertically than the non-focal region.

As people repeatedly process these spatial relations,
information about above accumulates in the above simu-
lator. Information about the regions is extracted from
experience, filtering out the respective entities they con-
tain (e.g. the regions containing noses and mouths are
extracted, filtering the details about noses and mouths).
Once the simulator for above exists, it can produce many
different simulations, each representing one particular
configuration of regions for above (Talmy 1983; Lan-
gacker 1986; Herskovits 1997; Barsalou 1999). Many spe-
cific simulations are possible that vary in the vertical
distance between the regions, the extent to which they are
offset horizontally, their relative sizes, shapes and so forth.
Although the details of these regions are filtered during the
extraction of spatial information, different spatial patterns
become stored with the respective categories. Thus the
configuration of regions typical for above (nose, mouth)
becomes associated with FACES, whereas the configur-
ations typical for above (roof, walls) and above (branches,
roots) become associated with HOUSES and TREES,
respectively. As for property simulators, dominance orders
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of spatial configurations result, with some configurations
being more accessible than others.

Increasing research supports the view that the meaning
of a spatial preposition is a simulation of spatial regions.
In research on attention, participants view a reference
point, R, and assess whether another object, O, stands in
some spatial relation to it (e.g. O is above R). O is then
shown in many different positions around R, and the par-
ticipant assesses the relation between them. Using typi-
cality judgement and verification time as measures,
researchers have shown that a prototypical configuration
of spatial regions underlies the meaning of a spatial prep-
osition (e.g. Hayward & Tarr 1995; Logan & Compton
1996; Carlson-Radvansky & Logan 1997). For example,
the prototypical configuration for above occurs when the
centre of O is aligned geometrically above the centre of
R, not too far away. When participants hear ‘above,’ they
construct a perceptual simulation of this prototypical con-
figuration. When the display configuration subsequently
matches this simulation, processing is optimal. As the con-
figuration departs increasingly from the prototypical one,
processing efficiency falls off in a graduated manner. The
greater the departure from the prototypical configuration,
the greater the transformation necessary to match it.
Further research indicates that function modulates the
particular spatial configuration simulated on a particular
occasion (e.g. Coventry 1998; Carlson-Radvansky et al.
1999). As demonstrated for property simulators, a family
of simulations—not just one simulation—underlies a spa-
tial relation.

Besides spatial relations, a wide variety of other relations
underlie human knowledge, including temporal, causal
and intentional relations. Similar analyses can be applied
to these other relations, namely, a simulator develops to
produce a family of simulations for each relation (Barsalou
1999). As attention repeatedly focuses on the relevant
configuration of regions across category members, a con-
vergence zone captures the configuration and integrates it
in a simulator. Temporal and causal relations develop
from storing configurations of regions distributed over
time, and intentional relations develop from storing con-
figurations of regions that link mental states to the
environment. Clearly, much further research is required
to specify how these relations are learned and represented,
but the basic idea is simulators develop to interpret the
relevant configurations of spatio-temporal regions.

(f ) Holistic simulations
Before returning to the issue of abstraction, one further

construct must be established. So far, we have focused on
how property and relation simulators develop to simulate
the regions of entities and events. As will become clear
shortly, entities and events must also be simulated, not
just properties and relations within them. To verify that a
DOG has a nose (in the absence of an actual dog), a dog
must be simulated, not just a nose. The approach
developed here is that the requisite conceptualizations of
entities and events are holistic simulations built largely
from global information extracted during pre-attentive
processing.

Various types of global information could underlie these
holistic simulations. For example, holistic representations
could include blob-like representations of an entity’s glo-
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bal shape, extracted by low-spatial frequency filters (e.g.
Smith 1989; De Valois & De Valois 1988). Holistic rep-
resentations could also include primary axes, parsed sub-
regions and distributed configural features that capture
direction and distance relations between sub-regions (e.g.
Tanaka & Farah 1993). Thus, the basic idea is that when
people simulate a DOG to verify that it has a nose, they
simulate the dog using blob-like representations, struc-
tured by large configural features.

It is further assumed that these holistic simulations do
not explicitly contain analytical properties of the sort
described earlier for property and relation simulators.
Holistic simulations do not explicitly represent properties
at the conceptual level—they only contain perceptual
information. For example, a holistic simulation of AERO-
PLANE might include perceptual information about
wings but not explicitly represent the proposition has
(AEROPLANE, wings). Instead, this proposition would
only exist after deliberately binding the wings simulator to
the holistic AEROPLANE simulation.

Nevertheless, property and relation simulators may
implicitly influence the construction of holistic simulations
without these relations becoming established explicitly.
Specifically, property simulators that are highly associated
with a category may implicitly influence a developing
holistic simulation by articulating and enhancing regions
that contain the respective properties. As a holistic simul-
ation of AEROPLANE is constructed, a highly associated
simulator for wings might influence the respective regions
of the simulation. In general, however, the explicit rep-
resentation of this property requires a more deliberate and
conscious attempt to establish a relation between the two.

(g) The DIPSS theory
The previous sections laid the groundwork for the

DIPSS theory of abstraction. There are no static summary
representations in DIPSS, as in classic theories of abstrac-
tion. Nor are there summary representations that perfectly
describe all of a category’s members. Instead, the struc-
tural component of DIPSS is simply a loose collection of
property and relation simulators. For example, as people
learn about BIRDS, simulators for wings, beak, feathers,
nests and flies develop to represent properties and relations
important for this category.

The collection of property and relations simulators
associated with a category is loose in the sense that it does
not constitute a tight, structurally coherent theory. Rather
than developing as an integrated formal system, these col-
lections develop somewhat haphazardly, as various
properties and relations become apparent for the category.
Clearly, some simulators may develop together as one
approach to analysing a category’s exemplars, but they do
not necessarily form an integrated formal system, such as
a scientific theory. As will be demonstrated, these loose
collections of property and relation simulators have the
potential to explain the three properties of abstraction dis-
cussed earlier: type–token interpretation, structured rep-
resentation and dynamic realization.

(h) Type–token interpretation
As we have seen, interpretation arises when concepts

interpret components of experience. For example, when
the concept for CAR becomes bound to a perceived visual
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entity, a type–token relation results that interprets the
entity as a CAR. Once the type–token relation exists, infer-
ences follow from the type to the token (e.g. the entity
uses gasoline). Furthermore, this interpretation process is
open ended, given that many different concepts can be
applied to the same perceived entity.

Property simulators provide a natural account of type–
token interpretation. Imagine that someone is examining
a holistic simulation of a car (or a perceived one), scanning
across it and describing its content. Over the course of this
process, property simulators for wheels, doors and windows
become bound to relevant regions of the simulated car via
content addressable memory mechanisms.

Once a property simulator becomes bound to a region
of a holistic simulation, an implicit type–token relation
exists. The region of the holistic simulation is established
as a token of the type that the property simulator rep-
resents. Mapping the wheels simulator into a region of a
simulated car types the region as a wheel. The result is an
implicit proposition that could be either true or false, and
that carries inferences from the type to the token. For
example, the wheel simulator might produce simulated
inferences about the token rolling or going flat. Specifi-
cally, the wheel simulator might simulate a wheel rolling
or going flat that goes beyond the information in the wheel
region of the simulated car. Via the simulation mech-
anism, the standard categorical inferences associated with
type–token propositions follow once simulators become
bound to relevant regions of holistic simulations
(Barsalou 1999).

In principle, a holistic simulation is subject to infinite
property interpretations (as is a perceived category
member). Because holistic simulations have a somewhat
continuous quality, an infinite number of regions can be
interpreted as properties. Furthermore, an infinite number
of simulators could interpret a given region truly or falsely.
This open-ended character is relevant to the later account
of dynamic realization.

(i) Structured representation
In DIPSS, structured representation is simply a more

complex form of type–token interpretation. By using
relation simulators to interpret multiple regions of a holis-
tic simulation simultaneously, structured representations
result naturally. Consider how the following structured
proposition about a FACE could be represented in percep-
tual symbol systems:

above(upper-region = nose(object-27),
lower-region = mouth(object-41)).

The interpretative process begins by binding property
simulators for nose and mouth to the respective regions of a
face, thereby establishing two simple type–token relations.
The relation simulator for above then becomes bound to
the regions containing the nose and mouth regions,
thereby interpreting both the regions and their contents
as being in an above relation. In turn, this structured prop-
osition could enter into a still more complex proposition
that interprets the nose–mouth configuration as being
below the eyes. As this example illustrates, when multiple
simulators interpret a relational configuration of proper-
ties, a structured representation results (see Barsalou
(1999) for further discussion). In this manner, perceptual
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symbol systems implement structured representations nat-
urally and powerfully.

4. DYNAMIC REALIZATION

As we have seen, DIPSS assumes that people use loose
collections of property and relation simulators to interpret
category members. Although a relatively fixed set of pro-
perty and relation simulators may exist for a person at a
given point in time, the particular ones used across
occasions vary considerably. Rather than being applied
identically to different category members, these simulators
are applied dynamically.

Consider the category of CARS. On one occasion, an
assembly of property and relation simulators might be
constructed to interpret how a car moves (e.g. using pro-
perty simulators for engine and wheels). On another
occasion, an assembly of simulators might be constructed
to interpret the pleasure experienced while driving (e.g.
using property simulators for seat and stereo). On yet
another occasion, an assembly of simulators might be con-
structed to interpret how a car could prevent injury in a
crash (e.g. using simulators for seatbelt and airbag). In each
case, a different assembly of property and relation simu-
lators interprets a category member.

The subset of property and relation simulators that
interprets a category member on a given occasion can be
viewed as an abstraction. Besides interpreting the mem-
ber, this abstraction classifies the category member
implicitly as something that the abstraction covers.
Notably, these abstractions are not the classic sort of sum-
mary representation found in traditional theories. Once
the category member drops from attention, the abstraction
that interpreted it becomes largely irrelevant. The next
time this member or another is processed, a different
abstraction may be constructed dynamically to interpret
it. Thus, abstractions are temporary online constructions,
derived from a loose set of property and relation simu-
lators used to interpret category members.

(a) Interpretive attractors
As we just saw, the abstractions constructed to interpret

a category’s members vary widely. Nevertheless, these
abstractions are not constructed randomly from available
property and relation simulators. Because of frequency
and recency, some simulators may be more likely to be
applied than others. Simulators applied frequently in the
past will have an advantage, as will simulators applied
recently. Furthermore, associations between simulators
may produce correlations in the simulators assembled to
interpret category members. Similarly, particular inter-
pretive strategies may become associated with different
contexts. As a result of such factors, interpretive attrac-
tors develop.

Across occasions, both statistical attractors and dynamic
variability characterize the abstraction process. From this
perspective, abstraction is more of a skill than a structure.
As people learn about a category, they learn to interpret
the properties and relations of its members, storing this
knowledge in the respective simulators. As the skill for
abstraction develops, a person can effectively process more
regions of category members, and know the most appro-
priate regions to process in a particular context. The long-
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term outcome of this process is not a fixed summary rep-
resentation, but a dynamic skill for interpreting category
members effectively and efficiently.

(b) Summary of the DIPSS approach to
abstraction

We began with three properties of abstraction: type–
token interpretation, structured representation and
dynamic realization. DIPSS naturally explains all three.
Type–token interpretation results from applying property
and relation simulators to the regions of perceived and
simulated entities. Once these mappings exist, simulators
produce inferences via the simulations they produce.
Structured representation results from the simultaneous
and integrated interpretation of a category member using
multiple simulators. The classic processes of argument
binding and recursion arise naturally in this process.
Finally, dynamic realization results from the online appli-
cation of a loose collection of property and relation simu-
lators to a category’s members. On a given occasion, a
subset of simulators interprets a member, producing a
temporary online abstraction. Across occasions, the
abstractions constructed vary widely.

The diversity of the resulting abstractions explains vari-
ous problems associated with classic theories. No one
abstraction can be identified and motivated as the sum-
mary representation of a category, because an infinite
number are possible. Furthermore, none of these abstrac-
tions needs to provide a complete account of the category.
Instead, each abstraction interprets just those aspects of a
category member that are currently relevant.

5. APPLICATIONS OF DIPSS TO ABSTRACTION
PHENOMENA

Barsalou (2004) describes how DIPSS can be applied
to various classes of abstraction phenomena. In categoriz-
ation, DIPSS provides new ways of thinking about holistic
versus analytical processing, dimension weights in exemp-
lar models and the problem of descriptive inadequacy. On
the topic of inference, DIPSS provides new ways of think-
ing about feature listing, conceptual instability, script
tracks and verbal overshadowing. In the area of back-
ground knowledge, DIPSS provides new ways of thinking
about intuitive theories, dimensions, multi-dimensional
spaces and analogy. In learning, DIPSS provides new ways
of thinking about shallow explanation, expertise and con-
ceptual change. The brief summary here reviews only one
example from each class of phenomena to illustrate how
DIPSS explains abstraction phenomena (see Barsalou
(2004), for descriptions of the others).

(a) Descriptive inadequacy in categorization
Philosophers often note the difficulty of specifying the

properties that define a category (e.g. Wittgenstein 1953).
Putnam (1973, 1975) argued that whatever description a
person has for a category, it will never be sufficient to fix
the category’s reference (e.g. also Fodor 1998; Margolis &
Laurence 1999). If the category’s description turns out to
be inadequate, the category’s reference does not change,
indicating that something besides the description estab-
lishes membership. If WATER turns out not to have the
property H2O but has some other property instead, the
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entities classified as WATER nevertheless remain con-
stant. The property H2O did not fix reference and was an
inadequate description of category members.

DIPSS explains descriptive inadequacy as follows.
Descriptions of a category are abstractions that arise from
applying property and relation simulators in the available
pool. Because this pool evolves haphazardly, and because
descriptions are constructed dynamically, these descrip-
tions never fully fix the category. Indeed, DIPSS embraces
descriptive inadequacy. Abstraction is simply a skill that
supports goal achievement in particular situations. It does
not construct summary representations that fix category
membership.

What does fix a category’s reference as descriptions
about it vary? As the lay understanding of WATER
evolved with scientific theories, why did the reference of
WATER remain basically the same? DIPSS explains this
as the result of pre-attentive holistic representations of the
sort described earlier for holistic simulations. Low-level
sensory representations of WATER are likely to remain
relatively constant as properties and relations about
WATER change. As beliefs about WATER come and go,
the perception of WATER remains relatively constant.
Because these perceptions tend to be accurate in fixing
category membership, holistic representations of them
play the central role in everyday categorization, regardless
of the analytical properties currently used for interpret-
ation. These holistic representations could underlie the
causal links that many philosophers propose are central to
establishing reference.

Although analytical properties do not fix categorization,
they may nevertheless influence it. In Biederman & Shiff-
rar (1987), participants learned analytical properties for
chicken genitalia that facilitated their ability to categorize
male versus female chicks. In Lin & Murphy (1997), parti-
cipants learned functions for artificial objects that influ-
enced their ability to categorize the objects visually. Such
findings illustrate that holistic representations are not the
sole determinants of categorization. Property and relation
simulators also influence categorization, even when they
do not completely fix it.

(b) Feature listing as a form of category inference
Researchers have often assumed that the feature-listing

task provides a window on the underlying summary rep-
resentation of a category. When participants generate a
category’s features, they presumably access a feature list,
semantic network or schema for a category, and then read
out the information verbally. For example, producing fea-
tures for CHAIRS accesses a semantic network that speci-
fies seat, back and legs as some of the underlying
summary features.

From the perspective of DIPSS, no such underlying
abstractions exist. Instead, participants construct a holistic
simulation of the target category (e.g. a particular chair),
and then interpret this simulation using property and
relation simulators (e.g. property simulators for seat, back
and legs). Instead of measuring a category’s underlying
summary representation, feature listing simply reflects one
of many possible temporary abstractions that can be con-
structed online to interpret a particular member. Measur-
ing these abstractions can be useful and informative (e.g.
Wu & Barsalou 2003). They should not, however, be
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viewed as describing an underlying summary represen-
tation that covers the category or that fixes its reference.
Instead, these feature listings are simply online inferences
about a few properties of a category’s members, based on
the interpretation of one particular simulation. Because of
the dynamical nature of feature listing, considerable varia-
bility arises both between and within individual people in
the features they produce (e.g. Barsalou 1987, 1989,
1993).

(c) Intuitive theories in background knowledge
In a classic paper, Murphy & Medin (1985) proposed

that intuitive theories provide background knowledge for
categories. Problematically, however, little progress has
been made in formulating these theories, and little agree-
ment exists on the form they should take. DIPSS explains
this quandary and provides a solution to it. Just as there
is no single abstraction for a category, there is no single
intuitive theory. From the perspective of DIPSS, a catego-
ry’s background knowledge is simply the loose collection
of property and relation simulators used to interpret its
members, together with the skill to apply them appropri-
ately.

In some task contexts, this interpretive system may
produce online abstractions along the lines of an intuitive
theory. For example, property and relation simulators
could be configured to explain how biological mechanisms
maintain the life of an organism. On another occasion, a
different abstraction might be constructed to explain an
organism’s reproductive origins. Across different occasions,
different explanatory accounts of a category’s members may
be constructed (e.g. Gutheil et al. 1998). Thus, no single
intuitive theory constitutes the background knowledge of a
category. Instead, a loose collection of property and relation
simulators produces theory-like abstractions (among
others) dynamically to interpret category members.

(d) Expertise in learning
As learners become knowledgeable about a category,

their stock of property and relation simulators for inter-
preting its members grows. Over time, this increasingly
sophisticated interpretive system produces abstractions
that are increasingly deep and useful (cf. Chi et al. 1981).
Experts can interpret more critical regions in category
members, and they can structure their interpretations in
more sophisticated manners. As experts become adept at
interpreting and organizing the regions of category mem-
bers, they also become better categorizers, shifting their
basic level down to the subordinate level (e.g. Johnson &
Eilers 1998; Johnson & Mervis 1997, 1998; Gauthier et
al. 2000).

Theories of expertise generally assume that expert per-
formance results from the increased storage of exemplars,
chunks or rules (e.g. Anderson 1987; Logan 1988; Newell
1990). In DIPSS, expert performance also results from
the accumulation of property and relation simulators, and
from increasing skill at applying them. The development
of expertise can also be viewed as the accumulation of
interpretive attractors for many different category mem-
bers. Over time, all the relevant configurations for inter-
preting a category’s members establish attractors in
memory, leading to the relatively effortless performance
that characterizes expert performance.
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6. SIX SENSES OF ABSTRACTION REVISITED

One particular sense of abstraction—abstraction as
summary representation—has been the focus of this
article. The DIPSS account of this sense can now be
brought to bear on the five other senses reviewed earlier.

(i) Categorical knowledge. According to this sense,
knowledge of a category is abstracted from the
experience of its members. In DIPSS, this amounts
to establishing property and relation simulators that
can interpret regions of perceived members and
holistic simulations of them.

(ii) The behavioural ability to generalize across category
members. According to DIPSS, when people behav-
iourally state a generic, such as ‘cats have fur,’ they
have simulated a variety of CAT instances, used the
fur simulator to interpret these simulations, and then
used language to describe the temporary online
abstraction.

(iii) Summary representation. Once a temporary abstrac-
tion is constructed for a category, a trace of it
becomes established in memory, increasing the like-
lihood of constructing the abstraction later on
another occasion. This abstraction, however, does
not become part of a single summary representation
for the category. It simply changes the dynamic
qualities of the interpretive system, moving it
towards an attractor. Nevertheless, the system
remains dynamic, such that future abstractions vary
widely, each tailored to the current situation and to
the statistics of the interpretive system.

(iv) Schematic representation. Summary representations
are schematic in the sense that they abstract the criti-
cal properties of category members and discard irrel-
evant ones. DIPSS accomplishes this ‘sparseness of
representation’ in three ways. First, the property and
relation simulators that develop for a category do not
exhaust the simulators possible but only constitute
a limited set. The resulting interpretive system is
therefore schematic, representing just some aspects
of category members. Second, the abstractions that
property and relation simulators represent typically
contain far less information than the sensory-motor
perceptions that produced them. They are therefore
schematic because they re-enact partial information
and discard details. Third, property and relation
simulators can produce idealized or caricatured
simulations, thereby being schematic in the sense of
producing prototypical representations. Such rep-
resentations could result from the passive integration
or averaging of the information in a simulator, with
the most prototypical category information emerging
as a dominant simulation (cf. the echo of Hintz-
man (1986)).

(v) Flexible representation. According to this sense of
abstraction, summary representations can be applied
flexibly to many different tasks. In DIPSS, this flexi-
bility does not result from a single abstracted rep-
resentation, but from a dynamic interpretive system.
As expertise with a category develops, the set of pro-
perty and relations simulators increases, as does the
skill in applying them to members. As a result, the
flexibility of interpretation increases, although
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attractors may produce entrenched ruts that work
against flexibility to some extent.

(vi) Abstract concepts. According to this final sense of
abstraction, some concepts become increasingly dis-
engaged from physical entities and become increas-
ingly associated with mental events (e.g. truth). In an
analysis of abstract concepts, K. Wiemer-Hastings
(unpublished data) found that many abstract con-
cepts refer to properties and relations—not to com-
plete objects and events—suggesting that abstract
concepts belong to interpretive systems. This finding
is consistent with the proposal of Barsalou (1999)
that abstract concepts identify complex relational
configurations of physical and mental states in back-
ground events.

In one sense of truth, for example, a complex
relation exists between one person who makes a
claim about the world and another person who
assesses whether the claim is accurate. For truth to
apply in a situation, a speaker must make a claim, a
listener must represent it, the listener must compare
this representation with the world and the represen-
tation must be accurate. When this complex relation
is satisfied, truth is a valid interpretation of the
speaker’s claim. As this example illustrates, abstract
concepts often capture complex configurations of
physical and mental events. Similar to relation simu-
lators, abstract concepts interpret multiple regions
of events, and thus belong to the loose collections
of simulators that constitute interpretive systems.
Perhaps the distinguishing characteristic of abstract
concepts is the complexity of the relational infor-
mation they capture, together with their substantial
inclusion of mental state information.

7. CONCLUSION

Interpretation and structured representations are two
hallmarks of human cognition. The problem has been
explaining these phenomena with mechanisms that exhibit
dynamic realization instead of rigidity. Dynamic interpret-
ation in perceptual symbol systems appears to offer a natu-
ral approach to unifying these three properties of
abstractions. By applying loose collections of property and
relation simulators to perceived and simulated category
members, interpretation, structure and flexibility arise
naturally in the abstraction process.
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GLOSSARY

DIPSS: dynamic interpretation in perceptual symbol
systems


