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Ciudad Universitaria, CP 04510 México D.F. Mexico
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The rich epidemiological database of the incidence of rotavirus, as a cause of severe diarrhoea in young
children, coupled with knowledge of the natural history of the infection, can make this virus a paradigm
for studies of epidemic dynamics. The cyclic recurrence of childhood rotavirus epidemics in unvaccinated
populations provides one of the best documented phenomena in population dynamics.

This paper makes use of epidemiological data on rotavirus infection in young children admitted to
hospital in Melbourne, Australia from 1977 to 2000. Several mathematical methods were used to charac-
terize the overall dynamics of rotavirus infections as a whole and individually as serotypes G1, G2, G3, G4
and G9. These mathematical methods are as follows: seasonal autoregressive integrated moving-average
(SARIMA) models, power spectral density (PSD), higher-order spectral analysis (HOSA) (bispectrum
estimation and quadratic phase coupling (QPC)), detrended fluctuation analysis (DFA), wavelet analysis
(WA) and a surrogate data analysis technique. Each of these techniques revealed different dynamic aspects
of rotavirus epidemiology. In particular, we confirm the existence of an annual, biannual and a quinquen-
nial period but additionally we found other embedded cycles (e.g. ca. 3 years). There seems to be an
overall unique geometric and dynamic structure of the data despite the apparent changes in the dynamics
of the last years. The inherent dynamics seems to be conserved regardless of the emergence of new sero-
types, the re-emergence of old serotypes or the transient disappearance of a particular serotype. More
importantly, the dynamics of all serotypes is multiple synchronized so that they behave as a single entity
at the epidemic level.

Overall, the whole dynamics follow a scale-free power-law fractal scaling behaviour. We found that there
are three different scaling regions in the time-series, suggesting that processes influencing the epidemic
dynamics of rotavirus over less than 12 months differ from those that operate between 1 and ca. 3 years,
as well as those between 3 and ca. 5 years. To discard the possibility that the observed patterns could be
due to artefacts, we applied a surrogate data analysis technique which enabled us to discern if only random
components or linear features of the incidence of rotavirus contribute to its dynamics. The global dynamics
of the epidemic is portrayed by wavelet-based incidence analysis. The resulting wavelet transform of the
incidence of rotavirus crisply reveals a repeating pattern over time that looks similar on many scales (a
property called self-similarity). Both the self-similar behaviour and the absence of a single characteristic
scale of the power-law fractal-like scaling of the incidence of rotavirus infection imply that there is not a
universal inherently more virulent serotype to which severe gastroenteritis can uniquely be ascribed.

Keywords: rotavirus epidemic dynamics; detrending fluctuation analysis; higher-order statistics;
spectral analysis; wavelet analysis

1. INTRODUCTION

Rotaviruses, members of the family Reoviridae, are the
major aetiological agents of gastroenteritis in young animals
and young children worldwide (Bishop 1986; Kapikian &
Chanock 1996). Several studies have shown similar inci-
dences of human rotavirus (HRV)-associated diarrhoea in
industrialized and developing countries, suggesting that the
control of this illness may not result from improvements
in water supply, sanitation or hygiene, but may require an
effective vaccine (De Zoyza & Feachem 1985).
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Great variations in the distributions of serotypes occur
over time and from place to place. Among the group A
rotaviruses causing severe disease in young children, sero-
type G1 of VP7 has been associated most frequently with
human disease (Estes & Cohen 1989; Padilla-Noriega et
al. 1990; Bishop et al. 1991; Woods et al. 1992; Velazquez
et al. 1993). Serotype G1 is the most common global
serotype in circulation. Epidemics of serotypes G2, G3
and G4 have been detected from time to time in many
different countries. Any proposed vaccine must provide
good protection against the four epidemiologically
significant HRV serotypes G1, G2, G3 and G4. In
addition, new serotypes (G5, G6, G8 and G9) have also
been identified.
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Figure 1. (a) Fitting of the monthly incidence of rotavirus in Melbourne, Australia from 1977 to 2000 based upon a SARIMA
(1, 0, 0) ´ (3, 1, 0)12 model. Diamonds, actual data; asterisks, SARIMA model. (b) Monthly incidence forecasts of the rotavirus
epidemic. Asterisks, expected incidence; diamonds, upper confidence interval of 95% of confidence; circles, lower confidence
interval of 95% of confidence.

However, new serotypes have been reported to exist in
several countries. For example in Australia, serotype G9
rotaviruses were first identified in 1997 (Masendycz et al.
2001) and have persisted since then. The finding of the
re-emergence of certain serotypes (like G4 viruses) and
the appearance of new serotypes provide opportunities for
determining the dynamics of rotavirus epidemics, which
could prove relevant for vaccine development strategies.

One of the most salient epidemiological features of
human rotavirus gastroenteritis is its seasonality (Brandt
et al. 1983; LeBaron et al. 1990; Ansari et al. 1991). Per-
iodograms have been used for exploring seasonal and
longer-term cycles (interepidemic periods) of rotavirus
infection for serotypes G1, G2, G3 and G4 using hospi-
talization longitudinal data of the monthly incidence of
rotavirus infection from the city of Melbourne, Australia
during 1977–1993 (José et al. 1996). A clear evidence of
a biennial peak in the epidemiology of rotavirus infection
was detected. It was also noticed that there was probable
existence of an interepidemic cycle of ca. 4.6–5.2 years’
duration. The finding of this interepidemic cycle did not
arise from the alternating incidence of the four serotypes
because this peak appeared in the periodogram of each
serotype ( José et al. 1996).

Since 1994 to date, an apparent change in the pattern
of incidence of rotavirus infection in Melbourne, Australia
has been noted (see figure 1a). In this work we explore
the overall dynamics of rotavirus infection. We used the
longitudinal hospitalization data available of the monthly
incidence of rotavirus infection (including all serotypes)
from the city of Melbourne, Australia during 1977–2000. It
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was hypothesized that the recent appearance of a new sero-
type (G9) after 1977 or the re-emergence of certain sero-
types may have caused changes in the observed dynamics.

The main goal of this work has been to reveal hidden
patterns from the observed dynamics of the monthly inci-
dence of rotavirus considering each serotype and all of
them together. By hidden patterns, we mean information
that is neither visually apparent nor extractable with con-
ventional methods of analysis. Such conventional tech-
niques include the tacit assumption of a linear system or
stationarity, estimation of means, standard deviation and
other features of histograms.

In this paper, we used several mathematical tools for
this analysis: seasonal autoregressive integrated moving-
average (SARIMA) models, power spectral density
(PSD), higher-order spectral analysis (HOSA), such as
bispectrum estimation and quadratic phase coupling
(QPC), detrended fluctuation analysis (DFA), wavelet
analysis (WA) and a surrogate data analysis technique. To
our knowledge, HOSA and DFA have not been used pre-
viously to examine the dynamics of an epidemic. WA has
been used to describe spatio-temporal waves in measles
epidemics (Grenfell et al. 2001).

One of the purposes of this paper is to advocate the use
of these relatively new techniques, such as HOSA, DFA
and the wavelet transform (WT), for analysing the dynam-
ics of epidemics.

The periodogram is a tool for analysing periodicities,
i.e. it examines the frequency of different oscillations of
the observed time-series. The periodogram is specifically
designed for the detection of periodic patterns in a back-
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ground of white noise (uncorrelated noise). The goal of
spectral estimation is to describe the distribution (over
frequency) of the power contained in a time-series, based
on a finite set of data. Estimation of power spectra
includes the detection of signals buried in white-band
noise.

HOSA is useful for dealing with nonlinear time-series
and for detecting interactions between harmonics (Swami
et al. 1998). Most of the conventional methods are based
on the power spectral analysis of the signal, so they are
affected directly by the surrounding noises except in the
rare cases where the ranges of power spectra of the noise
from the signal to be analysed and the surrounding noise
are separated completely, and they cannot use the quasi-
periodical nature of the signal noise effectively. The use of
the bispectrum overcomes these difficulties and is effective
for detecting even such surrounding noises of the signal
that appear only as the change of the relative phase among
frequency components while keeping the amplitude of each
frequency component unchanged (Stratonovich 1963;
Rao & Gabr 1984).

The bispectrum is able to capture the phase information
and to suppress the corruptive additive Gaussian noise,
because the bispectrum is a statistical quantity which indi-
cates the dependency among three frequency components
whose frequencies f1, f2 and f3 satisfy f1 1 f2 1 f3 = 0; the
bispectrum of any Gaussian noise vanishes completely
(Stratonovich 1963).

The DFA technique is based on a modified root mean
square analysis of a random walk, to assess the intrinsic
correlation properties of a dynamic system separated from
external trends in the data (Peng et al. 1994). DFA is a
specialized time-domain technique, in which the time-ser-
ies undergoes cumulative summing and then segmentation
into short segments. Within each segment, the degree of
dispersion of the cumulated time-series away from its lin-
ear trend is measured (as the sum of squares of residuals
after subtracting the linear regression line). The total of
the squared residuals for the individual segments is calcu-
lated for the overall dataset. The entire process is then
repeated with a different segment length. Naturally, as the
segments become longer, the degree of dispersion away
from the linear regression line within the segments tends
to increase. The rate at which this total dispersion
increases as the windows become longer is measured as a
slope, denoted by a, on a log–log plot over particular
regions of segment length. Steeper slopes are said to show
higher complexity.

The formal application of the method of surrogate data
(Theiler et al. 1992) is expressed in the language of stat-
istical hypothesis testing. This involves two ingredients: a
null hypothesis against which observations are tested and
a discriminating statistic. The null hypothesis is a potential
explanation that we seek to show is inadequate for
explaining the data. If this statistic is different for the
observed data that would be expected under the null
hypothesis, then the null hypothesis can be rejected. The
approach for detecting nonlinearity is to specify a well-
defined underlying linear process or null hypothesis, and
to determine the distribution of the quantity we are inter-
ested in for an ensemble of surrogate datasets which are
just different realizations of the hypothesized linear stoch-
astic process. In this paper, we use as a discriminating stat-
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istic the fractal scaling factors (as) obtained from the
DFA.

The WT is devoted to the extraction of characteristic
frequencies or specific oscillations, of a signal that, in our
study, is composed of the monthly number of cases of
rotavirus infection that includes four serotypes and the
non-typeables plus the new serotype G9. The WT is a
space–scale analysis which consists of expanding signals in
terms of wavelets that are constructed from a single func-
tion, the analysing wavelet C, by means of dilations and
translations (Daubechies 1994). The WT is thus a cumu-
lative measure of the variations of the signal (e.g. the
monthly incidence of rotavirus) over a region proportional
to the wavelet scale. Hence, the study of the behaviour of
the wavelet values can reveal intrinsic properties of the
dynamics that are masked by non-stationarity.

The paper is organized as follows. In each section we
briefly describe the various methodologies and present
their corresponding results. The interested reader is
referred to Appendix A for some technical aspects of
these methodologies.

We first describe the data and the surrogate data analy-
sis technique. Second, we use the SARIMA technique to
find an appropriate model to adjust the monthly incidence
of rotavirus and to generate middle-term forecasts of the
monthly incidence of rotavirus infections. Third, we
detect the periodicities of the time-series by means of the
periodogram and the bispectra. Fourth, we look for fre-
quency and phase self-coupled harmonics in the incidence
of rotavirus infection using HOSA. Fifth, we examine the
correlation properties of the series using DFA and the sur-
rogate data technique. Finally, we determine the scaling
behaviour of the incidence of rotavirus by means of the
WT and by the standard deviation of the wavelet coef-
ficients as a function of the scale.

With the present analysis we characterize the overall
dynamics of rotavirus infection and we conclude that
essentially the inherent dynamics of rotavirus infection
have not changed over time. The dynamics shows self-
similar behaviour at different scales and it entails a mul-
tiple synchronization of the dynamics of each serotype.

We discuss the present results and their implications in
the context of the biology of rotavirus infection.

2. SOURCES OF DATA

Data were obtained from diagnostic assays and from
serotyping faecal rotavirus strains collected from children
with severe diarrhoea admitted to the gastroenteritis ward
of the Royal Children’s Hospital (RCH) in Melbourne,
Australia from 1977 to 2000. Serotyping data for the
1977–1988 (Bishop et al. 1991) and 1989–1993
(Masendycz et al. 1994) periods have already been pub-
lished. Here, we present an overall mathematical analysis
of all these data including the unpublished data of
1994–2000.

The total number of children attending the emergency
department annually comprises all ages treated at this hos-
pital, including newborn to 14 years. Most of the children
admitted with acute gastroenteritis are under 3 years of
age (Barnes et al. 1998). A decline in numbers over the
whole period is not discarded owing to the introduction
of peripheral suburban hospitals caring for children as out-
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patients and inpatients. There is no reason to believe that
the RCH would treat a disproportionate number of chil-
dren with acute gastroenteritis.

The database includes 65 cases of the newcomer sero-
type G9, which appeared from 1999 to 2000.

The birth rate in Melbourne over the period of study
remained stable. There were no demographic changes in
the capture area or changes in the reporting system that
would have influenced the results.

That there was a decrease in numbers of children
presenting to the emergency department was due to the
growth of peripheral hospitals, but the proportion of chil-
dren admitted to RCH with rotavirus would not have been
affected because preliminary studies have shown no bias
in prevalence of rotavirus infection over the different Mel-
bourne suburbs, including those served by RCH. Other
sources of artefacts have been corrected by using the total
figures for the emergency department.

The epidemiological data assembled over the 24 years
would have not been influenced by changes in diagnostic
techniques. From 1981, diagnosis of rotavirus infection
relied predominantly on electron microscopy (EM). An
‘in-house’ enzyme immunoassay (EIA) was developed in
the laboratory in 1977 and was in routine use from
1982 onwards.

Comparisons of this EIA with EM showed it to be
slightly more sensitive. However, all specimens assayed by
EM between 1977 and 1982 were collected at the height
of rotavirus infection (within 48 h of admission) when it is
not likely that EM would have failed to diagnose rotavirus
infection. All serotyping has been done using the ‘in-house
EIA serotyping’ assay developed in 1986. This assay has
been used both retrospectively and prospectively after
diagnosis of rotavirus positive specimens.

Figures used for all analyses included all rotavirus posi-
tive specimens and individual totals of specimens verified
as containing serotypes G1, G2, G3, G4 and G9, and
including additional non-typeable strains.

We used the software tools of Matlab v. 5.3 and R12
for all the calculations. In general, differencing the data
helped to clarify the estimates obtained with the different
techniques that were used. All the ad hoc computer pro-
grams as well as the data can be downloaded at
www.biomedicas.unam.mx/biolteor.

(a) Surrogate data analysis
The surrogate data analysis technique was applied in

order to discern if only random components or linear fea-
tures of the incidence of rotavirus contribute to its dynam-
ics.

We applied the method of Theiler et al. (1992) to trans-
form the rotavirus time-series into surrogate time-series
by means of the program ‘chaos data analyzer’ (Sprott &
Rowlands 1995). Two different null hypotheses were
tested to compare some statistics measured from both the
original time-series and from their corresponding surro-
gate time-series.

(i) Surrogate data type I
Surrogate data are obtained by shuffling the original

time-series of rotavirus, this is, by randomly changing their
relative positions in the dataset, much like shuffling a deck
of cards. The statistical moments (mean, variance, etc.)
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are preserved but all autocorrelations are destroyed, so
that the surrogate time-series lacks any determinism. This
shuffling suppresses any long-time correlations that may
be present in the time-series that resides in the order of
the data points. The null hypothesis is that the incidence of
rotavirus is a random process of independent random variables
and hence the difference between the original and surro-
gate datasets may be explained by a nonlinearly autocorre-
lated stochastic process.

If the statistics measured from the original rotavirus
time-series turn out to be different from the ones meas-
ured from the surrogate time-series, then the null hypoth-
esis that the statistics estimated from the original time-
series come from an uncorrelated time-series is rejected
(e.g. the original rotavirus time-series may be generated by
deterministic mechanisms and the corresponding statistics
would contain information about these mechanisms).

(ii) Surrogate data type II
To obtain a surrogate time-series where nonlinearities

are destroyed, we applied the following procedure: the
original time-series of the incidence of rotavirus is trans-
formed by a discrete Fourier transform, the phases are
randomized and the inverse discrete Fourier transform is
calculated. The inverse Fourier transform is the surrogate
data itself.

When phases are randomized, the nonlinearities that
result from the interactions among phases in the original
time-series disappear and the new surrogate time-series is
a sum of only linear autocorrelations. If the statistics mea-
sured from the original rotavirus time-series were different
from the ones measured from the surrogate time-series,
then we reject the null hypothesis that the incidence of rota-
virus is a linear autocorrelated Gaussian process (e.g. the orig-
inal rotavirus time-series could contain nonlinear
information that is captured by the estimated statistics).

In the surrogate hypothesis analysis we used the Stud-
ent’s t-test measured from the comparison of means
between the original rotavirus time-series and from the
average of 15 realizations of each type of surrogate time-
series. The results are reported as mean ± standard devi-
ation. The null hypotheses—that the original rotavirus
incidence does not contain either deterministic or nonlin-
ear components—were rejected only when the p-values
were less than 0.001.

3. SARIMA MODELS

Many time-series contain a seasonal periodic compo-
nent which repeats every r observations. In the case of
rotavirus, with monthly observations, where r = 12, we
may typically expect yt (the number of cases of rotavirus
at time t) to depend on terms such as yt21 2, and perhaps
yt22 4, yt23 6, as well as terms such as yt21, yt22…. Box &
Jenkins (1976) have generalized the autoregressive inte-
grated moving-average (ARIMA) model to deal with sea-
sonality, and define a general multiplicative seasonal
ARIMA model (abbreviated SARIMA model) which can
be found in Appendix A.

Detailed procedures for adjusting a particular SARIMA
model can be found elsewhere (Box & Jenkins 1976;
Shumway 1988). Briefly, when fitting a seasonal model to
data, the first task is to reduce the series to stationarity
and remove most of the seasonality.

http://www.biomedicas.unam.mx/biolteor
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The monthly incidence of rotavirus, including serotypes
G1, G2, G3, G4 and G9 plus all non-typeables from 1977
to 2000, is shown in figure 1a. It can clearly be observed
that the time-series exhibits an oscillatory behaviour. A
detailed visual inspection of this oscillatory behaviour
reveals annual epidemic cycles of low incidence that corre-
spond to seasonal cycles, and various epidemic cycles of
high incidence. It is also apparent that there is no obvious
discernible pattern to the dynamics except for the annual
cycle and that there is a wide variation in the size of the
annual epidemics. Apparently, there is no regular behav-
iour of the prevailing serotypes of rotaviruses (not shown).
There are also some months in which there are no regis-
tered cases of rotavirus infection, i.e. there are fade-outs
in this time-series data.

It is also apparent that the rotavirus peaks in the last
nine seasons are much higher than in all previous seasons.
This difference in the amplitude of the annual oscillations
makes the rotavirus time-series non-stationary, that is, its
statistical properties change slowly or abruptly as a result
of variations in background differences. To find the appro-
priate model, it is necessary to have a stationary time-ser-
ies. Because there are large epidemic peaks in the original
time-series a logarithmic transformation is reasonable. If
the data are transformed to the first seasonal difference
za = y ¤ 2 y ¤

t21 2, where y ¤ = ln yt, we get a stationary time-
series. Since there are fade-outs we added to all months
one case in order to make the logarithmic transformation.

To identify the particular time-series model that can be
assumed to have generated the stationary time-series
under consideration, we have to examine first the sample
autocorrelation function (ACF) and the sample partial
autocorrelation function (PACF) of the log-transformed
stationary time-series. We use some general guidelines to
identify which of the operators fp, FP, uq, QQ should be
used from the general seasonal multiplicative model to
adequately represent our particular observed stationary
time-series. The values of p, P, q and Q are to be assessed
by looking at the ACF and PACF of the differenced series
and choosing a SARIMA model whose ACF and PACF
are of similar form. Finally, the model parameters are esti-
mated by a standard iterative procedure. The order of the
operators of the SARIMA model was suggested by the
spikes (autocorrelations different from zero) of the sample
ACF and the sample PACF which occur at lags substan-
tially less than 12 months (not shown). Once the residuals
of ACFs and PACFs are nearly zero (the residuals seem
unrelated, i.e. the autocorrelation of the residuals is suf-
ficiently small to lie within the bands of white noise) then
that model offers a strong alternative to a plausible model.

In table 1 a summary of the parameter estimates of the
model SARIMA (1, 0, 0) ´ (3, 1, 0)1 2 are presented
together with their respective statistical values of signifi-
cance. Note that the standard errors are small for each
parameter and all the p-values are statistically significant.
The absolute value of the t-statistics should be greater or
equal than two in order to be statistically significant as is
the case for each of the parameters. In figure 1a the fitting
of this model to the monthly incidence of rotavirus is
shown. This model shows an excellent agreement between
the observed data and the predictions of the model. To
gauge the performance of the best plausible model, we
used the Akaike information criteria (AIC) (Akaike 1979)

Phil. Trans. R. Soc. Lond. B (2003)

and the Bayesian information criterion (BIC) (Schwarz
1978). We tested several models such as: SARIMA
(1, 0, 0) ´ (2, 1, 0)1 2 (AIC = 20.61; BIC = 20.54) and
SARIMA (1, 0, 0) ´ (5, 1, 0)1 2 (AIC = 20.67; BIC =
20.56). These models also gave significant fittings to the
data. However, the minimum values of both the AIC and
BIC were obtained with the SARIMA (1, 0, 0)
´ (3, 1, 0)1 2 model (AIC = 20.79 and BIC = 20.70).

In figure 1b monthly incidence forecasts of the inci-
dence of rotavirus together with their 95% confidence
intervals are presented for the period 2001–2005. Note
that the amplitude of the upper confidence interval
increases with the forecasting time.

4. THE PERIODOGRAM

One way of estimating the power spectrum of a process
is to find the discrete-time Fourier transform of the
samples of the process (usually called fast Fourier trans-
form (FFT)) and take the squared magnitude of the
results. This estimate is called the periodogram (see
Appendix A).

In figure 2a the PSD estimate (given in dB Hz21), i.e.
the periodogram of the first differences of the monthly
incidence of rotavirus is shown.

The main harmonics are numbered from 1–9. Note that
the highest harmonic is the seasonal peak (number 1). The
power of the harmonics that occur within a year (numbers.
2, 3 and 4) is greater than the power of the harmonics
longer than a year (numbers 5–9). The harmonics 2, 3
and 4 correspond to periods of approximately six, four and
three months, respectively. The harmonics 5, 6, 7, 8 and
9 correspond to periods of approximately 15, 23, 34, 64
and 213 months, respectively. The latter period of ca. 18
years seems to be a multiple of the 3-year period. It is
clear from this periodogram that there are several harmon-
ics other than the seasonal; the biannual and the quin-
quennial peaks. It also seems apparent that there is a
negative linear relationship between the power and fre-
quency for the peaks 1 to 4, whereas for the peaks 5, 6 and
8, and for the peaks 7 and 9, this relationship is positive.

The original time-series of the monthly incidence of
rotavirus was randomized (surrogate type I) 15 times. The
average slope of the power for this ensemble of surrogates
was 0.0013 ± 0.0007. The log–log plot of the power spec-
trum of the incidence of rotavirus indicated that there
were apparently three different slopes (b) (not shown). An
estimate of the PSD for a single realization is shown in
figure 2b. Note that the frequency spectrum of white noise
is flat, because all frequencies are present in equal inten-
sity (power) across the entire spectrum.

5. ESTIMATING CUMULANTS AND BISPECTRA

Linear systems are well behaved. The magnitude of
their responses is proportionate to the strength of the stim-
uli. In addition, linear systems can be fully understood
and predicted by dissecting out their components. The
subunits of a linear system add up: there are no surprises
or anomalous behaviours. By contrast, for nonlinear sys-
tems proportionality does not hold: small changes can
have striking unanticipated effects. A further complication
is that nonlinear systems cannot be understood by analys-
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Table 1. Estimation of parameters of the model SARIMA (1, 0, 0) ´ (3, 1, 0)12.

parameter estimate standard error t-value p-value

f1 0.67 0.044 15.1 0.0
f1,12 20.72 0.058 212.39 0.0
f2,12 20.51 0.067 27.55 0.0
f3,12 20.31 0.06 25.21 0.0
mean 0.061 0.047 1.28 0.19
constant 0.051
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Figure 2. (a) Periodogram of the monthly incidence of rotavirus infection in Melbourne, Australia, 1977–2000. The duration
of each of the numbered harmonics is as follows: (1) 12 months (0.08 Hz); (2) ca. 6 months (0.16 Hz); (3) ca. 4 months
(0.25 Hz); (4) ca. 3 months (0.33 Hz); (5) ca. 15.6 months (0.06 Hz); (6) ca. 22.85 months (0.043 Hz); (7) ca. 33.7 months
(0.029 Hz); (8) ca. 64 months (0.015 Hz); (9) ca. 213.3 months (0.0046 Hz). (b) Periodogram of the randomization of the
original time-series.

ing their components individually. This reductionist strat-
egy fails because the components of a nonlinear system
interact, i.e. they are coupled. Their nonlinear coupling
generates behaviours that defy explanations provided by
traditional linear methods.

The use of the bispectrum is useful for detecting nonlin-
ear systems of a time-series and for revealing the possible
interactions of their components. The calculation of the
bispectrum is based upon the estimation of the cumulants
of the time-series.

Cumulants are nonlinear combinations of the moments
of the process. The cumulants of a process are invariant
to changes in the mean values of the process (see Appen-
dix A).

The Wiener–Khinchin theorem states that the Fourier
transform of the autocorrelation function equals the power
spectrum (e.g. Shumway 1988). Similarly, the bispectrum
is defined as the two-dimensional Fourier transform of the
third-order cumulant, C3(i, j ) (Rao & Gabr 1984). The
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Fourier transform of the third-order cumulant, by itself,
does not yield a consistent (reliable) estimate of the
bispectrum. The estimate must be smoothed, either in the
time domain (indirect method) or in the frequency
domain (direct method). In this paper, the bispectrum of
the data was estimated via the indirect method where the
data were segmented into possibly overlapping records.
We used a simple estimator of the bispectrum, the Fourier
transform of the third-order cumulants of {c3y(m, n)},
where c3y(m, n) = E{y(t)y(t 1 m)y(t 1 n)} (equation (A 4)
of Appendix A (Swami et al. 1998)). Because of the sym-
metrical properties of the bispectrum (Rao & Gabr 1984),
we present here only the first quadrant of the plane to
display the bispectrum.

The contour plots of the indirect estimate of the bispec-
trum of the monthly incidence of rotavirus (first
differences) for all serotypes, serotype G1, non-typeables,
and the sum of serotypes G2 and G3, are shown in figure
3a–d, respectively.
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Figure 3. (a) Bispectrum of the monthly incidence of rotavirus (first differences) estimated by the indirect method;
(b) bispectrum of serotype G1; (c) bispectrum of non-typeables; and (d) bispectrum of serotypes G2 and G3. Unbiased
sample estimates of the third-order cumulants are computed for each record and then averaged across records; a lag window
of 21 was applied to the estimated cumulants, and the bispectra were estimated as the two-dimensional FFT of the windowed
cumulant function (see equation (A 3)).

Both the direct (not shown) and the indirect method
estimates of the bispectrum of all serotypes, serotype G1
and non-typeables reveal sharp peaks at (0.08, 0.08). Soft
harmonics can be seen for all serotypes and for serotype
G1 at (0.16, 0.16). The bispectrum of serotype G1 is simi-
lar to the bispectrum when all serotypes are included. The
presence of pronounced peaks in the bispectrum is indica-
tive of nonlinear phenomena. Thus, these harmonics indi-
cate that there are nonlinearities in the time-series and,
therefore, there may be possible quadratic coupling. This
test confirms that the data are non-Gaussian, and shows
evidence of a fundamental period of ca. 1 year plus a har-
monic of approximately six months (when all serotypes
are included).

The non-typeables show a sharp peak at (0.08, 0.08)
and soft harmonics at all frequencies. The bispectrum of
serotypes G2 and G3 does not show an annual harmonic
but interestingly it shows soft harmonics at low, inter-
mediate and high frequencies. The soft harmonics
observed in the non-typeables and in the sum of G2 and
G3 disappear when all serotypes are included. Then, when
all rotavirus infections are included, an emergent pattern
arises coming from the nonlinear interactions of the differ-
ent serotypes.

6. PARAMETRIC BISPECTRA AND QPC

Phase coupling occurs because of nonlinear interactions
between harmonic components. If there exist triplets {f1,
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f2, f3} and {f1, f2, f3} so that f1 1 f2 = f3 and f1 1 f2 = f3,
we say that the signal exhibits quadratic frequency and
phase coupling, respectively. The presence of quadratic or
cubic phase-coupling cannot be detected using the autocor-
relation function, but they can be detected and quantified
using the third- and fourth-order cumulants (Appendix A).

Bispectra have shown promise in these applications
because frequency and phase coupling indicate nonlinear
interactions among harmonic components (Priestley
1988; Swami et al. 1998).

QPC, coupling at sum and differences of frequencies,
occurs when a signal is passed through a square-law device,
for example, and may be detected from the bispectrum
(Priestley 1988). The general theory of Volterra systems is
used for describing these nonlinear interactions (Appendix A).

Less attention has been paid to what is referred to as
self-coupling which amounts to the presence of pairs {f1,
f1 1 f1} and {f1, f1 1 f1} in the quadratic case. In the
case of self-coupling (Tick 1961; Zhou & Giannakis
1994), the bispectrum can be used to verify the presence
of higher-order couplings as well. To our knowledge, the
possibility of self-coupling has not been investigated in the
case of an epidemic.

To check for QPC, we estimated the parametric bispec-
trum via the subroutine qpctor of Matlab v. 5.3 (Swami
et al. 1998). This subroutine is based upon the nonlinear
Volterra model (see Appendix A). With a single realization
we used an autoregressive order of eight to estimate the
parametric bispectrum.
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Figure 4. (a) The parametric bispectrum of the monthly incidence of rotavirus considering all serotypes for the period
1977–2000 (300 months); (b) the parametric bispectrum considering all serotypes for the first 224 months; (c) the parametric
bispectrum for the uncorrelated time-series; and (d) the parametric bispectrum when the phases are randomized. Note that in
(a), (b) and (c) there is a QPC of the annual cycle ( f1 1 f1 = 0.16) which means that the annual cycle interacts with itself so
that it is quadratically phase coupled with the six-month cycle.

In figure 4a,b, the estimated parametric bispectra of the
rotavirus data for the period 1977–2000 and for the first
224 months both show a contour plot that occurs at
f1 = f2 = 0.08.

This is the region which is formed by the quadratic
coupling of two harmonics. Because f1 and f2 lie in the
straight line of 45° then they are equal. This means that
the seasonal cycle interacts with itself so that we have a
self-exciting frequency and phase coupling that produces
nonlinearly (quadratically) the harmonic of six months.
We chose the period of 224 months because it does not
include the apparently different dynamics of the last years.
For shorter periods of time the QPC still prevails but spec-
tral leakage (noise that arises from short time-series)
becomes more prominent. We also estimated the para-
metric bispectrum for each serotype and for certain com-
binations of them (not shown). None of the serotypes or
partial combinations of them showed QPC. QPC occurred
only when all serotypes were included. Thus it seems that a
multiple synchronization of all serotypes is needed for QPC of
the annual cycle to occur.

In figure 4c,d the corresponding parametric bispectra of
single realizations of surrogate type I (uncorrelated series)
and surrogate type II (nonlinearities are destroyed) are
illustrated. Note that the clear-cut rhombi representing
the QPC of the original time-series disappears in both
cases.
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7. DFA

A system is said to exhibit long-range correlations when
some physical properties of the system are correlated at
different times and the corresponding correlation function
decays much slower than exponentially as a function of
time. Usually, long-range correlations are a result of the
collective behaviour of a complex system (under unique
conditions), with the multiple components interacting
through local (short-range) interactions. The moments of
the distribution of a time-series do not contain infor-
mation about the dynamics of the epidemic process. The
DFA permits the detection of long-range correlations
embedded in a seemingly non-stationary time-series and
also avoids the spurious detection of apparent long-range
correlations that are an artefact of non-stationarity.

With white noise, no correlations exist in the time-ser-
ies, and the series is completely random. Alternatively,
there may be short-range correlations in the time-series
that decay rapidly as the data points move further apart.
This type of short range correlation is very common in
nature. One extreme example is the so-called random walk
or Brownian noise. In this case, the signal at any given
instant is strongly correlated to the previous interval. The
frequency spectrum for a random walk process is charac-
terized by a rapidly decaying smooth curve in which the
amount (power) of the fluctuation is inversely pro-
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portional to the frequency squared (1/f 2). The exponent
2 in this power-law relationship between frequency and
power is called the scaling exponent b.

Another type of noise that is commonly encountered in
nature exhibits persistent long-range correlations (Peng et
al. 1993), i.e. the value at every point is partially depen-
dent on the values at all previous points. This is called 1/f
noise. The frequency spectrum is also a smooth curve, but
the amplitude of fluctuations is inversely proportional to
the first power of frequency (1/f, b = 1), obeying the 1/f
power law of fractal-like processes (Shlesinger 1987). 1/f
noise is usually associated with the dynamic behaviour of
time-series generated by complex systems that have mul-
tiple time-scales.

A detailed description of the DFA method is presented
in Appendix A. Typically, the root-mean square fluctu-
ation of the integrated and detrended time-series is rep-
resented by the function, F(n), that will increase with box
size n. A linear relationship on a double log graph indi-
cates the presence of scaling. Under such conditions, the
fluctuations can be characterized by a scaling exponent a
(self-similarity parameter), the slope of the line relating
log F(n) to log n.

If the data are uncorrelated, the integrated value, y(k),
corresponds to white noise, and therefore a = 0.5
(Montroll & Shlesinger 1984). If there are only short-term
correlations, the initial slope may be different from 0.5,
but a will approach 0.5 for large window sizes. In the lang-
uage of random walks, for a = 0.5 there is no bias and the
random walker is equally likely to step in either direction
no matter what the last step was. An 0.5 , a , 1.0 indi-
cates persistent long-range power-law correlations such
that a large (compared to the average) incidence interval
is more likely to be followed by a large interval and vice
versa. For 0.5 , a , 1 the walker has a tendency to con-
tinue in the direction they are going, so there is persistence
of the process; given a step in a particular direction that
step is remembered and the likelihood of the next step
being in the same direction is greater than that of changing
directions. By contrast, for an 0 , a , 0.5, indicates a dif-
ferent type of power-law correlation such that large and
small values of the time-series are more likely to alternate.
Analogously, for 0 , a , 0.5 the random walker prefers
to change their mind with each step, so there is anti-
persistence; given a step in a particular direction that step
is remembered and the likelihood of the next step being in
the same direction is less than that of reversing directions. A
special case of a = 1 corresponds to 1/f noise (Shlesinger
1987). For a > 1, correlations exist but cease to be of a
power-law form; a = 1.5 indicates brown noise, the inte-
gration of white noise. The a exponent can also be viewed
as an indicator that describes the ‘roughness’ of the original
time-series: the larger the value of a, the smoother the series.
In this context, 1/f noise can be interpreted as a compromise
or balance between the complete unpredictability of white
noise (very rough landscape) and the much smoother land-
scape of Brownian noise (Peng et al. 1995).

For statistically robust results very long datasets are
required. For practical purposes, epidemiological
researchers are often interested in the possibility of using
substantially shorter time-series.

In figure 5 the results of the DFA to both the actual
data of rotavirus incidence (diamonds) and the SARIMA
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(1, 0, 0) ´ (3, 1, 0)1 2 model (asterisks), as well as the
resulting DFA of single realizations of a surrogate type I
(dashed line) and surrogate type II (dot–dashed line) are
shown. The DFA of the model behaved essentially the
same as the actual data.

A good linear fit of the log F(n) versus log n plot should
be proportional to na, where a is the single exponent
describing the correlation properties of the entire range of
time-scales. However, in some of the scales we found that
the DFA plot was not strictly linear but rather consisted
of three distinct linear regions of different slopes separated
at two breakpoints, nBP1 and nBP2. This observation
suggests that there is a short-range scaling exponent, a1,
over a period from n = 4 months up to nBP1 (ca. 12
months), a long-range scaling exponent, a2, from nBP1 to
nBP2 (ca. 36 months), and another long-range exponent,
a3, from nBP2 up to 64 months.

In brief, we note that for the rotavirus time-series DFA
detects two crossovers, namely, within a year there is one
behaviour where a1 = 1.08 (1/f noise), between 1 and ca.
3 years there is another behaviour where a2 = 0.23
(indicating anti-persistent power-law correlations) and,
between 3 and ca. 5 years a3 = 0.64 (which means that
there are persistent long-range power-law correlations).

To rule out the possibility that these three different sca-
ling factors could be the result of an artefact the surrogate
data technique was applied. Fifteen realizations of surrogate
type I and type II were carried out. The average value of the
single slope obtained for the ensemble of surrogates type 1
was: kal = 0.504. The average values of the three slopes for
the ensemble of surrogates type II were ka1l = 0.58; ka2l
= 0.06 and ka3l = 0.06. The corresponding standard devi-
ations were: s1 = 0.074; s2 = 0.019 and s3 = 0.024. The
three p-values are so small (pa1

= 3.5 ´ 10213; pa2

= 8.6 ´ 1021 5; and pa3
= 0) that sufficient evidence has been

gathered to reject the null hypothesis that the three
observed as could be the result of an artefact.

8. WT

Unlike Fourier, WT is usually devoted to the analysis
of non-stationary and nonlinear signals. Traditional
approaches (such as the power spectrum and correlation
analysis) are not suited for such non-stationary sequences,
nor do they carry information stored in the Fourier phases
which is crucial for determining nonlinear characteristics.

Thus there is no prerequisite over the stability of the
frequency content along the signal analysed. Conversely
to Fourier, WA allows one to follow the temporal evolution
of the spectrum of the frequencies contained in the signal.
The shape of the WT-analysing wavelet equation differs
from the fixed sinusoidal shape of the Fourier transform
and can be designed to better fit the shape of the analysed
signal, allowing a better quantitative measurement.

Like Fourier or Laplace transforms, the continuous
wavelet transform (CWT) is an integral transform. WA
can be considered as a local Fourier analysis performed at
different separated levels. A formal definition of the CWT
is given in Appendix A.

The analysis amounts to sliding a window of different
weights (corresponding to different levels) containing the
wavelet function all along the signal. The weights charac-
terize a family member with a particular dilation factor.
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Figure 5. Detrending fluctuation analysis. Plot of log F(n) versus log n for the incidence of rotavirus from 1977 to 2000 (300
months). Arrows indicate crossover points nBP1 and nBP2 that form three different regions in scaling. The a exponents for
each of the three different regions are: a1 = 1.08; a2 = 0.23; a3 = 0.64. Diamonds, actual data; asterisks, SARIMA
(1, 0, 0) ´ (3, 1, 0)12 model. The DFA of single realizations of surrogate type I (dotted line) and surrogate type II (dash–dotted
line) are also shown.

Thus the wavelet coefficients correspond to the scalar pro-
duct of the given signal S with the wavelets Ca,b(t)
obtained by dilating (a) and translating (b) the analysing
wavelet C(t). In other words, the WT T gives a serial list
of coefficients called the wavelet coefficients and rep-
resents the evolution of the correlation between the signal
S and the chosen wavelet at different levels of analysis (or
different ranges of frequencies) all along the signal S.

The WT T is sometimes called a mathematical micro-
scope or telescope because it allows the study of the
properties of the signal on any chosen scale a. For high
frequencies (small a), the C functions have good
localizations (being effectively non-zero only on small
sub-intervals), so short-time regimes or high-frequency
components can be detected by WA.

We have done the CWT using a broad range of
orthonormal, compactly supported analysing wavelets
(Misiti et al. 2000). We present results for the reverse bior-
thogonal wavelet pairs: rbioNr.Nd. The order is rep-
resented by Nd and Nr (d for decomposition and r for
reconstruction). We chose this analysing wavelet because
the shape of both its reconstruction and decomposition
wavelet functions (psi-scaling functions), resemble the
short-term oscillatory behaviour of the first differences of
the monthly incidence of rotavirus. However, similar
results were obtained using other wavelets such as Haar
and coiflet 2 (not shown).

In figure 6 the CWT of the rotavirus incidence using as
an analysing wavelet the reverse biorthogonal spline with
Nr = 1 and Nd = 3 (rbio1.3) is shown.
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Note that every year there are three rhombi of similar
size throughout 64 scales indicating self-similarity of the
signal. It is also evident that there is a symmetrical pattern
of the CWT over time. In particular, note that there are
two types of uninterrupted dark diagonal straight lines:
some diagonals increase over time, from small scales to
large scales, whereas other diagonals decrease over time,
from large scales to small ones. The resulting pattern is
that of several repetitive triangles consecutively formed
over time. Some of these triangles have their bases at high
frequencies (small scales), whereas in others their bases
occur at very low frequencies (large scales). Note also that
these triangles are part of the three rhombi formed every
year, and of the rhombi formed every 2 and 3 years.
Because the darker colours indicate the smallest values of
the wavelet amplitudes, the dark diagonals represent the
distribution of 61 fade-outs of the original time-series over
time and for all scales. The emerging successive and sym-
metrical triangles that arise from this distribution of fade-
outs constitute the skeleton of the whole pattern of the
resulting WT. The transmission of rotavirus infection
seems to be a multiplicative process, following a power-
fractal scaling repelled from these fade-outs. Each year
there are bright vertical lines that cross all scales and that
arise from the vertex of some of these triangles at very low
frequencies. This vertical lines show certain vibration that
may be associated with the annual self-exciting QPC. The
whole pattern is the same throughout all the period analysed
(1977–2000) regardless of the specific sequence of presence (or
absence) of a particular serotype. This self-similar pattern
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becomes more apparent during the last 6 years. Then
because certain wavelets C have vanishing moments, poly-
nomial trends in the non-stationary signal are automati-
cally eliminated in the process of wavelet transformation
(Daubechies 1994). This is salutatory in the case of the
rotavirus epidemics, as is evident from the trends apparent
in figure 1a, which are eliminated by the WT shown in
figure 6.

(a) Standard deviation of wavelet coefficients as a
function of the scale

Orthogonality in the CWT ensures that the information
represented at a certain scale a is disjointed from the infor-
mation of other scales. Because the signal S fluctuates in
time, so too does the sequence of wavelet coefficients at
any given scale, though its mean is zero (Daubechies
1994). A natural measure for this variability is the wavelet-
coefficient standard deviation, as a function of scale:

sw av(a) = F 1
Nc 2 1 ONc21

n = 0

[Ta,n(s) 2 kTa,n(s)l]2G 1 /2

,

where Nc represents the number of wavelet coefficients at
a given scale a.

In figure 7 the graphs of the standard deviation of the
wavelet coefficients, sw av, of the analysing wavelet
(rbio1.3) against the scale (1 < a < 64) for the actual data
(diamonds), the SARIMA (1, 0, 0) ´ (3, 1, 0)1 2 model
(asterisks), as well as for serotypes G1, G2 and G3, G4,
and non-typeables are each pointed out with an arrow.

Note first that the agreement between the data that
includes all rotavirus infections and the model is remark-
able. Note also that the standard deviation of the magni-
tude of the coefficients shows three cycles as the scale
increases (frequency decreases and period increases).
Most of the variation in the magnitude of the coefficients
occurs within a year (scales 0 to ca. 24). The other two
cycles occur at longer periods than a year. The variation
of these longer cycles ranges from scales ca. 24 to ca. 48,
and from ca. 48 to 64. For each cycle the maximum vari-
ation diminishes as the scale increases (frequency
decreases). Note that these three cycles correspond to the
three different slopes (a1, a2, a3) obtained by the DFA.
The same oscillatory behaviour is observed for serotypes
G1 and non-typeables. The sum of serotypes G2 and G3
shows variation only for the annual cycle but not for
longer cycles. The annual standard deviation of wavelet
coefficients of serotype G4 is small and roughly constant
from scales approximately 20 to 64.

9. DISCUSSION

In this work we have used several mathematical tech-
niques to characterize the overall dynamics of the rotavirus
epidemics. Although SARIMA, PSD, HOSA, DFA and
WA are related techniques (e.g. Heneghan & McDarby
2000), each of them revealed differently hidden dynamical
aspects of the rotavirus epidemic. It is important to remark
that we used a very short time-series of the rotavirus epi-
demic (N = 300 months). The most noteworthy findings
of the present analysis are as follows.

(i) Time-series analysis has been used to examine oscil-
latory secular trends of the monthly incidence of
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rotavirus in Melbourne, Australia for the period of
1997–2000. A SARIMA (1, 0, 0) ´ (3, 1, 0)1 2 model
tested by order determination criteria adequately
describes the monthly incidence of all rotavirus
infections (§ 3). This statistical model was also used
to produce middle-term forecasts of the monthly
incidence of the epidemic.

(ii) We have examined the statistical evidence for regu-
larity in the epidemic cycles of rotavirus. In parti-
cular, a periodogram was used to determine the
periodicities of the epidemic. Seasonal, biannual and
quinquennial periods were found (interepidemic
cycles). However, we also detected a fundamental
period of 3 years that turned out to be a dominant
component of the series as it was reflected in the
SARIMA (1, 0, 0) ´ (3, 1, 0)1 2 model (§ 4).

(iii) We used HOSA to calculate the bispectrum and we
observed that the time-series is nonlinear and it sug-
gested nonlinear interactions between harmonics.
We also confirmed that the time-series is non-
Gaussian (§ 5). The bispectra of serotype G1 and
non-typeables clearly displayed a sharp annual har-
monic but that was not the case with the bispectrum
of the sum of serotypes G2 and G3. Therefore, there
should be nonlinear interactions among the dynam-
ics of all serotypes. In other words, the whole is not
equal to the sum of its parts.

(iv) We used HOSA to show that in the rotavirus epi-
demic there is both frequency (2fann ua l = fs ix m on ths)
and phase self-coupling (2fan nu al = fs ix m o nths) of the
annual cycle that generates a six-month cycle. This
result is astounding given the great heterogeneity of
the incidences of each serotype of rotavirus. The
same self-coupling was obtained using data of the
first 224 months since 1977. This means that the
inherent dynamics has not changed. Only the ampli-
tude of the cycles has changed. The dynamics of
each serotype is multiple synchronized in such a way
that they behave as a single unit at the epidemic level
(§ 6).

(v) The whole dynamics follows a scale-free power-law
fractal scaling behaviour as shown by DFA. By
means of DFA we demonstrated that there may be
two breakdowns in the fractal scaling of the inci-
dence fluctuations of rotavirus. Therefore, these
three scaling regions in the time-series suggest that
processes influencing the epidemic dynamics of rota-
virus over less than 12 months differ from those that
operate between 1 and ca. 3 years, as well as those
between 3 and ca. 5 years (§ 7). By means of a surro-
gate data technique we were able to discard the
possibility that the three observed different scaling
regions may be the result of an artefact.

(vi) We showed that it is possible to characterize the sca-
ling behaviour of the epidemic of rotavirus by using
wavelets. The CWT of the monthly incidence of
rotavirus reflected clearly the annual self-similar
behaviour of the epidemic as predicted by the DFA
analysis. The annual wavelet coefficients displayed
three similar rhombi at different ranges of the scale.
Similarities were also found following the global
behaviour of the epidemic. We detected the forma-
tion of successive triangles over time (§ 8).
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(vii) We found that there are three main cycles that
characterize the whole of the epidemic and that each
of these cycles corresponds to the three different sca-
ling regions as detected by DFA. There is a con-
siderable variation throughout these three scaling
cycles as reflected by the standard deviation of the
magnitude of wavelet coefficients which decreases as
frequency decreases (§ 8a). Serotype G4 and the
sum of cases associated with serotypes G2 and G3
showed variations only within the annual cycle.

Given that the rotavirus peaks in the last nine seasons
are much higher than in all previous seasons, we initially
put forward the hypothesis that there could be a change
in the dynamics. Because the underlying dynamics is the
same throughout all the analysed period, the increase in
amplitude of the last years may be due to the fact that the
criteria for admission to hospital changed 9 years ago due
to the introduction of oral rehydration therapy. This
meant that more children with acute gastroenteritis were
treated as day-care patients and were not admitted to hos-
pital for treatment. Only the really severe cases were
admitted to hospital, and these would have included a
higher proportion of rotavirus infected children, as this
pathogen causes comparatively more severe symptoms
than the other enteric pathogens in this age group.

The incidence of rotavirus epidemics fluctuates appar-
ently in a complex manner. The intrinsic importance of
the SARIMA model lies not for the precise numerical
values but in developing a first step to understand the pro-
cesses underpinning this epidemic and to anticipate a
likely scenario of the behaviour of the epidemic in Mel-
bourne, Australia for short- and middle-term time-scales.
This model provides an explanation for the observed
crossover behaviour of the data (figure 5), and it suggests
that three inputs dominate the system at different time-
scales: one in which each value is partially dependent on
the values at all previous points (1/f noise), and each of
the other two, with long-range correlations. The model
also showed QPC due to quadratic terms of the model
(not shown).

The annual cycles seem to arise from seasonal climatic
changes and the six-month cycle is related to the whole
winter period. Seasonal variation in the transmission rates
can generate biennial epidemics but seasonality seems not
to be the necessary condition that accounts for the driving
force of longer interepidemic cycles. The biannual and tri-
ennial periods are most likely to be connected with the
age-distribution of cases ( José et al. 1996). It particular,
it has been shown that the biannual period is directly
related to the average age at which susceptible individuals
acquire the rotavirus infection (José et al. 1996). Rotavirus
infections have been shown to occur in all age groups and
are particularly common in adult members of families of
children with rotavirus-associated diarrhoea (Bishop
1994). The potential importance of reinfections in adults
is that they can serve as reservoirs to maintain rotavirus
in the community and assure its circulation to susceptible
individuals. It is possible that the long interepidemic
cycles may be associated with the dynamics of asymptom-
atic carriers, often older siblings and parents of young chil-
dren (Velazquez et al. 1993; Bishop 1994). The ca. 5 and
ca. 6 year period cycles seem to be associated with changes
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over time of the phases of the epidemic that may have to
do with the spread of the infection, probably from a core
group to smaller groups. This in turn may be related to
the spatial propagation of the disease from the central city
of Melbourne to several suburbs.

Higher-order cumulants and the parametric bispectrum
were useful to isolate specific types of self-coupling. There
seems to be a synchrony among serotypes that preserves
a particular dynamical pattern despite the apparent
changes in the seroprevalence of the last years. The intrin-
sic dynamics is unaltered by the emergence of new sero-
types, the re-emergence of old serotypes or the transient
disappearance of a particular serotype (see figures 2a,b, 3,
5 and 6).

The mechanisms underlying the observed long-range
power-law correlations appear to be related primarily to
countervailing inputs. There seem to be, on the one hand,
factors that decrease the firing rate of the epidemic, and
on the other hand there seems to be something that has
the opposite effect (presumably related to changes in the
immunological resistance of the hosts). The nonlinear
interaction (competition) between these forces may be a
probable mechanism that maintains the epidemic. Fractal
curves are known to be scale invariant, which means that
the statistical properties of the signal remain invariant
under scale transformations.

Scale-free power laws governing epidemics have
recently been described in the measles records for small
isolated populations (Rhodes & Anderson 1996) and for
the web of human sexual contacts (Liljeros et al. 2001).

Given that the incidence of rotavirus follows a power-
law fractal behaviour, its cumulative distribution (not
shown) consists of a hierarchy of small but highly frequent
epidemics followed by less frequent large epidemics,
although their occurrence is connected and governed by
scaling exponents.

Power laws rarely emerge in systems completely gov-
erned by the roll of a die. Most often they signal a tran-
sition from disorder to order. Power laws are typical of
self-organization in complex systems.

The possibility of the presence of a group of individuals
inherently more susceptible to acquire or to transmit the
rotavirus infection must be arbitrary because there is no
well-defined boundary that separates the group of high
spreaders from other individuals.

It is reasonable to assume that each of the regulatory
systems that participate in the rotavirus incidence has a
preferred frequency of operation; the absence of a charac-
teristic time-scale within a year may be taken to imply that
no single regulatory system dominates the regulation of
the epidemics of rotavirus. The observed 1/f seasonal pat-
tern of rotavirus epidemic could simply be a mirror of a
limit distribution, to wit, the lognormal distribution. This
implies that one should seek mechanisms that have a
multiplicative rather than an additive nature. Mechanisms
that can account for the transition of distributions having
finite central moments such as the lognormal, to inverse
power-law distributions have been proposed (West &
Shlesinger 1989). Although the fractal organization of the
annual cycle of rotavirus epidemic is not understood, it
may represent a network of coupled pathways and feed-
back loops that regulates the annual cycles and thus per-
mits rapid adaptation to the host–parasite interactions.
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Figure 6. Colour-coded CWT of the incidence of rotavirus. The x-axis represents time (300 months) and the y-axis indicates
the scale of the wavelet used (a = 1, 2, …, 64) with large scales (low frequency) at the top. The brighter colours indicate larger
values of the wavelet amplitudes. The WA was performed with the reverse biorthogonal spline with Nr = 1 and Nd = 3 as an
analysing wavelet and it uncovers a hierarchical scale invariance quantitatively expressed by the stability of the scaling form.
This wavelet decomposition reveals a self-similar fractal structure in the incidence of rotavirus every year, i.e. there are three
rhombi of similar shape at different ranges of the scale. The CWT also unravels a repetitive pattern of successive triangles that
are formed over time.

The resemblance of the wavelet pattern upon magnifi-
cation reproduced the whole structure. The CWT of each
serotype and certain combinations of them, reflected a
roughly similar pattern to that obtained with all serotypes,
particularly the formation of the apparent triangles (not
shown), i.e. each serotype behaved essentially in a similar
fashion as the whole. However, the wavelet of each sero-
type did not show the bright vertical line crossing all
scales. This is consistent with the observation that QPC
was not obtained for any serotype in particular, and that
annual fractal scaling does not lead by itself the annual
self-QPC. It is evident that the integration of the dynamics
at different scales of all serotypes is the result of QPC. It
may appear that the different serotypes act synchronously
in relays.

No central serotype sits in the middle of the epidemiol-
ogical distribution. There is no single serotype whose
removal could break the epidemic. This means that not
all severe cases can be associated with a single particular
rotavirus serotype that uniquely can lead to acute gastro-
enteritis. In other words, the power-law behaviour and the
self-similar pattern observed by the WA imply that there
is no such thing as a universal intrinsically more virulent
rotavirus strain. It is not a surprise then that studies car-
ried out in different continents and during diverse time
periods have reported different more virulent serotypes
related to severe gastroenteritis (Bern et al. 1992; Cascio
et al. 2001). Our results are consistent with differences in
the relationship serotype–illness severity observed among
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different geographical areas (Bern et al. 1992; Cascio et
al. 2001).

The clinical outcome during a rotavirus infection may
be determined by a prolonged absence of a given serotype,
i.e. a serotype which has not circulated in the population
for a sufficiently long period of time, for which the popu-
lation may become immunologically susceptible.

Because the characteristics of this fractal evolve with
time and become local, then this is consistent with a multi-
fractal dynamics of the incidence of rotavirus. Because at
least three different exponents are required to characterize
the scaling properties of the signal fully (as observed both
in the DFA analysis and in the periodogram), then the
overall dynamics of the epidemic is consistent with a
multifractal character. Multifractals can result from ran-
dom multiplicative processes. There are two major differ-
ences between the behaviour of multiplicative and additive
random processes. For multiplicative processes, a rare
event can dominate the distribution, whereas for additive
processes, rare events have little impact. The result is that
the multiplicative processes have distributions with long
tails. Also, in a multiplicative process, short-range corre-
lations can have a strong impact, whereas additive pro-
cesses are insensitive to short-range correlations because
correlated pairs are often distributed as if they were a
single random variable. Then the general features of
multifractals are consistent not only with the results of the
DFA (hence with 1/f noise), but also with the SARIMA
model and the resulting WT. The wavelet approach suc-
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ceeds not only because it eliminates trends in a mathemat-
ically acceptable way for a short time-series, but also
because it crisply reveals ranges of scales over which the
dynamics of incidence of rotavirus have different short-
and long-term behaviour. The multifractal spectrum of
the epidemics of rotavirus can be determined by means of
WA (Muzy et al. 1994). It seems worthwhile to examine
the hypothesis that this multifractal character of the rota-
virus dynamics may provide a mechanism by which the
epidemic may be more stable than by those mechanisms
generated by classical scaling (West 1990).

From an epidemiological perspective, the detection of
robust multiple scaling in the incidence of rotavirus is of
interest because it indicates that the control mechanisms
regulating the epidemic might interact as part of a coupled
cascade of feedback loops in a system operating far from
equilibrium. In this regard, the stability properties of the
threshold of the epidemic as gauged by the so-called basic
reproduction number (Ro) are to be determined. Modifi-
cations of the current mathematical model of rotavirus
epidemic (e.g. José & Bobadilla 1994) considering the
multifractal character of the dynamics are now underway.

Pastor-Satorras & Vespignani (2001a,b) have found that
in scale-free networks there is not an epidemic threshold,
which implies that infections can proliferate at whatever
spreading rate the epidemic agent possesses. The reason
behind the absence of a threshold for the spread of infec-
tion in the Pastor-Satorras & Vespignani (2001a,b) study
is that their scale-free distribution has infinite variance and
hence Ro always exceeds unity (Lloyd & May 2001).
However, as shown in the calculation of the standard devi-
ation of the wavelet coefficients as a function of the scale,
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it seems that the network of rotavirus epidemic does not
seem to have infinite variance, although the rotavirus net-
work is highly heterogeneous in size and durations of epi-
demic events.

This study has several strengths as well as potential limi-
tations. The present study did not address the biological
mechanisms underlying the observed changes in the
dynamics of the incidence of rotavirus infections. We are
dealing with rotavirus infections that produce severe acute
gastroenteritis, requiring hospital admission for treatment,
i.e. we have examined the dynamics of the disease rather
than the dynamics of infections. We are just looking at a
small piece of a larger picture.

The absence of a characteristic peak in a power-law
degree distribution implies that in the rotavirus epidemic
there is no such thing as a more virulent serotype. There-
fore, immunological factors associated with the severity of
the disease, other than viral properties, need to be sought.
Studies of variations of immunity over time of the
asymptomatic carriers are urgently needed to fully under-
stand the biological mechanisms of the dynamics of rota-
virus infection.

The application of any vaccine against rotavirus infec-
tion should consider the self-similarity (multifractality)
and the self-coupling of the annual cycle of the dynamics
of a rotavirus epidemic. The results of the present article
may provide insights for the application and the
development of a more effective and safer vaccine after
the withdrawal of the human-rhesus reassortant tetra-
valent rotavirus oral vaccine due to the attributable risk of
intestinal intussusception after vaccination (Abramson et
al. 1999). In particular, we need to stop considering the
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rotavirus serotypes separately. Rather, they constitute a
community that acts in unison.

Despite all caveats which arise in describing a complex
human biological phenomenon at the population level, the
present mathematical analysis sheds some light upon the
inherent dynamics of the epidemic of rotavirus.
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APPENDIX A

(a) SARIMA models
The SARIMA model is expressed as

fp(B)FP(Br)Jt = uq(B)QQ(Br)Zt, (A 1)

where B denotes the backward shift operator,
fp, FP, uq, QQ are polynomials of order p, P, q and Q
respectively, Zt denotes a purely random process, and

Jt = =d=D
r Y t, (A 2)

where = is the backward difference operator. The variables
{Jt} are formed from the original series {Yt} not only by
simple differencing (to remove trend) but also by seasonal
differencing,=r, to remove seasonality. For example, if
d = D = 1, and r = 1, then

J t = ==1 2 Y t = =1 2 Y t 2 =1 2 Y t21,

J t = (Y t 2 Y t21 2) 2 (Y t21 2 Y t21 3).

The model in equations (A 1) and (A 2) is said to be a
SARIMA model of order (p, d, q) ´ (P, D, Q)r.

(b) Definition of the periodogram
The periodogram estimate of the PSD of a time-series

of length N, yN(t) is

P̂ yy( f ) =
|YN( f )|2

fsN
, (A 3)

where

YN( f ) = ON21

t = 0

yN(t)e22pi ft/ fs,

and fs is the sampling frequency.

(c) Definition of cumulants and the bispectrum
Let us make the convenient assumption that the process

has a zero mean. The second-order cumulant, denoted by
C2(i), is the autocovariance function. For a zero-mean
process, C2(i) and the third-order cumulant C3(i, j ), are
identical with the second- M2(i) and the third-order
moment M3(i, j), of the process, respectively, i.e.

C2(i) = M2(i) = E{y(n)y(n 1 i)}

C3(i , j ) = M3(i , j ) = E{y(n)y(n 1 j )y(n 1 i)}
J , (A 4)
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where the operator E denotes the statistical expectation.
If y(n) is a Gaussian process, then its statistics are com-
pletely characterized by its autocorrelation function. If
y(n) is non-Gaussian, as are most real world signals, then
it is not completely characterized by its autocorrelation
function. The higher-order moments of the process carry
information which is not contained in the autocorrelation
function. Then, the cumulants of a Gaussian process are
identically zero for orders greater than two, for example,

C3(i , j ) = 0,

C4(i , j , k ) = 0 etc.

The bispectrum is a function of two frequencies and is
defined by

S3 y( f 1, f 2) = O`
k =2`

O`
l =2`

C3 y(k , l )e2 i2p f1ke2i2p f2l. (A 5)

For a real-valued process, symmetry properties of cumu-
lants carry over to symmetry properties of bispectra. The
symmetry properties of the bispectrum can be found in
Rao & Gabr 1984.

(d) Nonlinear processes: Volterra model
The simplest nonlinear system is the second-order

Volterra system whose input–output relationship is
defined by

y(n) = O`
k = 0

h(k)x(n 2 k) 1 O`
k = 0

O`
l = 0

q(k , l )x(n 2 k)x(n 2 l ).

(A 6)

The corresponding frequency domain representation is

Y ( f ) = H( f )X( f ) 1 O
f 11 f 2= f 3

Q( f1, f2)X( f1)X( f2),

(A 7)

and is obtained by Fourier transforming both sides of
(A 6). The time-domain product term x(n 2 k)x(n 2 l)
leads to convolution in the frequency domain, which is
represented by the condition f3 = f1 1 f2. It is usually
assumed that the quadratic kernel is real and symmetric,
that is, q(k, l) = q(l, k), or equivalently, Q( f1, f2)
= Q( f2, f1) = Q ¤ (2f1,2f2). It is readily verified that
Q( f1, f2) in the region | f 2| < f 1, 0 < f 1 < 1/4, specifies
Q( f1, f2) everywhere.

We want to estimate the linear part, h(k), and the quad-
ratic part, q(k, l) given x(n) and, y(n), n = 1,…, N. In parti-
cular, the quadratic kernel in the second-order Volterra
model is usually assumed to be symmetric. A least-squares
formulation to estimate the linear and the quadratic part
of the Volterra model will involve second-, third- and
fourth-order moments. The QPC problem is a special case
where the linear part is zero, the quadratic part is diagonal
and x(n) is a sum of harmonics (see equation (A 6)).

It is important to note that consistent estimates of the
bispectrum (C3y(t1, t2)) will be obtained from a single real-
ization, only if frequency coupling is always accompanied
by phase coupling (Swami & Mendel 1990). Given a single
realization, C3y(t1, t2) will show impulses if frequency
coupling exists, that is, f3 = f2 1 f1. Given multiple realiza-
tions, C3y(t1, t2) (and C3y(t, t)) will be non-zero only if
both frequency and phase coupling exist, that is, f3 = f2 1 f1,
and f3 = f2 1 f1 (Swami et al. 1998).
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(e) Detrending fluctuation analysis
The DFA method comprises the following steps (Peng

et al. 1993, 1994): the incidence interval time-series (of
total length N) is first integrated, y(k) = Sk

i = 1[B(i) 2
Bave], where B(i) is the ith incidence interval and Bave is
the average incidence interval. Next the integrated time-
series is divided into boxes of equal length, n. In each box
of length n, a least-squares line is fitted to the data
(representing the trend in that box). The y coordinate of
the straight line segments is denoted by yn(k). Next, the
integrated time-series, y(k), is detrended by subtracting
the local trend, yn(k), in each box. The root mean square
fluctuation of this integrated and detrended time-series is
calculated by

F (n) = ! 1
N ON

k=1

[y(k) 2 yn(k)]2. (A 8)

This computation is repeated over all time-scales (box
sizes) to provide a relationship between F(n), the average
fluctuation as function of box size, and the box size n (i.e.
the number of cases in a box which is the size of the win-
dow of observation).

(f ) Definition of the WT
We introduce the one-dimensional continuous WT and

some of the basic mathematical results. We consider a func-
tion s(t) in the Hilbert space L 2(R, dt). We decompose this
function s in terms of elementary functions obtained by
dilations and translations of the real valued mother function
C(t). Let us define Ca,b = a21 /2C((t 2 b)/a). The WT of s(t)
is defined as (Daubechies 1994)

TC[s](a, b) = kCa,b|slL2
(R ,d t) = a21 /2 E `

2`

CS t 2 b
a D s(t)dt,

(A 9)

where k·|·lL2
(R ,d t) is the scalar product in L 2(R, dt). Thus

the WT is basically the scalar product of the function with
the analysing wavelet dilated by a and translated by b.
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