Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2004 Mar 29;359(1443):499–514. doi: 10.1098/rstb.2003.1434

Responses of Amazonian ecosystems to climatic and atmospheric carbon dioxide changes since the last glacial maximum.

Francis E Mayle 1, David J Beerling 1, William D Gosling 1, Mark B Bush 1
PMCID: PMC1693334  PMID: 15212099

Abstract

The aims of this paper are to review previously published palaeovegetation and independent palaeoclimatic datasets together with new results we present from dynamic vegetation model simulations and modern pollen rain studies to: (i) determine the responses of Amazonian ecosystems to changes in temperature, precipitation and atmospheric CO2 concentrations that occurred since the last glacial maximum (LGM), ca. 21 000 years ago; and (ii) use this long-term perspective to predict the likely vegetation responses to future climate change. Amazonia remained predominantly forested at the LGM, although the combination of reduced temperatures, precipitation and atmospheric CO2 concentrations resulted in forests structurally and floristically quite different from those of today. Cold-adapted Andean taxa mixed with rainforest taxa in central areas, while dry forest species and lianas probably became important in the more seasonal southern Amazon forests and savannahs expanded at forest-savannah ecotones. Net primary productivity (NPP) and canopy density were significantly lower than today. Evergreen rainforest distribution and NPP increased during the glacial-Holocene transition owing to ameliorating climatic and CO2 conditions. However, reduced precipitation in the Early-Mid-Holocene (ca. 8000-3600 years ago) caused widespread, frequent fires in seasonal southern Amazonia, causing increased abundance of drought-tolerant dry forest taxa and savannahs in ecotonal areas. Rainforests expanded once more in the Late Holocene owing to increased precipitation caused by greater austral summer insolation, although some of this forest expansion (e.g. in parts of the Bolivian Beni) is clearly caused by palaeo Indian landscape modification. The plant communities that existed during the Early-Mid-Holocene may provide insights into the kinds of vegetation response expected from similar increases in temperature and aridity predicted for the twenty-first century. We infer that ecotonal areas near the margins of the Amazon Basin are liable to be most sensitive to future environmental change and should therefore be targeted with conservation strategies that allow 'natural' species movements and plant community re-assortments to occur.

Full Text

The Full Text of this article is available as a PDF (290.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alarcon Jorge O., Johnson Kay M., Courtois Barry, Rodriguez Carlos, Sanchez Jorge, Watts Douglas M., Holmes King K. Determinants and prevalence of HIV infection in pregnant Peruvian women. AIDS. 2003 Mar 7;17(4):613–618. doi: 10.1097/00002030-200303070-00017. [DOI] [PubMed] [Google Scholar]
  2. Andrus C. Fred T., Crowe Douglas E., Sandweiss Daniel H., Reitz Elizabeth J., Romanek Christopher S. Otolith delta 18O record of mid-Holocene sea surface temperatures in Peru. Science. 2002 Feb 22;295(5559):1508–1511. doi: 10.1126/science.1062004. [DOI] [PubMed] [Google Scholar]
  3. Baker P. A., Rigsby C. A., Seltzer G. O., Fritz S. C., Lowenstein T. K., Bacher N. P., Veliz C. Tropical climate changes at millennial and orbital timescales on the Bolivian Altiplano. Nature. 2001 Feb 8;409(6821):698–701. doi: 10.1038/35055524. [DOI] [PubMed] [Google Scholar]
  4. Baker P. A., Seltzer G. O., Fritz S. C., Dunbar R. B., Grove M. J., Tapia P. M., Cross S. L., Rowe H. D., Broda J. P. The history of South American tropical precipitation for the past 25,000 years. Science. 2001 Jan 26;291(5504):640–643. doi: 10.1126/science.291.5504.640. [DOI] [PubMed] [Google Scholar]
  5. Cowling Sharon A., Betts Richard A., Cox Peter M., Ettwein Virginia J., Jones Chris D., Maslin Mark A., Spall Steven A. Contrasting simulated past and future responses of the Amazonian forest to atmospheric change. Philos Trans R Soc Lond B Biol Sci. 2004 Mar 29;359(1443):539–547. doi: 10.1098/rstb.2003.1427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cox P. M., Betts R. A., Jones C. D., Spall S. A., Totterdell I. J. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature. 2000 Nov 9;408(6809):184–187. doi: 10.1038/35041539. [DOI] [PubMed] [Google Scholar]
  7. Erickson C. L. An artificial landscape-scale fishery in the Bolivian Amazon. Nature. 2000 Nov 9;408(6809):190–193. doi: 10.1038/35041555. [DOI] [PubMed] [Google Scholar]
  8. Guilderson T. P., Fairbanks R. G., Rubenstone J. L. Tropical temperature variations since 20,000 years ago: modulating interhemispheric climate change. Science. 1994 Feb 4;263(5147):663–665. doi: 10.1126/science.263.5147.663. [DOI] [PubMed] [Google Scholar]
  9. Haffer J. Speciation in amazonian forest birds. Science. 1969 Jul 11;165(3889):131–137. doi: 10.1126/science.165.3889.131. [DOI] [PubMed] [Google Scholar]
  10. Huang Y., Street-Perrott F. A., Metcalfe S. E., Brenner M., Moreland M., Freeman K. H. Climate change as the dominant control on glacial-interglacial variations in C3 and C4 plant abundance. Science. 2001 Aug 31;293(5535):1647–1651. doi: 10.1126/science.1060143. [DOI] [PubMed] [Google Scholar]
  11. Laurance W. F., Cochrane M. A., Bergen S., Fearnside P. M., Delamônica P., Barber C., D'Angelo S., Fernandes T. Environment. The future of the Brazilian Amazon. Science. 2001 Jan 19;291(5503):438–439. doi: 10.1126/science.291.5503.438. [DOI] [PubMed] [Google Scholar]
  12. Maslin M. A., Burns S. J. Reconstruction of the Amazon Basin effective moisture availability over the past 14,000 years. Science. 2000 Dec 22;290(5500):2285–2287. doi: 10.1126/science.290.5500.2285. [DOI] [PubMed] [Google Scholar]
  13. Mayle F. E., Burbridge R., Killeen T. J. Millennial-scale dynamics of southern Amazonian rain forests. Science. 2000 Dec 22;290(5500):2291–2294. doi: 10.1126/science.290.5500.2291. [DOI] [PubMed] [Google Scholar]
  14. Monnin E., Indermühle A., Dällenbach A., Flückiger J., Stauffer B., Stocker T. F., Raynaud D., Barnola J. M. Atmospheric CO2 concentrations over the last glacial termination. Science. 2001 Jan 5;291(5501):112–114. doi: 10.1126/science.291.5501.112. [DOI] [PubMed] [Google Scholar]
  15. Moy Christopher M., Seltzer Geoffrey O., Rodbell Donald T., Anderson David M. Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch. Nature. 2002 Nov 14;420(6912):162–165. doi: 10.1038/nature01194. [DOI] [PubMed] [Google Scholar]
  16. doi: 10.1098/rstb.1998.0188. [DOI] [PMC free article] [Google Scholar]
  17. Pennington R. Toby, Lavin Matt, Prado Darién E., Pendry Colin A., Pell Susan K., Butterworth Charles A. Historical climate change and speciation: neotropical seasonally dry forest plants show patterns of both tertiary and quaternary diversification. Philos Trans R Soc Lond B Biol Sci. 2004 Mar 29;359(1443):515–537. doi: 10.1098/rstb.2003.1435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Seltzer G. O., Rodbell D. T., Baker P. A., Fritz S. C., Tapia P. M., Rowe H. D., Dunbar R. B. Early warming of tropical South America at the last glacial-interglacial transition. Science. 2002 May 31;296(5573):1685–1686. doi: 10.1126/science.1070136. [DOI] [PubMed] [Google Scholar]
  19. Shukla J., Mintz Y. Influence of Land-Surface Evapotranspiration on the Earth's Climate. Science. 1982 Mar 19;215(4539):1498–1501. doi: 10.1126/science.215.4539.1498. [DOI] [PubMed] [Google Scholar]
  20. Shukla J., Nobre C., Sellers P. Amazon deforestation and climate change. Science. 1990 Mar 16;247(4948):1322–1325. doi: 10.1126/science.247.4948.1322. [DOI] [PubMed] [Google Scholar]
  21. Street-Perrott FA, Huang Y, Perrott RA, Eglinton G, Barker P, Khelifa LB, Harkness DD, Olago DO. Impact of lower atmospheric carbon dioxide on tropical mountain ecosystems . Science. 1997 Nov 21;278(5342):1422–1426. doi: 10.1126/science.278.5342.1422. [DOI] [PubMed] [Google Scholar]
  22. Stute M., Forster M., Frischkorn H., Serejo A., Clark J. F., Schlosser P., Broecker W. S., Bonani G. Cooling of Tropical Brazil (5{degrees}C) During the Last Glacial Maximum. Science. 1995 Jul 21;269(5222):379–383. doi: 10.1126/science.269.5222.379. [DOI] [PubMed] [Google Scholar]
  23. Thompson L. G., Mosley-Thompson E., Davis M. E., Lin P. N., Henderson K. A., Cole-Dai J., Bolzan J. F., Liu K. B. Late glacial stage and holocene tropical ice core records from huascaran, peru. Science. 1995 Jul 7;269(5220):46–50. doi: 10.1126/science.269.5220.46. [DOI] [PubMed] [Google Scholar]
  24. Thompson LG, Davis ME, Mosley-Thompson E, Sowers TA, Henderson KA, Zagorodnov VS, Lin P, Mikhalenko VN, Campen RK, Bolzan JF. A 25,000-year tropical climate history from bolivian ice cores . Science. 1998 Dec 4;282(5395):1858–1864. doi: 10.1126/science.282.5395.1858. [DOI] [PubMed] [Google Scholar]
  25. Tudhope A. W., Chilcott C. P., McCulloch M. T., Cook E. R., Chappell J., Ellam R. M., Lea D. W., Lough J. M., Shimmield G. B. Variability in the El Niño-Southern Oscillation through a glacial-interglacial cycle. Science. 2001 Jan 25;291(5508):1511–1517. doi: 10.1126/science.1057969. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES