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Estimating the genetic basis of quantitative traits can be tricky for wild populations in natural environ-
ments, as environmental variation frequently obscures the underlying evolutionary patterns. I review the
recent application of restricted maximum-likelihood ‘animal models’ to multigenerational data from natu-
ral populations, and show how the estimation of variance components and prediction of breeding values
using these methods offer a powerful means of tackling the potentially confounding effects of environmen-
tal variation, as well as generating a wealth of new areas of investigation.
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1. INTRODUCTION

Evolutionary biology aims to explain diversity. Within a
population, if individuals have different phenotypes, is this
because they have different genotypes, because they have
experienced different environments, or because of a com-
bination of both? If it is because they have different geno-
types, have these differences arisen by chance, or have the
current genotypes been favoured by natural selection in
previous generations? Also—a persistent paradox
undermining the intuitive appeal of Darwinian natural
selection—if selection consistently favours some genotypes
at the expense of others, why do we observe any variation?
These questions form the basis of the study of evolution-
ary biology, and although we have firm and well-estab-
lished answers to some of them, answers to other aspects,
for example the last, are more evasive (Barton & Turelli
1989; Roff 1997; Barton & Keightley 2002). For any use-
ful scientific investigation, we need accurate quantitative
measures of the relevant factors (Lynch & Walsh 1998).
In this review, I consider one field of evolutionary research
that focuses on measuring the determinants of biological
diversity, quantitative genetics, and show how the recent
application of sophisticated analytical techniques to the
study of natural populations has facilitated a more power-
ful analysis of core questions, as well as opening up a range
of new hypotheses to be tested.

Phenotypic characteristics such as morphological or life-
history traits are likely to be affected by large numbers of
genes (Falconer & Mackay 1996; Lynch & Walsh 1998),
the genetic basis of which can be quantified indirectly via
statistical inferences based on the similarities between
relatives in a population. Quantitative genetics, as the sub-
ject is known, has a long and successful application in
plant and animal breeding. For evolutionary studies of
populations in natural environments, the motivation
behind estimating the genetic basis of a quantitative trait
is ultimately to be able to predict whether natural or sexual
selection on the trait will generate a permanent phenotypic
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change, since a trait must be heritable in order to evolve.
Combined with an understanding of the nature of
inherited variation in traits, the dissection of patterns of
natural selection and microevolution within populations
can provide valuable insights into patterns of macroevolu-
tion and speciation (Hendry & Kinnison 1999). Recent
research suggests that directional selection in particular
may be the driving force behind phenotypic diversification
(Schluter 2000; Hendry & Kinnison 2001; Rieseberg et al.
2002). The results of evolutionary studies may also prove
useful for the identification of optimal strategies for the
management and conservation of wild populations
(Stockwell et al. 2003; Coltman et al. 2003). Quantitative
genetics therefore addresses the question of ‘how?’ asso-
ciated with the ‘why?’ questions posed by the study of
adaptation and evolution (Lynch & Walsh 1998).

Natural selection works by weeding out alleles that pro-
duce less fit phenotypes, and should therefore reduce gen-
etic variation. By Fisher’s Fundamental Theorem of
Natural Selection, the rate of change in fitness in a popu-
lation is equal to the additive genetic variance in fitness
(Fisher 1958), so there should therefore be no additive
genetic variation in fitness in a population at equilibrium
(Kimura 1958; Charlesworth 1987). By corollary, traits
closely related to fitness, rather than fitness itself, should
also have little or no additive genetic variance in a popu-
lation at equilibrium, all else being equal (Robertson
1955; Charlesworth 1987; Falconer & Mackay 1996).
However, substantial levels of additive genetic variation
are consistently reported underlying phenotypic traits
known to be under selection (Mousseau & Roff 1987;
Roff & Mousseau 1987; Pomiankowski & Møller 1995;
Falconer & Mackay 1996; Lynch & Walsh 1998; Merilä &
Sheldon 1999, 2001; Stirling et al. 2002). Furthermore,
artificial selection frequently shows a sustained response
to selection, again suggesting that favourable alleles are
not quickly fixed in a population (Hill & Caballero 1992;
Barton & Keightley 2002). This abundance of polygenic
variation underlying quantitative traits under selection
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constitutes a central paradox of evolutionary biology,
which is not sufficiently resolved by an explanation of con-
tinued mutational input (Barton & Turelli 1989; Roff
1997; Barton & Keightley 2002).

In addition, selection on a heritable trait should gener-
ate an evolutionary response in the phenotypic distri-
bution of the trait, the exact nature of which will be
determined by the magnitude and form of selection and
the heritability of the trait (Falconer & Mackay 1996).
The continued success of artificial selection in animal and
plant breeding testifies to the robustness of these predic-
tions. However, again surprisingly, out of several intensive
studies of heritable traits under directional selection in
wild populations living in natural environments, remark-
ably few have demonstrated the microevolutionary
response to selection predicted by quantitative genetics
theory (Merilä et al. 2001c).

We are therefore faced with a substantial mismatch
between theoretical quantitative genetics and empirical
observations from natural populations. Such a mismatch
can presumably be attributed to one of two occurrences:
(i) the measurements of key parameters are wrong; (ii) the
theoretical expectations are too simplistic. I argue here
that both of these potential pitfalls (which may not be
exclusive) can to some extent be avoided by the use of
more sophisticated statistical techniques than have tra-
ditionally been employed in the majority of studies of wild
populations. The assumption behind (i) is that we are
overestimating either the amount of genetic variation
underlying a trait, or the selection acting on it, such that
our expectations of the transgenerational effects of natural
selection are inflated. Regarding point (ii), the simple pre-
dictions outlined above assume that each trait is following
a solitary trajectory, independent of other associated traits
that may also be under selection, evolving under constant
environmental conditions. In both cases, careful dissection
of the potential impact of environmental heterogeneity
within multivariate analyses can provide a much more
accurate understanding of the evolutionary dynamics of
phenotypic traits evolving in wild populations.

One of the major recent changes in the study of the
quantitative genetics of natural populations has been the
use of mixed models, in particular the form of mixed
model known as the ‘animal model’, for the estimation of
variance components (Lynch & Walsh 1998). In contrast
to simpler techniques typically used to estimate herita-
bilities in studies of wild populations to date, such as
parent–offspring regression or sib analyses, these models
incorporate multigenerational information from complex
pedigrees and allow estimation of a range of causal
components of variance. Furthermore, they are not bound
by assumptions of no assortative mating, inbreeding or
selection, and allow for unbalanced datasets. The animal
model has a well-established history in the quantitative
genetics of plant and animal breeding, based on a series
of key papers by Henderson (1950, 1975, 1984), and sig-
nificantly advanced by the application of maximum-
likelihood techniques (Thompson 1973; Shaw 1987). In
the preface to their textbook on quantitative genetics,
Lynch and Walsh cite this form of analysis as one of three
major recent developments in the subject (Lynch & Walsh
1998, p. xiv). However, for no obvious reason other than
possibly computational demands, their use in evolutionary
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studies outside plant and animal breeding is only recent
and still quite restricted. Konigsberg & Cheverud (1992)
fitted an animal model, but without referring to it as such,
to data from a free-ranging macaque population (see also
Cheverud & Dittus 1992), and Knott et al. (1995) applied
an animal model to data from a laboratory population of
bruchid beetles. After this, to my knowledge, the next
studies to use the animal model in analysis of data from
free-ranging animals were of three ungulate populations
(bighorn sheep (Réale et al. 1999); red deer (Kruuk et al.
2000); and Soay sheep (Milner et al. 2000)), since which
a handful of other populations has been added to the list
(see below). The late arrival of the animal model in studies
of the evolutionary genetics of wild species, relative to its
ubiquity in plant and animal breeding, is especially sur-
prising given that some of its strongest advantages are in
dealing with data typical of the form of natural popu-
lations, in particular with the complexities generated by
heterogeneous environmental conditions.

The aim of this paper is to provide an introduction to
the rationale behind animal models, and to review some
of the studies of wild populations that have used them.
In particular, I hope to illustrate their potential value to
evolutionary ecologists in their ability to provide, first,
estimates of a range of different causal components of
phenotypic variance, and, second, predictions of individ-
ual genetic merit or breeding values. Both forms of infor-
mation can generate critical insights into the evolutionary
ecology of natural populations.

2. METHODS

(a) The animal model
The outline of the animal model below is a brief summary

introducing its key ingredients, in particular the form of the
model and the concept of maximum likelihood (ML); for a more
detailed treatment see Lynch & Walsh (1998) and references
therein (in particular Henderson 1950, 1984; Shaw 1987;
Kennedy 1989; Meyer 1989b; Mrode 1996).

The animal model is a form of mixed model, the term used
to describe linear regressions in which the explanatory terms are
a mixture of both ‘fixed’ and ‘random’ effects (see for example
Pinheiro & Bates 2000; McCulloch & Searle 2001). Fixed
effects are unknown constants that affect the mean of a distri-
bution. Random effects are used to describe factors with mul-
tiple levels sampled from a population of possible values, for
which the analysis provides an estimate of the variance of the
effects rather than a parameter for each factor level. Random
effects therefore influence the variance of the trait.

In the case of an animal model, the random effects of interest
are the additive genetic value of individual animals. For the sim-
plest form of animal model, the phenotype y of individual i is
written as

yi = � � ai � ei, (2.1)

where � is the population mean, ai is the additive genetic merit
of individual i, and ei is a random residual error; the model has
no fixed effects other than �. The terminology ‘animal model’
arises simply because the model is defined at the level of the
individual animal—in contrast to, for example, a sire model, in
which sires are evaluated based on their progeny records. In
common with all mixed models, each random effect is assumed
to have originated from a specific distribution with zero mean
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and unknown variance that is be estimated: for equation (2.1),
the random effects ai are defined as having variance equal to
�2

A, the additive genetic variance, the residual errors will have
variance �2

R and for the model in equation (2.1) the total pheno-
typic variance in y will be �2

A � �2
R. Variance components are

therefore estimated directly by fitting the respective random
effects in a linear model framework, rather than through indirect
interpretation from the covariance between relatives (Meyer
1989a).

A more general mixed model in matrix form would be given
by

y = X� � Zu � e, (2.2)

where y is a vector of observations on all individuals, � is a
vector of fixed effects, X represents a design matrix (of 0s and
1s) relating the appropriate fixed effects to each individual, u
is a vector of random effects, Z is a design matrix relating the
appropriate random effects to each individual and e is a vector
of residual errors. For the simple animal model given in equation
(2.1), the matrix form is therefore

y = � � u � e, (2.3)

where X has become a vector of 1s, � = �, Z is the identity
matrix, and u is the vector of additive genetic effects. Define G
as the variance–covariance matrix for the vector u, which can
then be derived from the expectations of the covariance between
relatives in additive genetic effects. For any pair of individuals
i, j, the additive genetic covariance between them is 2�ij�

2
A,

where �ij is the coefficient of coancestry, the probability that an
allele drawn at random from individual i will be identical by
descent to an allele drawn at random from individual j (equal
to, for example, 0.25 for parents and offspring, so the additive
genetic covariance between parents and offspring is 1/2 �2

A). The
variance–covariance matrix G is therefore given by G = A�2

A,
where A is the additive genetic relationship matrix with individ-
ual elements Aij = 2 �ij. Most models assume that the errors are
independent, in which case the corresponding covariance matrix
for the vector e is just R = I�2

R (where I is the identity matrix).
There are two stages to the analysis of an animal model: esti-

mating the variance components and predicting the additive
genetic effects (and any other random effects). I will restrict this
review to the more common situation in which variance compo-
nents are estimated using a restricted maximum-likelihood
(REML) approach (or, occasionally, ML: Cheverud & Dittus
1992; Konigsberg & Cheverud 1992), but note that other
approaches are possible. In particular, variance components can
be estimated using a Bayesian framework (Gianola & Fernando
1986; Höschele et al. 1987; Sorensen et al. 1994), which may
have advantages in certain situations (Blasco 2001); I am not
aware of any analyses to date of free-ranging populations using
a Bayesian animal model. I outline the framework for analysis
of a single trait, but one of the great advantages of such models
is that they can be readily extended to multivariate analyses of
more than one trait (Lynch & Walsh 1998).

(b) Estimating variance components
Maximum-likelihood estimation is based on a simple yet

powerful logic that can be applied to any form of statistical infer-
ence. For a given set of parameters defining a statistical model,
their likelihood is defined as the probability of observing the
actual data in hand if those parameter estimates were true: para-
meter estimates with low likelihoods are therefore those under
which observing the actual data would be a rare event, and so
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forth. Probability is calculated based on assumptions about the
statistical probability distribution of the data, usually that it is
multivariate normal. An ML analysis then simply identifies the
set of parameters that maximizes the likelihood of observing the
actual data (Fisher 1921; Edwards 1972).

To estimate the likelihood of the model in equation (2.2),
assume that both the additive genetic effects and the residual
errors are normally distributed, and hence that the trait y is also
normally distributed (in practice, REML estimators are fairly
robust to this assumption; Shaw (1987), Lynch & Walsh
(1998)). The vector y has mean X� and variance V determined
by the variance in both the additive genetic effects (i.e. G) and
the residuals (i.e. R), specifically V = ZGZT�R. The analysis
will then determine ML estimates of G and R.

The likelihood of the model in equation (2.2) is calculated
from the probability density function for the data y under the
normal distribution. It is computationally easier to maximize its
natural logarithm, the log-likelihood, given by

L = c � 1
2ln|V| � 1

2(y � X�)TV�1(y � X�), (2.4)

where c is a constant that can be ignored in finding the
maximum and |V| is the determinant of the matrix V. This
expression is then used to find the values of � and V (or, in the
simplest case, �2

A and �2
R), by differentiating with respect to each

parameter and solving for zero to give ML estimates. In practice,
this requires an iterative solving procedure, which can make the
process computationally highly intensive.

All ML estimates have the undesirable property of being stat-
istically biased, because they fail to account for the degrees of
freedom lost in estimating fixed effects (Patterson & Thompson
1971; Shaw 1987). This generates bias even when the only fixed
effect being considered is the mean, but the bias can be con-
siderable for larger numbers of fixed effects (Meyer 1989a). As a
result, an ML approach will underestimate the residual variance.
However, the bias can be avoided by considering a REML in
which only the likelihood of the part of the data that does not
depend on the fixed effects is considered (Patterson & Thomp-
son 1971). To obtain REML estimators rather than just ML for
the model in equation (2.2), the likelihood is maximized for a
transformed vector y∗, where y∗ contains the data corrected by
a particular transformation matrix K (so y∗ = Ky), and K
depends on the design matrix X such that KX = 0. Equation
(2.2) therefore becomes

y∗ = KZu � Ke, (2.5)

and the REML estimates are essentially the ML estimates for
these transformed variables. Note that because K is determined
entirely by X, we are no longer considering estimates of �, only
of the variance components.

For the simple model in equation (2.3), the REML analysis
will provide estimates �̂2

A and �̂2
R, from which the heritability can

be estimated as h2 = �̂2
A/(�̂2

A � �̂2
R). The estimates of components

of variance provided by the animal model are for a base popu-
lation from which all other individuals in the population are
descended. However, because information in any pedigree rarely
dates back to a true base population, the usual assumption is
that the first generation of animals with data forms the base
population. One important advantage of the animal model is
that, because it corrects for the flow of genetic information
across subsequent generations, estimates of variance compo-
nents are unbiased by any effects of finite population size,
assortative mating, selection or inbreeding in subsequent
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generations (Thompson 1973; Sorenson & Kennedy 1984; van
der Werf & de Boer 1990).

The simple model in equation (2.3) is easily extended to
include, first, other fixed effects: for example, it may be neces-
sary to correct for an individual’s age, sex, date of sampling and
so on. Second, additional random effects can also be incorpor-
ated to account for correlations between the residual phenotypes
while correcting for additive genetic effects: for example,
maternal or common environment effects, which I discuss in
more detail below, will generate correlations between groups of
individuals. Each case involves respective extensions of � and
inclusion of additional Ziui, giving a model such as

y = X� � Z1u � Z2c � Z3m � e, (2.6)

where c and m are vectors of the other random effects to be
included in the model, each with appropriate design matrix Zi

and corresponding variance to be estimated. The total pheno-
typic variance is then the sum of the variance components of
each random effect, for example for the model in equation
(2.6), �2

A � �2
C � �2

M � �2
R. The statistical significance of includ-

ing additional random effects can be assessed via a likelihood-
ratio test, as twice the difference in log-likelihood between two
nested models will approximate to a �2 distribution (with
degrees of freedom equal to the difference in number of variance
components estimated). Multivariate analyses of more than one
trait can be used to obtain estimates of genetic and environmen-
tal covariances: in this case the relatedness matrix also defines
a covariance structure for the respective additive genetic effects
of different traits (Mrode 1996; Lynch & Walsh 1998).

(c) Predicting breeding values
An individual’s breeding value for a given phenotypic trait is

the total additive effect of its genes on that trait (Falconer &
Mackay 1996). Armed with estimates of the variance compo-
nents that define V, we can return to equation (2.1) to make
predictions of individual additive genetic effects, or breeding
values, and estimates of fixed effects. These are known as
BLUPs and BLUEs, respectively: best (because they minimize
error variance), linear (they are linear functions of the data),
unbiased (their expected mean is equal to what they are
estimating), predictors (for random effects) or estimates (for
fixed effects). The BLUE of � is simply the least-squares esti-
mator:

�̂ = (XTV�1X)�1XTV�1y. (2.7)

The BLUPs for u are then given by

û = GZTV�1(y � X�̂). (2.8)

For the simple version of the animal model in equation (2.3),
û is therefore

û = GV�1(y � �)A�2
A(A�2

A � I�2
R)�1(y � �). (2.9)

Note that for a set of entirely unrelated animals, the additive
genetic relationship matrix would just be equal to the identity
matrix I, so equation (2.9) would reduce to û = h2(y � �),
where h2 is the heritability. However, with related animals, an
individual’s BLUP is determined by the deviation of both its
own phenotype from the population mean, and those of all its
relatives in the population, each scaled by their relatedness to
the given individual. In a multivariate analysis, phenotypic
measurements on correlated traits will also contribute infor-
mation to the prediction of breeding values for a given trait, thus
making maximum use of the data available (Mrode 1996).
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The prediction of breeding values therefore requires knowl-
edge of G and V, for example from the ML analysis. However,
finding the inverse of V becomes difficult for large sample sizes,
so in practice alternative computational forms, Henderson’s
mixed-model equations (Henderson 1950), are used, which sim-
ultaneously calculate �̂ and û in a more manageable format
(Mrode 1996; Lynch & Walsh 1998). The mixed-model equa-
tions can also generate predicted error variances for breeding
values (Henderson 1975), from which estimates of their accu-
racy, or the correlation between true and predicted values, can
be derived (see Mrode (1996) and Lynch & Walsh (1998) for
further details).

(d) Software
REML estimation of variance components using an animal

model can be fitted within a range of software: for example,
ASReml (Gilmour et al. 2002), DFREML (Meyer 1989b), VCE
(Neumaier & Groeneveld 1998) and Genstat. Given infor-
mation on variance components, breeding values can be pre-
dicted using BLUP software such as PEST, which will also
generate predicted error variances on BLUPS (Groeneveld et al.
1990, 1992).

3. STUDIES OF WILD POPULATIONS

(a) Datasets
I review here the use of the animal model in analyses

of data from studies of wild animal populations, in which
free-ranging animals have been measured in their natural
environment. Such studies, which typically involve inten-
sive long-term monitoring of marked individuals, offer
unique opportunities to dissect the genetic basis of quanti-
tative traits expressed in natural environments. The ones
that I will discuss in particular here are studies of a wild
ungulate and a passerine bird population: the red deer
(Cervus elaphus) population in the North Block of the Isle
of Rum, northwest Scotland (Clutton-Brock et al. 1982),
and the collared flycatcher (Ficedula albicollis) population
on the island of Gotland, Sweden (Gustafsson 1986;
Merilä et al. 2001b; Sheldon et al. 2003). In addition to
the free-ranging macaque population mentioned above
(Konigsberg & Cheverud 1992), other wild populations
for which animal model analyses have been used or are
currently underway include a Soay sheep (Ovis aries)
population in Village Bay on the island of Hirta, St Kilda,
northwest Scotland (Milner et al. 2000; Coltman et al.
2001); a bighorn sheep (Ovis canadensis) population at
Ram Mountain, Alberta, Canada (Réale et al. 1999;
Coltman et al. 2003); a red squirrel (Tamiasciurus
hudsonicus) population in southwest Yukon, Canada
(McAdam et al. 2002; Réale et al. 2003a,b); a great tit
(Parus major) population in Wytham Woods, Oxford, UK
(McCleery et al. 2004); a great tit population on the
Dutch island of Vlieland (E. Postma and A. van Noord-
wijk, unpublished data); a long-tailed tit (Aegithalos
caudatus) population in the Rivelin Valley, Sheffield, UK
(MacColl & Hatchwell 2003); three populations of blue
tits (Parus caeruleus) in the south of France and the island
of Corsica (Charmantier et al. 2004a,b); five house spar-
row (Passer domesticus) populations on islands in northern
Norway (Jensen et al. 2003); and a transplanted popu-
lation of Atlantic salmon (Salmo salar) in the Sainte-
Marguerite River, Québec, Canada (Garant et al. 2003).
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Many of these study populations share several common
features. Individual animals are recognizable by artificial
marks (tags or rings) assigned soon after birth, or by natu-
ral markings. The bird populations are passerine bird
species that generally use nest-boxes; chicks are ringed on
the nest, and attendant adults are caught either in the
nest-boxes or by mist netting. Wild ungulates can be
caught, tagged and measured at birth (red deer: Clutton-
Brock et al. 1982) or by being rounded up (Soay sheep:
Clutton-Brock & Pemberton 2003) or lured into traps
(bighorn sheep: Festa-Bianchet et al. 2000). In most cases,
individuals are monitored from birth to death, throughout
all breeding attempts, and morphological and behavioural
data are collected in addition to the life-history data,
although such an approach is by definition only feasible
in certain situations. As an exception to these individually
monitored populations, in a study of Atlantic salmon,
adults were sampled at the point of release into a new site,
and offspring were sampled in subsequent years (Garant
et al. 2003). Pedigrees are built up based on information
on parental identities, detailed below.

Many of the populations considered in such studies are
artificial to some degree. This may be due to the use of
nest-boxes; because they are a feral population of a dom-
estic breed (the Soay sheep on St Kilda); because they
have only recently been released from management by
culling (the red deer population on Rum, the Ram Moun-
tain bighorn sheep population); or because of artificial
introduction into a new habitat for the purpose of moni-
toring (Sainte-Marguerite River Atlantic salmon). How-
ever, to the extent that they comprise individuals living in
a natural environment in which birth and death are nat-
urally regulated, they approach as closely as is feasible to
studies of entirely wild populations living under wild con-
ditions.

(b) Establishing pedigrees
Construction of a pedigree, or family tree, for a popu-

lation (from which the relatedness between different pairs
of individuals can be calculated) requires knowledge of the
parentage of each individual in the population. Parental
identity can be established in one of two ways: either
through observations made in the field or through genetic
data. The former is applied to many studies of birds in
which the pair of birds attending a nest are assumed the
parents of the chicks in the nest. This can clearly generate
errors if there is extra-pair paternity or, less commonly,
intraspecific brood parasitism (see § 7). Field observations
can also be used to determine maternity in mammal popu-
lations, based on suckling observations. In rare cases in
mammalian populations, behavioural observations during
the mating season can also be used to identify the father
of an individual, usually based on back-calculating from
an observed birth date to an estimated conception date;
this generates reliable paternities in some mating systems
(Pemberton et al. 1992) but not others (Coltman et al.
1999a). However, in many mammal studies, paternity is
generally more reliably assigned using molecular data such
as genotypes at multiple microsatellite loci. Molecular
data are also a prerequisite for pedigree construction in
systems in which it is not possible to assign parentage of
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either sex from observations, such as studies of wild fish
populations (Garant et al. 2003; Wilson et al. 2003a).

Numerous different analytical techniques and software
have been developed for the purpose of parentage assign-
ment using molecular data (see review in Jones & Ardren
2003). For example, the software package Cervus
(Marshall et al. 1998) uses a ML approach to identify the
most likely father among a set of candidate males, and
assigns paternity to that male if, and only if, he is signifi-
cantly more probable than any rival male. Alternatively,
where neither parent is known, relationships may be con-
strued by assigning parents jointly rather than individually,
based on their joint likelihood of producing a given off-
spring genotype (e.g. Duchesne et al. 2002), or by ident-
ifying sibships (e.g. Thomas & Hill 2000). Molecular data
may not always be available for all individuals in a popu-
lation, or may not be sufficiently powerful to distinguish
between alternative candidates. However, one of the
advantages of REML estimation is that individuals with,
for example, unknown paternity can still be included in
an analysis. For example, in pedigrees of both the Rum
red deer and St Kilda Soay sheep populations, maternal
links outweigh paternal links by factors of 2.7 (Kruuk et
al. 2002b) and 1.2 (Coltman et al. 2001), respectively, and
Réale et al. (1999) present animal model analyses for the
Ram Mountain bighorn sheep population based solely on
maternal links.

Pedigree data may also be used to provide estimates of
individual fitness, and hence of selection on a phenotypic
trait, as determined by the association between the trait
and fitness (Robertson 1966; Lande & Arnold 1983;
Arnold & Wade 1984). It is common practice to define
fitness as the total number of offspring produced by an
individual, or to consider only a single component of life-
time breeding success, such as survival to adulthood or
adult fecundity (see Kingsolver et al. (2001) for an indi-
cation of the range of fitness components presented in the
literature). However, more complex measures accounting
for demographic stochasticity and cross-generational
effects may ultimately provide better estimates of an indi-
vidual’s genetic contribution to future generations, and
hence of selection on different phenotypic traits (see dis-
cussion in Grafen 1988; Charlesworth 1994; van Tiend-
eren 2000; Wolf & Wade 2001; Brommer et al. 2002;
Coulson et al. 2004).

4. CAUSAL COMPONENTS OF PHENOTYPIC
VARIANCE

(a) Common environment effects
The linear model framework of the animal model pro-

vides a straightforward means of estimating a range of cau-
sal components of variance in phenotypic traits additional
to the additive genetic variance. For example, if local
environmental conditions affect phenotypes, then individ-
uals sharing the same environment will have similar
phenotypes, violating the assumption of standard additive
models that residual errors are uncorrelated (Lynch &
Walsh 1998). In particular, common environment effects
will bias heritability estimation if relatives are more likely
than non-relatives to share a local environment.

Common environment effects are fitted in an animal
model by including a term identifying the particular
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common environment (e.g. nest-box number, or year of
birth, or territory) as an extra random effect. Several stud-
ies have now shown substantial components of variance
due to the effects of the common environment shared by
chicks in the same nest. For example, in cooperatively
breeding long-tailed tits, parental feeding behaviour has
a heritability of 0.43, whereas differences between nests
account for a further 43% of the phenotypic variance
(MacColl & Hatchwell 2003). In collared flycatcher
chicks, differences between nest-boxes account for 49%
of the variance in body condition (Merilä et al. 2001b) and
30% of the variance in tarsus length (Kruuk et al. 2001).
Similarly, up to 56% and 25% of the variance in body
mass and tarsus length, respectively, in blue tit chicks can
be attributed to nest-box effects (Charmantier et al.
2004a).

The exact timing of common environment effects can
sometimes be determined by fitting appropriate random
effects. For the collared flycatcher morphometric data, by
considering chicks that had been experimentally cross-fos-
tered, common environment effects could be split further
into: (i) effects acting prior to cross-fostering at 2 days of
age, by fitting nest of origin as a random effect; and (ii)
effects acting between 2 days and measurement at
14 days, by fitting nest of rearing as a random effect. For
tarsus length, nest of origin and nest of rearing explained
roughly equal proportions of the variance (Kruuk et al.
2001), whereas for body condition, nest of origin effects
were negligible, with almost all common environments
being due to nest of rearing (figure 1; Merilä et al. 2001b).
Thus, body condition appears to be more sensitive to
recent environmental conditions whereas tarsus length, a
measure of skeletal size, is affected by more persistent dif-
ferences generated by nest of origin. The latter may be
due to prelaying investment in egg size (see Potti (1999),
for an example of maternal effects, which are discussed in
more detail below). Alternatively, the increased covariance
between full-siblings represented by the nest of origin
effect might also indicate dominance genetic variance, as
tarsus length shows significant inbreeding depression in
the same population (Kruuk et al. 2002a). Furthermore,
in accordance with the above contrast, there is no evidence
of inbreeding depression in body condition in this popu-
lation (Kruuk et al. 2002a).

Failing to account for the increased covariance between
siblings generated by shared environments inflates esti-
mates of heritability: for example, running the same mod-
els for the collared flycatcher data without fitting a
common environment effect increased estimates of herita-
bility from 0.35 to 0.67 for tarsus length and from 0.30
to 0.76 for condition (L. E. B. Kruuk, B. C. Sheldon and
J. Merilä, unpublished data). Such effects may be respon-
sible for the observation that heritabilities estimated using
the animal model are generally lower than estimates from
parent–offspring regressions or full-sib analyses (table 1).
Note, however, that even with the animal model, it may
not be feasible to entirely separate additive genetic effects
and early common environment or parental effects. For
example, estimates of heritability of tarsus length and
body condition in collared flycatcher chicks are lower for
cross-fostered than for non-cross-fostered individuals
(Kruuk et al. 2001; Merilä et al. 2001b, 2004).
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Figure 1. Causal components of phenotypic variance in (a)
tarsus length and (b) body condition in collared flycatcher
chicks on Gotland, Sweden. Data are from cross-fostering
experiments, with common environment effects split into
nest of origin and nest of rearing. Year and area represent
variance between different years (1981–1999) and different
parts of the study area, respectively. Residual: residual
variance. Bars are one standard error. (Data from Merilä et
al. (2001b) and Kruuk et al. (2001).)

(b) Maternal effects
Maternal effects occur when the phenotype of the

mother affects the phenotype of her offspring, in ways
additional to the additive effects of the genes she has
passed on (Mousseau & Fox 1998). Maternal effects may
be either genetically or environmentally determined: in
mammals, for example, lactation has a critical effect on
offspring growth rate and performance, and may be
determined by both the mother’s genotype and her
environment. Maternal effects were traditionally treated as
a thorny statistical issue with the potential to bias esti-
mates of additive genetic variance (e.g. Falconer &
Mackay 1996). However, they are increasingly recognized
as interesting and substantial sources of phenotypic vari-
ance in their own right, as both economically significant
effects in animal breeding (Simm 1998) and adaptive evol-
utionary phenomena (Mousseau & Fox 1998; Wolf et al.
1998; Qvarnström & Price 2001). Theoretical work shows
that they can have substantial and even counterintuitive
effects on the response to selection, such that an under-
standing of their impact is essential for any accurate rep-
resentation of the evolutionary dynamics of a trait
(Kirkpatrick & Lande 1989; Wolf et al. 1998).

In the context of fitting an animal model, the simplest
way to quantify maternal-effects variance is simply to
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Table 1. Comparison of heritability estimates from parent–offspring regression or sib analysis with estimates from an animal
modela.
(Examples are restricted to cases in which the same trait was studied in the same population, and where the animal model used
pedigrees with both maternal and paternal links. All estimates in the parent–offspring column are from parent–offspring (PO)
regressions, unless otherwise specified in the previous column. Where the original paper presented results for more than one age
class (Garant et al. 2004), estimates are given for the ‘adult’ class.)

heritability

species trait dataset parent–offspring animal model

collared flycatcher (Ficedula albicollis) clutch size females 0.35 ± 0.081 0.29 ± 0.042

lay date females 0.41 ± 0.081 0.19 ± 0.042

body condition 1993 0.29 ± 0.123 0.30 ± 0.034

1994 0.35 ± 0.223

tarsus length fledglings 0.65 ± 0.115 0.35 ± 0.026

males 0.47 ± 0.071

females 0.53 ± 0.071

forehead patch males: PO regression 0.39 ± 0.097 0.35 ± 0.058

males: full-sibs 0.72 ± 0.197

great tit (Parus major) fledgling mass — 0.44 ± 0.059 0.24 ± 0.0210

long-tailed tit (Aegithalos caudatus) helping behaviour — 0.59 ± 0.1711 0.43 ± 0.0711

house sparrow (Passer domesticus) tarsus length both sexes 0.37 ± 0.1012 0.48 ± 0.0513

Soay sheep (Ovis aries) parasite burden males 0.08 ± 0.1914 0.11 ± 0.0215

(summer faecal egg
count)

females 0.13 ± 0.1814 0.13 ± 0.0115

red deer (Cervus elaphus) antler spike length yearlings 0.23 ± 0.2516 0.17 ± 0.0916

a References: 1Merilä & Sheldon (2000); 2Sheldon et al. (2003); 3Merilä (1996); 4Merilä et al. (2001); 5Merilä et al. (1998);
6Kruuk et al. (2001); 7Qvarnström (1999); 8Garant et al. (2004); 9Gosler & Harper (2000); 10 D. Garant, unpublished data;
11MacColl & Hatchwell (2003); 12Jensen (2002); 13Jensen et al. (2003); 14Smith et al. (1999); 15Coltman et al. (2001); 16P. Wesche
and L. E. B. Kruuk, unpublished data.

include maternal identity as an additional random effect.
This estimates the component of variance due to differ-
ences in the focal trait between offspring of different
mothers (additional to additive genetic effects), whether
these differences are due to genetic or environmental
maternal effects. The model therefore does not explicitly
identify the relevant aspects of maternal phenotype, but
integrates multiple maternal influences into a single
‘maternal performance’ character, following the approach
of Wilham (1963, 1972).

Maternal effects estimated in this way can contribute
significant proportions of phenotypic variance. In a feral
population of Soay sheep of St Kilda, maternal identity
explained between 10% and 21% of the variance in hind-
leg length (Milner et al. 2000; Coltman et al. 2001), and
between 6% and 9% of the variance in parasite resistance,
measured by faecal counts of eggs of gastrointestinal
nematodes (Coltman et al. 2001). Similarly, a study of a
range of phenotypic traits in red deer found significant
maternal effects for several life-history and morphological
traits, for example accounting for 28% and 20% of the
variance in male and female birth weight (Kruuk et al.
2000). However, in contrast to these results, there was no
evidence of significant maternal effects on offspring size
in Atlantic salmon (Garant et al. 2003).

As for common environment effects, the presence of
maternal effects implies that residual errors from the sim-
ple animal model are no longer uncorrelated. Omitting
maternal effects from a model can therefore seriously
inflate estimates of heritability, and simulation studies
clearly illustrate the importance of specifying the correct
model in the presence of maternal effects (Clement et al.
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2001). Milner et al. (2000) compare models of hind-leg
length, body weight and incisor breadth in Soay sheep fit-
ted with and without a maternal effect, and find that esti-
mates of heritability change from anything between 0%
and 46%, although, surprisingly, there is no obvious
relationship between the magnitude of the maternal-
effects variance component and the change in the estimate
of heritability (correlation = 0.09, n = 6). For red deer,
excluding maternal identity from a model of birth weight
increased the heritability from 0.17 to 0.54 for males and
from 0.28 to 0.48 for females (L. Kruuk, unpublished
data; these values are slightly different from those reported
in Kruuk et al. (2000) because an extended dataset is
being used, and the model has included more fixed
effects). Thus, as with the common environment effects
discussed above, maternal effects have the capacity to gen-
erate covariance between siblings that may be mistaken
for additive genetic variance unless explicitly modelled,
and again may presumably account for the some of the
differences in estimates of heritability generated by the
animal model and parent–offspring regressions (table 1).

The above examples do not address the extent to which
differences between mothers are genetically rather than
environmentally determined. Quantifying variance due to
maternal genetic effects requires a more complex analysis
based on information from more than two generations.
Conceptually, a maternal genetic effect can be detected
by comparing the performance of the grand-offspring of a
given sire, divided into offspring produced by his daught-
ers, which will be influenced by genes he carries for both
growth and maternal effects, and those produced by his
sons, which will be influenced only by his genes for
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growth. Thus if, on average, grand-offspring from daught-
ers are heavier than grand-offspring from sons, the given
sire presumably carries genes for high maternal perform-
ance (Simm 1998). More generally, a maternal genetic
effect can be fitted as an additional random effect within
the animal model framework, with an associated variance–
covariance matrix determined by the additive genetic-
relatedness matrix, exactly as for the additive genetic effect
(Mrode 1996; Lynch & Walsh 1998). Animal breeding
literature shows widespread evidence of substantial
maternal genetic variance in domestic ungulates, but their
prevalence remains to be explored for wild populations.
From models incorporating a maternal genetic effect, the
covariance between it and direct genetic effects (i.e.
between the two different random effects) can also be esti-
mated. This direct-maternal genetic covariance will be
crucial in determining evolutionary trajectories in response
to selection in the presence of significant maternal effects
(Kirkpatrick & Lande 1989; Wolf et al. 1998). Again,
however, such analyses should only be embarked upon
given data and pedigrees of sufficient quality and infor-
mation; see Clement et al. (2001) for a comparison of dif-
ferent maternal-genetic models using simulated data of
varying complexity.

There can obviously be substantial overlap between
maternal effects and the common environment effects dis-
cussed in the previous section, as maternal effects will gen-
erate common environment effects for a group of siblings.
For example, in the models of flycatcher chick mor-
phology, replacing nest identity with maternal and
paternal identity accounted for a similar proportion of the
variance (Kruuk et al. 2001; Merilä et al. 2001b). It is also
worth emphasizing that separating maternal effects (even
the simplest environmental form) from additive genetic
effects generally requires that there be paternal links in the
pedigree, without which maternal effects may appear as
additive genetic variance (see discussion in Réale et al.
1999, 2003a,b). (Alternatively, maternal effects can be
estimated without paternal information by using cross-
fostering experiments: McAdam et al. (2002), McAdam &
Boutin (2003a).)

Finally, note that with this standard quantitative gen-
etics approach, maternal effects are apparent only as vari-
ance in a given trait between offspring of different
mothers: the assumption is therefore that different
mothers provide consistently different levels of maternal
care to their offspring. The approach will therefore not
detect those maternal effects associated with differential
investment between offspring by parents (e.g. Lessells
2002; Badyaev et al. 2003), which will generate variance
within, rather than between, groups of maternal siblings.
Unless modelled explicitly (in the case of, for example,
consistent differences between the sexes), such variance
will be assigned to the residual variance component, and
should not alter estimates of any other variance compo-
nents. The Wilham model also does not attempt to ident-
ify exactly which maternal characteristics are responsible
for maternal effects on the offspring (see Kirkpatrick &
Lande (1989) for a discussion of the merits and limitations
of this approach). This is in contrast to those analyses that
treat explicit measures of maternal investment or perform-
ance as the phenotypic trait of interest (e.g. parturition
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date or offspring survival rates; Réale & Festa-Bianchet
(2000); McAdam et al. (2002)).

(c) Repeated measures or permanent environment
effects

Long-term studies of individually monitored animals
frequently involve repeated measures on the same individ-
ual across its lifetime, generating another situation in
which the residual errors in a standard animal model are
correlated. However, repeated measures can readily be
accommodated within the animal model framework by
including a further random effect defining the permanent
environment common to all observations on the same
individual (Lynch & Walsh 1998). This means, first, that
all available measurements can be exploited, rather than
using a single average value for each animal. More inter-
estingly, it allows a further component of variance to be
estimated: the groups of measures on different individuals
can be used to quantify permanent between-individual dif-
ferences, over and above those due to additive genetic
effects. For example, the environment that an individual
experiences during its early development may generate
persistent effects that last throughout adulthood (Kruuk
et al. 1999; Lindström 1999; Lummaa & Clutton-Brock
2002), as will other factors such as an individual’s home
range or territory. With multiple observations, these per-
manent differences between individuals can be partitioned
from the residual error, which will then only represent
within-individual variance.

In long-lived species, repeated measures may be avail-
able from multiple observations on individuals in different
years. Using such data, Réale et al. (1999) found that per-
manent environmental effects accounted for 35% and
26% of the variance in, respectively, June and September
adult body mass in bighorn sheep. Coltman et al. (2001)
fitted permanent environmental effects in their analysis of
summer parasite burdens in Soay sheep, and found them
to account for 11% of the variance in females, but only
4% of the variance in males. Analysis of the size of antlers
grown annually by red deer stags showed that 24% of the
total variance in mass was due to permanent environment
effects (figure 2; Kruuk et al. 2002b), as was up to 26% of
the variance in fluctuating asymmetry (Kruuk et al. 2003).
However, there was no evidence of any permanent
environment effects on either litter size or parturition date
in red squirrels (McAdam et al. 2002), suggesting much
greater effects of current environmental conditions in
this system.

Despite its name, the permanent environment effect will
also incorporate any non-additive genetic effects such as
those due to dominance or epistasis, as these will also con-
tribute to permanent differences between individuals.
Thus it is likely that dominance variance is contributing
to the permanent environment variance component for
parasite resistance observed in Soay sheep (Coltman et al.
2001), given the previous evidence for substantial domi-
nance effects on this trait (Coltman et al. 1999b). Again,
permanent environment effects may overlap with maternal
effects: if a maternal effect is not fitted in the model, any
variation generated by maternal effects may appear as per-
manent environment effects in an analysis of repeated
measures, so care needs to be taken not to overspecify a
model. The repeatability of a trait can be calculated from
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Figure 2. Components of variance in antler mass in red
deer: proportion of phenotypic variance in mass of antlers
from males aged 5� years. Bars are one standard error.
(Data from Kruuk et al. (2002b).)

the total sum of the heritability plus the proportion of vari-
ance due to permanent environment effects, plus any
other random effects, such as common environment or
maternal effects that do not change for a given individual
(e.g. Milner et al. 2000). However, see Dohm (2002) for
consideration of unusual situations in which the repeat-
ability may not set an upper limit on the heritability.

Finally, repeated measures on individual animals across
their lifetime can be used to explore the quantitative gen-
etics of growth trajectories, through random regression
models (Meyer & Hill 1997; Meyer 2000). A random
regression model fits the parameters describing an individ-
ual’s change in phenotype with respect to age as random
effects (for application in standard mixed models, see
Pinheiro & Bates (2000)). The variance structure of these
random regression effects can then be specified in the
same way as the additive genetic effects, to give estimates
of the additive genetic variance underlying rates of growth.
To my knowledge, an animal model random regression
has not yet been applied to data from a free-ranging popu-
lation in a natural environment, but would be a useful tool
in describing age-related variation in phenotypic traits, for
example to determine the heritable basis of growth tra-
jectories or senescence.

(d) Using animal models to identify quantitative
trait loci

A further use of animal models is in the identification
of quantitative trait loci (QTL). George et al. (2000)
develop a method of fitting a QTL effect as an additional
random effect within an animal model framework,
additional to the polygenic effect described by ai in equ-
ation (2.1). The covariance matrix of the QTL effects is
then determined by the identity-by-descent matrix,
wherein each element is the probability that a pair of
alleles is identical by descent based on the pedigree struc-
ture. This REML-based analysis has all the advantages of
the animal model, in dealing with unbalanced datasets and
complex pedigree structures, compared with alternative
methods for QTL identification, such as interval mapping
by linear regression among half-sibs (George et al. 2000).
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In a rare example of identification of QTLs in a wild popu-
lation, Slate et al. (2002) use the variance-component
approach to identify loci with significant effects on birth
weight in the Rum red deer population. Their analysis
suggests segregating QTL on two linkage groups, of which
one is significant at the genome-wide level, with the linear
regression analysis identifying a third (Slate et al. 2002).

(e) Comparison of techniques
Table 1 contains a comparison of heritability estimates

of a range of phenotypic traits from different study popu-
lations, estimated using either parent–offspring regression
or full-sib analysis, versus the animal model. Two general
points emerge. First, as noted above, estimates of herita-
bility from an animal model analysis are generally lower
than from the parent–offspring regression or full-sib analy-
ses, possibly due to inflation by other sources of variance
not accounted for in the simpler techniques. Second, esti-
mates of standard errors are also consistently lower (see
below).

5. ANALYSIS OF BREEDING VALUES

The use of the animal model to quantify individual gen-
etic merit or breeding values (Lynch & Walsh 1998) rep-
resents a significant departure from previous quantitative
genetics methods used in evolutionary ecology. REML
variance component estimation is essentially a more
efficient and powerful alternative method for estimating
heritabilities, whereas in providing estimates of breeding
values, the animal model generates a wealth of opport-
unities for new analyses. Predictions of individual breed-
ing values can be analysed in the same way as individual
phenotypes, to quantify temporal trends or selection
pressures. These then allow an explicit comparison
between trends and associations at the genotypic and
phenotypic level, which, as the examples discussed below
show, can provide invaluable insights into the evolutionary
dynamics of a population.

(a) Detecting genetic trends
Evolution involves a change in the genetic composition

of a population. To test whether a population is evolving,
it is therefore not sufficient to show merely that there has
been a change in average phenotypes, since changing
environmental conditions could generate such a trend
(Hendry & Kinnison 1999). Demonstrating microevol-
ution within a population over a given study period
requires evidence of genotypic change, which an analysis
of the breeding values can provide.

The parturition date of red squirrels in the Yukon, Can-
ada, has advanced at a rate of 3.7 days per generation
between 1989 and 1998 (Réale et al. 2003a). Part of this
change was due to a microevolutionary shift in mean
breeding value, which has advanced by 0.8 days per gener-
ation, whereas the remaining shift can be explained by
phenotypic plasticity generating within-individual change
(Réale et al. 2003a). In the absence of predictions of
breeding values, this phenotypic plasticity might have
been mistaken for evolutionary change, thus overestimat-
ing the response to selection. Similarly, declines in mean
breeding values for horn size and body weight in bighorn
rams reflect the undesirable impact of trophy hunting in
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Figure 3. Annual body condition in fledgling collared
flycatchers between 1980 and 1999. (a) Mean phenotypic
value; (b) Mean of breeding values. (Data from Merilä et al.
(2001a).)

removing individuals of highest genetic merit (Coltman et
al. 2003).

In the collared flycatcher population on the island of
Gotland, chicks with high body condition index are sig-
nificantly more likely to survive the winter migration to
Africa and return as breeding adults (Merilä et al. 2001a).
Body condition is also heritable (Merilä et al. 2001b), sug-
gesting that body condition should be increasing. How-
ever, deteriorating environmental conditions associated
with large-scale climatic variation have resulted in a
decline in mean phenotypic values of fledgling body con-
dition over the two-decade study period (figure 3a). An
analysis of breeding values showed that this environmental
change was masking a genetic trend in the opposite direc-
tion in the breeding values, which showed a significant
increase over the study period (figure 3b: increase per
year = 0.0022 ± 0.0009; Merilä et al. 2001a). The exist-
ence of opposing environmental trends masking an
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evolutionary response, or ‘counter-gradient variation’
(Conover & Schultz 1995), provides an appealing expla-
nation for the lack of an apparent response to directional
selection on heritable traits in such cases (Cooke et al.
1990; Larsson et al. 1998; Merilä et al. 2001c). Moreover,
deteriorating environmental conditions may actually
increase the magnitude of selection on a trait (Milner et
al. 1999; Merilä et al. 2001a; McAdam & Boutin 2003b;
Coulson et al. 2003), increasing the likelihood of a
microevolutionary response to selection.

In the case of the collared flycatcher example, we can
show that the observed change was not due to
immigration from another population, since there was no
change in the breeding values of the offspring of
immigrants over this time (change = �0.0006 ± 0.0014;
L. E. B. Kruuk, B. C. Sheldon and J. Merilä, unpublished
data). Distinguishing genetic trends in a native population
relative to immigrants in this way therefore also affords
the possibility of quantifying the effects of migration, and
in the appropriate situation should provide a means of
explicitly demonstrating the impact of gene flow.

(b) Environmental covariance between a trait
and fitness

Analysis of breeding values can reveal a second situation
in which environmental heterogeneity generates mislead-
ing impressions of selection dynamics. Selection is meas-
ured from the association between a given trait and a
measure of fitness. However, in some cases, this associ-
ation can be generated entirely by an environmental
covariance between the trait and fitness—if, for example,
prevailing environmental conditions result in an increase
in the trait value plus an increase in fitness. The net result
is the statistical impression of selection, but no association
between the trait and fitness at the genetic level. This
theory was discussed by Fisher (1958) and modelled
explicitly by Price et al. (1988). In terms of measurement,
the environmental short-circuiting can be detected by a
comparison of selection gradients estimated using pheno-
typic values versus breeding values (Rausher 1992; Stinch-
combe et al. 2002).

As an example of this environmental covariance, the size
of antlers in male red deer is both heritable (figure 2) and
under positive directional selection (Kruuk et al. 2002b).
For the Rum study population, a lack of increase in antler
size over the 30-year study period could have been due
to worsening environmental conditions as the population
density in the study area increased, and antler growth is
strongly condition dependent. However, there was no evi-
dence of a genetic trend in breeding values over the study
period. Instead, when individual phenotypes were broken
down into a breeding value versus an environmental devi-
ation, the only significant selection differential was for the
environmental deviation: differences in breeding success
were related to the environmental component of antler
mass and not the breeding values (Kruuk et al. 2002b).
This may be because environmental conditions affect an
individual’s nutritional state, and hence both the size of
the antlers grown in a given year as well as its fighting
ability and mating success in the breeding season that
year. The notion of environmental covariance between
antler size and fitness is further supported by the lack of
any genetic correlation between antler mass and lifetime
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breeding success, again suggesting that any association
between the two is environmentally determined (Kruuk et
al. 2002b).

The environmental covariance hypothesis thus provides
a possible explanation for the maintenance of genetic vari-
ation in a trait under strong positive sexual selection, and
for a lack of phenotypic response to the apparent direc-
tional selection. The analysis also constitutes another
example in which environmental variation generates mis-
leading patterns, again highlighting the need to be able to
separate phenotypic from genotypic effects.

(c) Antagonistic selection pressures
Finally, complex interactions between different traits or

different components of fitness may also become apparent
through analysis of breeding values. For example, in col-
lared flycatchers, there is strong selection for early breed-
ing in terms of the number of offspring produced from a
nest, and breeding time is heritable (Sheldon et al. 2003).
Predictions of individual breeding values showed that
although there was significant selection for breeding values
associated with earlier breeding times in terms of the num-
ber of recruiting offspring, breeding values for early breed-
ing were also associated with lower adult survival rates.
This trade-off, between current fecundity and future sur-
vival, at the level of the breeding values is presumably con-
straining any response to selection, but the patterns of
antagonistic selection were not apparent at the pheno-
typic level.

6. MULTIVARIATE ANALYSES

(a) Quantifying genetic correlations
A further valuable aspect of an animal model approach

is the ease with which data on multiple phenotypic traits
can be analysed. This is important because, unlike arti-
ficial selection, natural selection will rarely target only a
single trait (Price & Langen 1992; van Tienderen & de
Jong 1994). Genetic correlations between traits bind their
fates together, such that univariate analyses of evolution-
ary trajectories are inevitably too simplistic. The existence
of trade-offs between traits, acting either through negative
genetic correlations or antagonistic selection pressures,
may serve to prevent the erosion of genetic variation
underlying a trait, if no single genotype is optimal. Intuit-
ively, we might expect genetic correlations between traits
under positive directional selection to be negative, simply
because alleles that generate positive correlations would
presumably have been swept to fixation by selection (Roff
1996, 1997). However, despite the intuitive appeal of this
concept, observations of negative genetic correlations
between important fitness-related traits are relatively rare:
although there is a higher proportion of negative genetic
correlations between life-history traits than morphological
traits, the majority of genetic correlations in both classes
are still positive (Roff 1997).

A multivariate animal model provides a straightforward
means for estimating covariances and hence correlations
between traits (Mrode 1996; Lynch & Walsh 1998).
Results from animal model studies of wild populations to
date generally confirm the observation above of a majority
of positive correlations between traits. For example, there
are positive genetic correlations between three
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morphometric measures in Soay sheep (Milner et al.
2000), and between body mass and parasite resistance
(Coltman et al. 2001). Body mass and horn size are posi-
tively genetically correlated in bighorn rams (Coltman et
al. 2003), as are tarsus length and body mass in blue tit
chicks (Charmantier et al. 2004a) and two plumage
characteristics in male collared flycatchers (Garant et al.
(2004), although the correlation is not significant among
yearlings. There is a significant genetic correlation
between large clutch size and early breeding time in col-
lared flycatchers (Sheldon et al. 2003), but correlations
between breeding time and maternal investment are not
significant in either red deer (Coulson et al. 2003) or red
squirrels (Réale et al. 2003b). Jensen et al. (2003) report
evidence of both positive and negative significant genetic
correlations between a set of six morphological traits in
house sparrows, but in a multivariate analysis of a suite of
nine phenological and morphological traits under direc-
tional selection in the collared flycatcher, none of the
negative correlations is significant (Sheldon et al. 2003).

Estimating the genetic correlations between traits
requires hefty sample sizes, and standard errors are typi-
cally much larger than those associated with heritabilities
(Roff 1997; Lynch & Walsh 1998). Furthermore, multi-
variate analyses will only ever be as informative as the
traits that have been measured, whereas it may be that
some entirely unmeasured trait is the true vehicle of evol-
utionary change (van Tienderen & de Jong 1994; Kruuk
et al. 2002b). However, growing appreciation of the evol-
utionary significance of multivariate evolution should
serve to remedy the paucity of estimates of genetic corre-
lations relative to heritabilities, and thereby improve our
understanding of the genetic architecture of complex
phenotypes (Roff 2003).

(b) Genotype–environment interactions
The existence of genotype–environment interactions

will alter the expression of genetic variance in different
environments. In this case, animal model analyses lend
themselves readily to tests for genotype-by-environment
interactions, either through fitting a multivariate analysis
or through a random regression. In the former, genotype–
environment interactions are quantified by defining the
trait as expressed in different environments as different
‘sub-traits’. Genetic correlations between these sub-traits
that are significantly less than unity, or significant differ-
ences in the magnitude of additive genetic variance, indi-
cate a genotype–environment interaction (Falconer &
Mackay 1996; Hoffmann & Merilä 1999). To date, the
estimation of G × E interactions in this way is an area that
remains largely unexplored for wild populations, and it
will be interesting to compare the power of such analyses
with tests for G × E interactions using cross-fostering
experiments (e.g. Merilä 1997; Kunz & Ekman 2000).
Charmantier et al. (2004b) show evidence of significant
genotype–environment interactions on body size of blue
tit chicks reared in parasitized and non-parasitized nests,
with the presence of parasites reducing heritability esti-
mates from 0.91 to 0.53. Similarly, the causal components
of variance in secondary sexual plumage characteristics in
the collared flycatcher differ in relation to climatic con-
ditions (Garant et al. 2004). In both cases, levels of addi-
tive genetic variance were reduced in more stressful
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environments, in accordance with previous results from
bird populations (Hoffmann & Merilä 1999). To the
extent to which the different sexes can be regarded as dif-
ferent environments for the expression of a trait, a multi-
variate analysis can also be used to quantify genetic
covariance and correlations between the sexes, which will
be necessary for the prediction of sex-specific evolutionary
responses and sexual dimorphism. For example, Jensen et
al. (2003) report large genetic correlations that were not
significantly different from unity between the sexes in
morphological traits in house sparrows.

The multivariate approach only allows comparison
between discrete environments of different types, with a
trait defined as being expressed in one or other environ-
ment. Analysis of the effects of a continuous change in
environmental conditions, effectively the heritability of
reaction norms or individual phenotypic plasticity
(Pigliucci & Schlichting 1997), can be achieved through a
random regression model similar to those used to describe
changes with age (de Jong & Bijma 2002); see Kolmodin
et al. (2002) and Fikse et al. (2003) for applications of this
approach in animal breeding. There do not appear to be
any studies to date adopting this approach in wild popu-
lations, but they should follow as a natural extension of
the use of mixed models to explore phenotypic plasticity
(Przybylo et al. 2000; Brommer et al. 2003).

7. DISCUSSION

(a) Accounting for environmental heterogeneity
The key distinction between artificial and wild popu-

lations is the environmental conditions experienced by the
population. These may be constant or at least controlled
for in artificial populations, but variable and unpredictable
for wild populations. While this variation constitutes one
of the most interesting aspects of studies in a natural
environment, it also makes teasing out evolutionary pat-
terns considerably more difficult. Thus there are numer-
ous reasons why a heterogeneous environment causes
problems for testing evolutionary theory, mainly related
to difficulties in obtaining accurate estimates of important
parameters. For example, to summarize the examples dis-
cussed in the previous sections: (i) common or maternal
environment effects can bias estimates of variance compo-
nents and heritability if not controlled for; (ii) environmen-
tal changes can obscure genetic trends; (iii) environmental
covariance can generate biased measures of selection; (iv)
genotype–environment interactions can affect the
expression of variance components. In each case, the effects
of environmental heterogeneity can be quantified and con-
trolled for through the appropriate model, and I hope to
have demonstrated ways in which this may often be feasible
using an animal model approach.

In all cases, substantially more complex analyses are
required than when environmental conditions are con-
stant. Larger sample sizes will be required to provide equi-
valent statistical power given greater variability in the data,
and to ensure accurate estimates of environmental effects.
These are further reasons for using the most efficient and
powerful means of analysis available.
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(b) Advantages of a REML animal model
The previous sections have given some indication of the

advantages of a REML animal model over analyses based
on the more traditional parent–offspring regression or full-
or half-sib design (see also discussion in Merilä et al.
2001c). First, in simultaneously considering information
from all relatives across all generations, an animal model
provides a considerably more efficient use of the available
data and hence more powerful statistical tests. (For
example, for analysis of the heritability of male antler size
in the Isle of Rum study population of red deer, measure-
ments of antler mass were available for only 18 father–son
pairs across the 30-year study period. By contrast,
incorporating information on both maternal and paternal
links plus measurements on siblings in the full multigener-
ational pedigree through an animal model meant that 126
individuals with known antler measurements could
be included (L. E. B. Kruuk, unpublished data).) The
multigenerational analysis also avoids individuals being
included twice in parent–offspring regressions, as both
parents and offspring, or having to average offspring
phenotypes. Thus in the few studies that present estimates
of heritabilities estimated using both parent–offspring
regression and an animal model on exactly the same data-
set, standard errors are consistently lower in the latter,
by a factor of approximately two (Réale et al. 1999;
MacColl & Hatchwell 2003). In situations where a study
of a given trait in a population has been repeated at a later
date, using an animal model, comparisons with earlier
results based on parent–offspring regression also reveal
substantially smaller standard errors, although the differ-
ence will be partly due to larger sample sizes in the more
recent analyses (table 1).

Second, in addition to increased efficiency, likelihood
estimation also affords considerably greater flexibility than
traditional least-squares methodology (Shaw 1987). A
REML analysis readily accommodates unbalanced data-
sets containing missing phenotypic measurements, so that
an unmeasured individual can still be included in the pedi-
gree to provide links between measured individuals. A
typical example of this would be a sex-limited trait, such
as clutch size in female birds: male relatives will be
included in the analysis to provide links between relatives,
so that covariance between paternal half-sisters or paternal
grandmother and offspring can be exploited. Third, there
is also no requirement for a balanced design in the pedi-
gree structure, and individuals can be included in the
pedigree with as little or as much information on the
identity of their relatives as is available. Fourth, a range
of fixed effects can be easily incorporated in the model,
which is analytically simpler than analysing corrected
residuals from a separate model. Fifth, as discussed in
detail above, other causal components of phenotypic vari-
ance such as maternal effects or common environment
effects can be estimated, which might otherwise result in
inflated estimates of heritability. Similarly, sixth, repeated
measures on the same individual can be included, allowing
permanent environment effects or the heritability of indi-
vidual growth trajectories to be estimated. Finally, because
the relationship matrix allows for the flow of genetic infor-
mation from one generation to the next, estimates of
components of variance in the base population are
unbiased by any effects of non-random mating,
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inbreeding, selection or evolution during the study period,
which would bias estimates based on, for example, parent–
offspring regressions (Thompson 1973; Sorenson & Ken-
nedy 1984; van der Werf & de Boer 1990; Lynch &
Walsh 1998).

(c) Disadvantages of a REML animal model
Set against the various advantages of the animal model

is the obvious disadvantage of increased computational
complexity, with complex numerical methods for the sol-
ution of ML equations (Lynch & Walsh 1998) requiring
greater amounts of computational time and sophisticated
programming tools. Second, as with any analysis, as the
complexity of the model increases, so too do the chances
of problems due to overspecification, confounding effects
and misinterpretation. In particular, including extra ran-
dom effects may incur a cost of reliability in estimates of
variance components, and over-specification can result in
a failure of the algorithms to converge.

It is also worth noting that these techniques have been
developed for application in animal and plant breeding,
where studies typically involve sample sizes of thousands
of individuals and entirely reliable pedigree links, guaran-
teeing a quality of data rarely, if ever, attained in studies
of wild animal populations. For the analysis of large, com-
plex pedigrees based on multiple generations and a variety
of forms of relatedness, the superiority of the animal
model is manifest. However, for simpler datasets, for
example in which only parent–offspring data are available,
there will be much less advantage over traditional tech-
niques (Knott et al. 1995). Similarly, unnecessarily com-
plex analyses should not be used as a foil to disguise lower
quality datasets: estimates of genetic parameters are only
as good as the data on which they are based (Meyer
1989a). It is therefore worth emphasizing the use of cau-
tion in the application of the more complex analytical
techniques. The ones discussed here are not a panacea for
all ills in quantitative genetics, and there is no point in
taking a sledgehammer to crack a nut.

Finally, the animal model returns estimates of variance
components for a base population, unbiased by effects of
selection in subsequent generations. However, if this base
population is itself selected, the REML analysis cannot
account for this previous selection, nor for selection on
any correlated but unmeasured characters not included in
the analysis (Schaeffer & Song 1978; van der Werf & de
Boer 1990).

(d) Pedigree errors
One final point of consideration is the implications of

unreliable data. The basis of any quantitative genetics
analyses is the pedigree information from which
relatedness between individuals is assessed. Errors in a
pedigree will generate erroneous estimates of genetic para-
meters. For field studies of wild vertebrate populations,
errors in maternal identity are rare: for example, maternity
is determined by field observations with complete
reliability for the ungulate populations discussed here
(Marshall et al. 1998), and there is no evidence of intra-
specific brood parasitism among the passerine bird popu-
lations discussed (e.g. Kempenaers et al. 1995; Sheldon &
Ellegren 1999). However, errors in paternal links are con-
siderably more likely, for example due to extra-pair
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paternity (EPP) in the bird populations. For example, in
the collared flycatcher population, paternal links will be
wrong because of EPP in 15% of cases (Sheldon &
Ellegren 1999); in the blue tit populations in south
France, EPP rates range between 14% and 25%
(Charmantier & Blondel 2003). However, paternity
assignment using genetic data will also be imperfect: for
example, levels of statistical certainty in paternity assign-
ment (Marshall et al. 1998) in the ungulate studies dis-
cussed here involve error rates of 20% (Kruuk et al. 2000;
Coltman et al. 2001) or 5% (Milner et al. 2000; Coltman
et al. 2003).

The paternity error rates are therefore relatively high, if
not substantially different from the estimated 10% error
rate in paternities in the UK dairy cattle herd pedigrees
(Visscher et al. 2002). Furthermore, note that in many
cases there are substantially more maternal links in the
pedigree, so paternities are contributing less than half of
the information. However, the net effect of pedigree errors
will unquestionably be to reduce estimates of heritability,
and the magnitude of such a reduction is an area in need
of exploration. Merilä et al. (1998) report a 3% increase
in the heritability of tarsus length in collared flycatchers on
removing known EPPs (16% of individuals) from analyses
based on father–offspring pairs. Milner et al. (2000)
present heritabilities estimated using a pedigree con-
structed from paternities assigned with 95% confidence,
but mention that estimates using 80% confidence were
lower, although with fewer paternities the reliability of the
models was also reduced. Konigsberg & Cheverud (1992)
develop a ML model in which paternal assignment is pro-
babilistic, with all potential candidate fathers assigned as
equally likely fathers for a given offspring; using simulated
data, they show that the precision of heritability estimates
only increased given a very limited number of possible
sires. Finally, the results of a meta-analysis showing
slightly higher heritabilities in females than in males
among bird populations (Jensen et al. 2003) may, in part,
be due to the effects of EPPs reducing heritabilities esti-
mated from father–son regressions. Simulation studies to
explore these effects further would be highly valuable.
Note also that we assume that errors are random with
respect to phenotype, but again this needs to be tested.

(e) Future directions
Despite the long-established history of the animal model

in the animal breeding literature, its general application
within evolutionary ecology is still relatively recent. Thus,
there are numerous elaborations on the simple animal
model yet to be explored using data from wild popu-
lations, which will generate more sophisticated analyses
and allow finer dissection of critical hypotheses. Multivari-
ate analyses, random regressions and analyses of geno-
type–environment interactions all deserve considerably
more attention in studies of wild populations. Given suf-
ficient pedigree information, quantifying the variance in
maternal genetic effects and their covariance with direct
genetic effects also has the potential to generate a range
of new avenues of investigation. The use of mixed models
in analysis of non-normal data also remains to be fully
exploited for data from natural populations. For example,
survival analyses can now be fitted using a mixed model
with Bayesian estimation, to quantify the proportion of
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additive genetic variance in longevity (Ducrocq & Casella
1996; Ducrocq & Solkner 1998). However, for binomial
and especially binary data, results from mixed models can
be less reliable than analyses based on normal theory
(Breslow & Clayton 1993), such that, if possible, approxi-
mation to a normal distribution may be preferable when
dealing with such data.

The number of studies of wild animal populations with
multigenerational pedigree information is continually
increasing, and with it the number of datasets where an
animal model analysis can offer substantial benefits.
Hopefully, this will result in a widening of the taxonomic
range of such studies in the literature, and so break the
current near-monopoly of passerine birds or ungulates. A
number of methods have been developed recently that
allow quantitative genetic parameters to be estimated
without explicitly specifying a pedigree, using indirect
inferences from molecular marker data (e.g. Ritland 1996;
Ritland & Ritland 1996; Mousseau et al. 1998), providing
obvious advantages over analyses that require prior knowl-
edge of the pedigree structure in a population. However,
to date the few available comparisons of alternative
approaches (Thomas et al. 2001; Wilson et al. 2003b) sug-
gest that using molecular data to infer familial relation-
ships between individuals (e.g. Thomas & Hill 2000,
2002) will provide more reliable estimates than indirect
approaches that do not involve a pedigree. Given the ever-
increasing availability of molecular data, such techniques
will increase the scope for quantitative genetics analyses
in systems in which pedigree construction is otherwise
impossible (e.g. Garant et al. 2003; Wilson et al. 2003a).
Finally, there will also be much to be gained from a coor-
dinated attack on the genetic basis of phenotypic variation
from both ends of the scale, by combining an animal
model analysis of a phenotypic trait with genomic analyses
aimed at identifying individual quantitative trait loci
(Barton & Keightley 2002). Given sufficient pedigree
information, QTL mapping is feasible within unmanipul-
ated, wild animal populations (Slate et al. 1999), although,
with the exception of Slate et al. (2002), this has not yet
been attempted.

8. CONCLUSIONS

The genetic basis of phenotypic traits is central to the
study of evolution and biological diversity. Quantitative
genetics provides the statistical means of analysing this
basis for continuous characters whose expression is
determined by multiple loci. However, two key questions
still lie unsolved at the heart of evolutionary quantitative
genetics: what maintains genetic variation for phenotypic
traits in the face of erosion due to selection pressures (Roff
1997), and why do we rarely see the microevolutionary
response to selection expected from theoretical predictions
(Merilä et al. 2001c)? Results from laboratory studies or
plant and animal breeding can provide a range of insights
into the genetic architecture of phenotypic traits, but in
practice components of variance and selection pressures
will vary between natural and artificial environments
(Hoffmann 2000) such that studies under artificial con-
ditions have only limited relevance for an understanding
of evolution in the wild.
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Use of the animal model in the analysis of data from
long-term, individual-based studies has opened up a range
of new weaponry with which to attack these questions for
populations in natural environments. In particular, the
models have allowed explicit tests of particular hypotheses
explaining the maintenance of genetic variation or appar-
ent evolutionary stasis that could previously only have
been discussed, and in separating genetic from environ-
mental components of phenotype have revealed underly-
ing patterns that are often markedly different from those
suggested by less detailed analyses. As the results dis-
cussed here show, simply estimating the heritability of a
trait without considering other sources of environmental
covariance can generate highly misleading results. Fur-
thermore, interactions between different traits may impose
constraints such that univariate predictions are no longer
valid. In each case, use of the animal model to estimate
variance components and predict breeding values allows
significant advances to be made in our understanding of
the evolutionary genetics of wild populations. Hopefully
the increase in suitable datasets, in accessibility of neces-
sary software, in computational power and in familiarity
with mixed models and ML estimation will combine to
encourage the use of the animal model in evolutionary
ecology.

Thanks to Sue Brotherstone, Mark Kirkpatrick, Juha Merilä,
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Merilä, J., Sheldon, B. C. & Ellegren, H. 1998 Quantitative
genetics of sexual size dimorphism in the collared flycatcher,
Ficedula albicollis. Evolution 52, 870–876.
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Merilä, J., Sheldon, B. C. & Kruuk, L. E. B. 2001c Explaining
stasis: microevolutionary studies of natural populations.
Genetica 112, 119–222.
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