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The basic underlying problem in reverse engineering of gene
regulatory networks from gene expression data is that the expres-
sion of a gene encoding the regulator provides only limited
information about its protein activity. The proteins, which result
from translation, are subject to stringent posttranscriptional con-
trol and modification. Often, it is only the modified version of the
protein that is capable of activating or repressing its regulatory
targets. At present there exists no reliable high-throughput tech-
nology to measure the protein activity levels in real-time, and
therefore they are, so-to-say, lost in translation. However, these
activity levels can be recovered by studying the gene expression of
their targets. Here, we describe a computational approach to
predict temporal regulator activity levels from the gene expression
of its transcriptional targets in a network motif with one regulator
and many targets. We consider an example of an SOS repair
system, and computationally infer the regulator activity of its
master repressor, LexA. The reconstructed activity profile of LexA
exhibits a behavior that is similar to the experimentally measured
profile of this repressor: after UV irradiation, the amount of LexA
substantially decreases within a few minutes, followed by a
recovery to its normal level. Our approach can easily be applied to
known single-input motifs in other organisms.

Michaelis–Menten kinetics � statistical reconstruction �
transcrtiption factor activity

The changes in expression of Escherichia coli genes as a result
of DNA damage, collectively named the SOS response, have

been the subject of numerous experimental and theoretical
studies (1–5). The general picture of the SOS response has slowly
started to crystallize, but the precise kinetics and complex
regulation of the processes involved can still generate surprises
after 30 years of intensive study (6).

The SOS system includes �30 genes controlled at the tran-
scriptional level by the transcriptional repressor protein LexA
(2). Under normal conditions, the level of LexA is high and the
SOS genes are suppressed. Upon DNA damage, one of the SOS
proteins, RecA, binds to regions of single-stranded DNA that are
produced as a consequence of this damage and becomes con-
formationally active. The active form of RecA facilitates the
inactivation of the LexA repressor. As a result, the level of LexA
diminishes, thereby causing the up-regulation of the genes that
are suppressed by LexA under normal conditions. Because the
damage has been repaired, the level of the activated RecA drops,
LexA accumulates, and a decrease in the activation of SOS genes
is observed.

It has recently been reported that the SOS response is ‘‘digital’’
(5): the number of pulses but not their amplitude increases with
the level of DNA damage. This finding indicates an additional
level of regulation of the master repressor, LexA, possibly
executed by a product of another target gene umuD (5). In fact,
it has been suggested that the proteins and regulatory systems
involved in sensing the damage, transducing the signal, and
implementing and relieving the checkpoint are heavily inter-
twined (7).

An interesting feature of the LexA/RecA regulatory module
is that the timing, duration, and level of activation varies for each
of the LexA-regulated genes (2, 3, 5). Ronen et al. (3) developed
a combined experimental and theoretical approach based on
accurate high temporal-resolution measurements of promoter
activities using GFP technology. They applied this approach to
several of the SOS genes and found a strikingly detailed temporal
program of expression. Based on the accurate measurements of
the promoter activities of several SOS genes, these authors
computed the temporal profile of relative levels of the transcrip-
tional regulator, LexA.

In this work, we reconstruct the activity level of the transcrip-
tional repressor, LexA, from the expression time profiles of its
target genes. The LexA profile, reconstructed by our method
from microarray data, shows good correspondence with the
LexA profiles measured by immunoblots technology (8) and
computed from the measurements of promoter activities (3).

Results
Model Description. In this work, we aim to reconstruct the activity
of the master regulator in a single input motif (SIM) from gene
expression data of its targets. The computational approach
involves embedding a set of differential equations that describe
kinetics of gene regulation, within a statistical noise model and
to recover the kinetic parameters by a maximum likelihood
approach. The model equations used in the present paper are
given in Materials and Methods. Here, we describe the main
assumptions of our modeling approach.

A SIM is a simple network architecture that frequently occurs
in gene regulatory networks of different organisms (9). In a SIM,
there is one transcription factor, either an activator or repressor,
that regulates (either activates or represses) the transcription of
several target genes. The targets are not controlled by other
regulators. Therefore, the transcription of each target gene
depends on the regulator profile that is common to all genes and
on the kinetic parameters of regulation, that are presumably
gene specific. The SOS repair system regulated by the repressor
LexA is an example of a SIM (Fig. 1).

The dynamics of changes in expression of a target gene are
determined by the gene’s transcription rate, which depends on
the promoter activity, and by the mRNA degradation. Previous
approaches to infer the activity of a transcription factor assumed
that the kinetics of gene transcription is adequately described by
linear or log-linear models (10–14). However, it has been noted
(15) that gene transcription regulated by a transcription factor
resembles the process of enzyme-mediated reactions. The latter
process has been intensively studied and is known to exhibit
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saturation effects, which are captured by a so-called Michaelis–
Menten (MM) ordinary differential equation (ODE).

Based on the analogy between enzymatic mediated reactions
and regulator mediated transcription, gene regulation has been
modeled previously by a MM kinetics model (3, 15, 16). Qual-
itatively, the MM model implies that in the case of the activator,
higher levels of transcription factor yield a higher transcription
rate of a regulated gene, until the transcription rate saturates.
Raising level of transcription factor beyond a certain threshold
value will no longer result in a higher production of mRNA. For
the repressor, higher levels of transcription factor result in a
lower transcription rate, until the gene is completely suppressed,
i.e., mRNA production is at its basal level. Linear models of
regulation cannot account for such saturation effects. Nor can
linear models account for the case of repressor regulator.

It is well known that microarray data are noisy. To account for
the noise in the observed gene expression data, we embed the
MM model in a statistical framework. Because the terms of the
MM model can be traced back to the actual biological processes
of protein binding and mRNA degradation, we choose to use the
expression data on its original scale, rather than the log-scale that
is commonly used in microarray analysis. We expect the noise to
depend on the amount of transcription. This means that low
levels of gene expression have less noise and higher levels of gene
expression have more noise. A log-normal distribution accom-
modates variance inflation at higher expression levels.

The profile of the master regulator that is common to all genes
in the SIM regulatory module, and the gene-specific kinetic
parameters of regulation, are inferred from the gene expression
data by a maximum likelihood approach. The maximum likeli-
hood estimates of the model parameters are computed by a
conjugate gradient method. For further details, see supporting
information, which is published on the PNAS web site.

Data. In the E. coli SOS repair system, the master repressor LexA
regulates a SIM, which consists of several targets shown in Fig.
1. The temporal changes in expression of E. coli genes, caused by
irradiation on a genome-wide level, have been studied in ref. 2.
These authors examined the changes in gene expression after
UV exposure (40 J/m2) in both wild-type cells and lexA1
mutants, which are unable to induce genes under LexA control.
Their data are publicly available at http://genome-www.
stanford.edu/Uvirradiation.

The data contain two times series at six time points (0, 5, 10,
20, 40, and 60 min), one for wild-type and one for mutant. For

the use in further analysis, raw data have been normalized to
account for spatial, dye, and across-array effects using the
allnorm function from the smida R package (17), which is
available for download at www.stats.gla.ac.uk/�microarray/
book/smida.html. The data were normalized on the log-scale
(see supporting information).

LexA Single Input Motif Module. Among �30 genes that are known
to contain the LexA-binding boxes (ref. 2; full list of genes that
we used is available), 20 genes are present on all arrays in the
current data set. To find which of those 20 genes constitute the
targets of LexA repressor, we looked for differentially expressed
genes between wild and mutant types. We used an additive
factorial model for estimating the time and UV exposure effects.
The model has 4 degrees of freedom (2�6 observations minus
1�1�5 main effect parameters) to test for a significant UV
exposure effect. The number of differentially expressed genes
identified depends on the stringency of the comparisons. We
select a cutoff P value of 0.01, which results in discovering 14
genes as potential SIM targets. This cutoff corresponds to a kink
in the P value plot (supporting information) and to a corre-
sponding false discovery rate of 1.4%, which on average would
almost certainly result at most 1 false discovery. Because it is not
known which of the genes might have been falsely discovered, we
have performed a sensitivity analysis by iteratively leaving one of
the putative targets out. The LexA profiles reconstructed by
using each of the subsets of 13 genes shows a very good
agreement with the profile reconstructed using all 14 targets
(Fig. 2b).

Further computations are performed with 14 target genes.
Their expression profiles have now been returned to original
scale for further kinetic modeling and optimization.

Our analysis confirms the conclusion of ref. 2 that the
expressions of some of the genes that are documented to be
LexA-regulated genes do not rise significantly following UV
irradiation. These genes include dinG, molR, uvrD, uvrA, hokE,
and ssb. For at least two of these genes, uvrA and uvrD, a rise in
the promoter activities after lower levels of UV irradiation has
been recorded (3). Possible reasons for this discrepancy between
known behavior of some genes confirmed by promoter activity
measurements and gene expression data can be due to differ-
ences in the experimental set-ups, as discussed in ref. 2. Alter-
native reasons may include the fact that the measurements
performed over a population of cells might be limited in their
ability to accurately describe the network responses in the case
of a nonhomogenous population or an unsynchronized response
(5). Genes that were not differentially expressed after UV
irradiation were not included in the LexA SIM (Fig. 1) for the
present study.

Most of the differentially expressed genes (e.g., dinF, dinI,
lexA, ruvA, ruvB, yebG) in the LexA regulatory module show
significant up-regulation after UV radiation and subsequent
decline in the gene expression levels. This is very much in line
with the measured promoter activities of the target genes (3).
The expression profiles of other differentially expressed genes
exhibit a different behavior pattern: some genes (recN, uvrB,
yijW) do not decline after reaching their respective peaks after
UV radiation, whereas others (umuC) reach their maximum
levels rather slowly (Fig. 3).

It has recently been reported that the promoter activities of
three genes (lexA, recA, and umuD) exhibit more than one peak
after irradiation of 20 J/m2 and 50 J/m2 (5). At 20 J/m2, the
second peak of recA promoter activity occurs at 57 � 3 min.
Observations on single cells for lower levels of irradiation show
that 60% of cells show a single peak at a UV dose of 10 J/m2 (5).
These authors concluded that the number of peaks increases
with irradiation. Because the microarray studies of Courcelle et
al. (2) were conducted at a UV dose of 40 J/m2 and the last

Fig. 1. Schematic drawing of the SOS single input motif, regulated by the
LexA repressor protein. Fourteen genes are differentially expressed between
wild type and mutant samples at a P value cutoff of 0.01. These genes are
therefore targets of LexA repressor, and together they constitute single input
motif.
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measurement was taken at 60 min, the observations that some of
the gene profiles stayed constant or went up at �60 min after 40
J/m2 are consistent with the appearance of the second peak. The
fact that only some genes show a build-up to the second peak
might indicate an additional level of regulation of these genes (3,
5) as well as different kinetic constants of regulation. Different
decay constants could also be partly responsible for the fact that
some genes reach their normal level after the first peak, whereas
others stay activated for longer times.

Reconstructed LexA Activity Profile. The reconstruction procedure
is based on finding the maximum likelihood for the whole SIM
(Fig. 1) using the kinetic model (Eqs. 1–4) and gene expression
data of the 14 targets (taken on original scale). Reconstruction
yields the profile of the master regulator (LexA) that is common
to all target genes and maximum likelihood estimates for the

gene-specific kinetic parameters of regulation. The 14 targets are
the genes that have been identified as differentially expressed
SOS genes between the wild and mutant types. Reconstruction
is based on R function optim() that performs the maximization
of the likelihood with constraints, using a conjugate gradient
method. Our search procedure uses multiple starts for locating
the maximum with respect to all unknown parameters of interest,
that is transcription factor activity profile and gene-specific
kinetic parameters.

Fig. 2 shows the maximum likelihood reconstructed profile of
the LexA repressor, approximated by the piece-wise constant
function on each sampling interval that is determined by avail-
able microarray measurements as discussed in Materials and
Methods (Eq. 2). The LexA profile reconstructed for the SIM
with 14 targets is shown on Fig. 2a (bold solid line) with 95%
confidence bounds (dashed lines; computed via a classical Wilks
procedure). The activity of LexA, here referred to as transcrip-
tion factor activity, is expressed in arbitrary units and can be
interpreted as relative ‘‘levels.’’ The activity of a protein is
generally determined by its relative level and the appropriate
kinetic rate constant. Fig. 2a also shows the smoothed LexA
profile obtained by a cubic spline interpolation (R function
spline) of the reconstructed piece-wise constant function.

Crucially, the reconstructed profile of LexA exhibits behavior
that is similar to the experimentally observed profiles in refs. 3
and 8. After UV irradiation, the amount of LexA substantially
decreases (�10-fold) within a few minutes (5–10 min) (6). This
reduction is followed by a recovery phase, wherein LexA goes
back to its levels under normal conditions. The reconstructed
LexA profile in Fig. 2 exhibits a faster recovery phase compared
with the experimentally predicted rise from measurements of
promoter activities (3). The reconstructed LexA profile recovers
in 40 min compared with �60 min predicted from experiments
(3, 8). In addition, reconstructed LexA profile goes to the level
that is higher than its initial level. This is, perhaps, a reflection
of the experimental data, wherein the expression levels of some
target genes (e.g., recN and umuC, see Fig. 3) do not show any
sign of a decline of their expressions 60 min after UV irradiation.
It might also suggest that a standard assumption of linear
degradation has to be reevaluated.

Given the limitations of the current microarray data set (2),
which include (i) averaging gene expressions from nonhomog-
enous cells, (ii) using potentially different experimental condi-
tions and protocols from promoter activity measurements in ref.
3, and (iii) the limited available data (only six time points
available), the LexA profile reconstructed by our method ex-
hibits a very good similarity with the profile computed from
precise measurements of the promoter activities.

Interpretation of Kinetic Parameters. A very structured temporal
order of activation of SOS genes has been reported both in
microarray studies (2) and promoter activity measurements (3).
Based on available microarray data, we have reconstructed the
kinetic profiles of all target genes in the SIM regulatory module
in Fig. 1. The kinetic profiles of four representative genes (lexA,
ruvB, recN, and umuC) are shown in Fig. 3. The reconstructed
profiles (solid lines) of these four genes show excellent fit with
the data (points). It is interesting to note that the noise tends to
be higher at higher levels of expression: compare profiles of recN
and umuC genes with the profiles of lexA and ruvB genes in Fig.
3. This finding is in good agreement with the log-normal
assumption (Eq. 3). Kinetic profiles of other target genes in the
LexA module can be found in supporting information.

Four genes, represented in Fig. 3, exhibit very different
behavior. Genes lexA and ruvB show up-regulation at �10 min
followed by a subsequent decline, whereas profiles of two other
genes (recN and umuC) do not decline during 60 min after UV
radiation. Estimated kinetic rate constants for the latter two

a

b

Fig. 2. Reconstructed activity level of master repressor LexA, following a UV
dose of 40 J/m2. (a) The activity profile of LexA approximated by piece-wise
constant function (bold solid line), is reconstructed from the MM kinetic
model (Eqs. 1–4, Methods) using microarray data of 14 target genes in the
LexA SIM (Fig. 1). The LexA profile is estimated by the maximum likelihood
method. 95% confidence bounds (dashed lines) are computed independently
for each component of the LexA profile, while keeping all other parameters
fixed. LexA profile is rescaled between 0 and 1. Confidence bounds are
rescaled accordingly. Time is given in minutes as in the experiment. The
smoothed LexA profile (solid) is obtained by cubic spline interpolation from
the reconstructed piece-wise constant profile and its 95% confidence bounds,
using the R function spline. TFA, transcription factor activity. (b) LexA approx-
imated by piece-wise constant function (solid line) is the same as in a. LexA
profiles estimated by the maximum likelihood method by iteratively leaving
each one of the putative targets out (dashed lines). The mean correlation
between the LexA profile reconstructed from expression of 14 genes and
profiles reconstructed from each subset of 13 target genes is 0.84.
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genes show that this type of behavior can actually be achieved by
linear degradation alone: �̇ � � � �� . This finding clearly
indicates that, within the first 60 min after radiation, the basal
transcription rate, �, and decay play important roles in the
mRNA levels of the recN and umuC genes.

From the MM kinetic reconstruction, it is possible to evaluate
qualitatively the relative numerical values of the gene specific
kinetic parameters. Ranking the other 12 genes by their effective
production rate, r � �/(� � �� ), results in recA being the fastest
gene (r � 18.2) and uvrB being the slowest one (r � 1.4). The
other 10 genes can be ranked in the following order (from the
fastest to the slowest): sbmC, umuD, yebG, ruvB, sulA, ruvA, yjiW,
lexA, dinI, dinF.

For three genes (dinF, uvrB, and ruvA) the estimates of � are
very small, resulting in a transcription rate inversely proportional
to the LexA protein levels. For five genes (recA, lexA, sbmC, dinI,
and yebG), estimates of � are comparable with the �� , indicating
that saturation in production rate occurs for already moderate
levels of LexA. Degradations rates, �, for target genes vary by
two orders of magnitude, with umuC having the slowest rate and
ruvA being the fastest one to degrade. It is also interesting to note
that estimates for basal level of production, �, were found to be
negligible for many genes with an exception of recN, uvrB, and
umuC.

Reconstructed profiles of most of the target-genes show
excellent fit with the data (see Fig. 3 and supporting informa-
tion). However, the fit for four genes (dinI, sulA, umuD, yjiW) is
not particularly good, indicating that either the data are too noisy

or there might be nonlinear degradation and cooperativity in the
production term. Although it might be tempting to try to
interpret the absolute values of the kinetic parameters directly,
this is typically not possible because there are no explicit units
in the microarray measurements on which all of the estimates are
based. However, relative comparisons of such values, as we have
done above, are meaningful.

Conclusions
We have demonstrated that the protein level of a regulator can
be inferred from microarray data measured on its target genes.
Using a microarray time course experiment on wild and mutant
types of E. coli after UV irradiation, we have successfully
reconstructed the activity of the repressor LexA from its target
genes. The reconstructed profile is a piece-wise constant func-
tion on each time interval, determined by available microarray
measurements. The piece-wise nature of the reconstructed
profile might seem highly approximative; however, our method
is highly flexible because it does not make any parametric
assumptions and it permits a closed-form solution of the inte-
gration of the kinetic equations (see Eq. 2). At the same time,
it is a parsimonious way to deal with the limited amount of data.
The reconstructed profile and its confidence bands can be
smoothed with an interpolation spline, yielding a profile without
discontinuities at the sampling time points.

Our method enables the reconstruction of the temporal
profile of a regulatory protein given the gene expressions of its
targets. It has wide applicability because SIMs frequently occur
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Fig. 3. Reconstructed profiles for four genes in the LexA SIM. Points stand for the data values. Data and reconstructed profiles are presented on the original
scale. Time is given in minutes as in the experiment. Profiles of other target genes in the SIM are available on request.
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in many organisms. Once all or a subset of the target genes in the
SIM are known, and such information is rapidly becoming
available from ChIP–Chip experiments (18), the activity profile
of the master regulator can be reconstructed. This approach can
be used to reconstruct the activity of an activator, as demon-
strated in an example of the cdaR activator in Streptomyces (19),
or of a repressor, as in the present paper.

Materials and Methods
The SOS regulatory module is an example of a SIM (9) where
one regulator, a repressor in our case, controls several target
genes. The activity profile of the regulator, LexA, is denoted by
�(t). The expression of a target gene k, �k(t), changes due to
mRNA production, which depends on the level of the regulator
�(t) and mRNA degradation. The rate of the transcription
production of a gene k is modeled by the MM kinetics, �k/(�k �
�(t)), where �k and �k are gene-specific kinetic parameters for
gene k. This equation is widely used for modeling processes in
enzyme mediated kinetics. The kinetics of expression of gene k
is described by

�̇k�t	 � �k � �k

1
�k � ��t	

	 �k�k�t	, [1]

where �k is the rate of linear mRNA degradation. The additive
constant �k accounts for the basal level of transcription as well
as for nuisance effects from microarrays.

Given measurements of gene expression at N time points (t0,
t1, . . . , tN
1), the temporal profile of a gene k, �k(t), that solves
the ODE in Eq. 1 can be approximated by

�k�t	 � �k
0e
�kt �

�k

�k
� �ke
�kt

1
�k

�
j�0

N
2

�e�ktj�1 	 e�ktj	
1

�k � �� j
,

[2]

where �� j � (�(tj) � �(tj�1))/2 on each subinterval (tj, tj�1), j �
0, . . . , N 
 2. This is under the simplifying assumption that �(t)
is a piece-wise constant function on each subinterval (tj, tj�1).
One can come up with linear (or higher order) �(t) approxima-

tions on each subinterval. This will introduce additional param-
eters, which will be impossible to infer with any certainty given
limited amount of data.

The observed gene expression of a target gene k, taken on its
original scale, is assumed to be log-normally distributed

gk� t	 � lognorm�mk� t	 , 
k
2	 , E�gk� t		 � �k� t	 , [3]

where the location parameter is mk(t) � log[�k(t)] 
 1/2
k
2.

The kinetic parameters �k � {�k, �k, �k, �k, �0
k} and the

variance of the log-normal distribution, 
k
2, are assumed to be

gene-specific. The activity profile � � {�1, . . . , �N} of the
repressor LexA, and the parameters of regulation for each target
gene are sought by maximizing the overall likelihood of the SIM

Loverall�� , �2, �	 � �
k�1

K

Lk�gk� t	 ; �k, 
k
2, �	 . [4]

Here, � represents all of the gene-specific kinetic parameters of
the kinetic model, �k, for all targets k � 1 . . . K in the regulatory
module; �2 stands for all of the scale-parameters of the log-
normal distribution, 
k

2; and Lk(gk(t); �k, 
k
2, �) is the gene-

specific likelihood of a gene k given the observed data gk(t) and
the transcription factor activity �. The computational method
that maximizes the log-likelihood with respect to �, �, and  for
all genes in the SIM is based on a conjugate gradient method. For
a SIM, we have six kinetic parameters per gene to estimate and
additional N 
 1 parameters for the regulator profile �̄.

Confidence intervals for the maximum likelihood estimate of
� (�̂) are calculated via a classical Wilks method. Each compo-
nent of �̂ is perturbed, while keeping all other parameters fixed,
such that the marginal confidence decreases by 95%, which
corresponds approximately to a decrease in the likelihood by
2�1,095

2 . The smoothed � -profile (bold solid line on Fig. 2A) is
obtained by the cubic spline interpolation method (R function
spline).

All of the code for estimating the parameters, calculating the
confidence intervals and plotting the figures has been imple-
mented in the statistical language R (www.r-project.org) are
available upon request and can be obtained from authors.
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