
Prediction of active nodes in the transcriptional
network of neural tube patterning
Chrissa Kioussi*, Hung-Ping Shih*, John Loflin†, and Michael K. Gross†‡

Departments of *Pharmaceutical Sciences and †Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331

Communicated by K. E. van Holde, Oregon State University, Corvallis, OR, October 13, 2006 (received for review September 18, 2006)

A transcriptional network governs patterning in the developing
spinal cord. As the developmental program runs, the levels of
sequence-specific DNA-binding transcription factors (SSTFs) in each
progenitor cell type change to ultimately define a set of postmi-
totic populations with combinatorial codes of expressed SSTFs. A
network description of the neural tube (NT) transcriptional pat-
terning process will require definition of nodes (SSTFs and target
enhancers) and edges (interactions between nodes). There are
1,600 SSTF nodes in a given mammalian genome. To limit the
complexity of a network description, it will be useful to discrimi-
nate between active and passive SSTF nodes. We define active SSTF
nodes as those that are differentially expressed within the system.
Our system, the developing NT, was partitioned into two pools of
genetically defined populations by using flow sorting. Microarray
comparisons across the partition led to an estimate of 500–700
active SSTF nodes in the transcriptional network of the developing
NT. These included most of the 66 known SSTFs assembled from
review articles and recent reports on NT patterning. Empirical
cutoffs based on the performance of knowns were used to identify
188 further active SSTFs nodes that performed similarly. The
general utility and limitations of the population-partitioning par-
adigm are discussed.

Lbx1 � microarray � mouse � spinal cord

Spinal cord development begins when the neural tube (NT)
forms from a sheet of proliferative neuroepithelium. The

proliferative ventricular zone around the lumen sheds postmi-
totic cells into a mantle layer from embryonic day (E)9.5 to E13.0
of mouse development. Many sequence-specific DNA-binding
transcription factors (SSTFs) that mark discrete neuronal sub-
populations during ontogeny have been identified (1–10). SSTFs
also mark subdivisions in the motor neuron (MN) pool (11–15)
and mark different types of ventral interneurons (16). Gene
knockout experiments show that SSTFs specify neuronal types
(17–21). Mutating them often leads to respecification of popu-
lations. The Lbx1 homeobox gene contributes to the specifica-
tion of at least four spinal cell types. Loss of Lbx1 function leads
to an organized respecification of transcription factor codes and
projection patterns in Lbx1-marked populations (22, 23). It
therefore is thought that a network of SSTFs can be used to
describe patterning and specification in the NT.

The neuronal diversity generated by patterning mechanisms in
the mouse NT between E9.0 to E13.0 is not greatly influenced
by classic synaptic function. Voltage-dependent Na� conduc-
tance first appears at E12 (24), periodic MN bursting begins at
E12.5, and a full locomotor pattern generator is not observed
until E16.5 (25). Electrical connectivity during the patterning
phase of development appears to be limited to gap junctions (26).
In addition, the primary afferent neurons begin to enter the
dorsal horn only at the end of this phase, suggesting that there
is little sensory contact with the external environment. The
absence of neural circuitry and contact with the external envi-
ronment suggests that neuronal diversification during this phase
is driven primarily by developmental patterning mechanisms.

Patterning mechanisms in the dorsal NT give rise to six early
(dI1–dI6) and two late (dI4LA and dI4LB) populations. They

give rise to four interneuron (V0–V3) populations and the MN
population in the ventral NT. Different types of MNs and glial
cells are also specified and subdivisions in interneuron popula-
tions are emerging as more SSTF markers are examined. The
combinatorial code of all SSTFs in each population is thought to
set up the molecular specification by determining the gene
expression pattern, or molecular predisposition, of a neuron just
before the establishment of synaptic circuits. The current pop-
ulation definitions of neural populations will remain useful only
if the expression patterns of most SSTFs respect population
boundaries. Only SSTFs that are differentially expressed in NT
populations have the potential to violate these boundaries.

A network is described as a set of nodes and edges (27). The
nodes typically represent the molecules, and the edges represent
their interactions. The most basic transcriptional network therefore
will consist of two types of nodes, SSTFs and cis-acting regulatory
elements on DNA. Protein–DNA and protein–protein interactions
or genetic dependencies could be used to define functional inter-
actions, or edges, between these nodes. A network description of
any biological system must seek to limit the combinatorial space to
the most salient elements in the process so that a computationally
feasible and humanly understandable result emerges. In this work,
we seek to measure and constrain the number of SSTF nodes
required for a network model of our system, which is the transcrip-
tional network that patterns the developing mouse spinal cord
between E9.0 and E13. NT patterning is generally described in
terms of altered SSTF expression levels (1–10), and we will proceed
along this established paradigm. We will define active nodes as
SSTFs that are differentially expressed within this system. Passive
nodes are SSTFs that are uniformly expressed throughout this
system. Passive nodes still could play a functional role in patterning
by altering their activity rather than their level (i.e., phosphoryla-
tion, etc.). However, little has been reported regarding SSTF
activity changes in the context of NT patterning, and the time scales
of these processes tend to be much smaller than the developmental
time scale (28). Constraining an initial network model to active
nodes therefore should provide a useful simplification.

It is not known how many active nodes, differentially ex-
pressed SSTFs, exist in our system. We therefore have developed
a generally applicable population partitioning method to obtain
a minimum estimate of the number of active nodes in our system.
If a developmental system is sorted along population boundaries,
then SSTFs that are differentially expressed in any part of the
system can be identified by comparing expression between the
two population pools. Flow sorting was used to partition the
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neurons of E12.5 Lbx1GFP/� neural tubes along population
boundaries. Microarray comparisons of RNA from the two
population pools were used to estimate that at least 510 active
SSTF nodes exist in the NT patterning. Remarkably, a large
majority of 66 known markers of neuronal populations and their
progenitor zones are in this group. Virtually all of the knowns
with significant microarray signals showed �2-fold differences.
We used this knowledge to create empirical cutoffs that allow us
to identify 188 additional SSTFs that behave as the knowns. We
predict that these will be active nodes in the transcriptional
network of NT patterning and have confirmed 10% of the active
nodes by quantitative real-time PCR (qRTPCR).

Results
Population Partitioning Model. To estimate the number of active
nodes in the NT transcriptional network, it was essential to
determine the number of SSTFs, besides the 66 knowns dis-
cussed below, that are differentially expressed in the developing
NT. Most expression patterns of SSTFs reported in the literature
do not include appropriate cross-sections of the NT between E9
and E13. A high-throughput partitioning scheme that would
identify differentially expressed genes was therefore devised.
Assume that the system, the developing NT in this report,
consists of p cell populations specified by SSTF combinatorial
codes. Each population consists of N cells and expresses a given
factor at concentration C. The total amount (A) of the factor in
a given population p is therefore Ap � NpCp. The total amount
of the factor in the system is given by:

ANT � CNTNNT � N1C1 � N2C2 � N3C3 � . . . � NpCp.

[1]

Now suppose that the total set of populations in the system are
partitioned into two population pools. The two population pools
are green (G) and white (W) in this report. The population
partitioning process must be based on the expression of a SSTF
that helps define a combinatorial code. The partitioning is based
on GFP expression in Lbx1GFP/� embryos in this report. The
total concentration of factor in each population pool would
reflect the discrete set of populations it contains, the number of
cells in each of those populations, and the concentration of the
factor in each of the populations. For example, if pool G contains
populations 1 and 2 and pool W contains populations 3–5, the
concentration of factor in each pool is as follows:

CG � (N1C1 � N2C2)�NG and

Cw � (N3C3 � N4C4 � N5C5)�Nw, [2]

where NG and NW are the total number of cells in each pool. The
total concentration of the factor in each pool (CG and CW) can
be readily compared in microarray or qRTPCR experiments. If
a factor is ubiquitously expressed at a constant level throughout
the NT, then all of the C terms would be equal, and CW would
equal CG. However, if only one, or a subset, of populations in one
pool expresses the factor at a different level, then CW will differ
from CG. Only an exactly compensating change in the other pool
could restore parity. The data below suggest that this is a rare
event. In principle, different population partitions should pro-
duce the same list of differentially expressed factors, except for
those with exact compensation. However, the largest fold
changes between CG and CW will be observed for factors whose
expression pattern is more closely correlated with the expression
pattern of the gene that is used to make the partition. Thus, if
Lbx1 was used to partition the populations of the system, then
the largest fold changes would be expected for genes whose
expression patterns correlate closely, either positively or nega-
tively, with the Lbx1 expression pattern. Furthermore, in real

experiments, measurement noise will obscure small fold changes,
so that factors that are expressed only in small populations of the
system or that come close to exact compensation will be not be
identified. Thus, population partitioning measures only a mini-
mum number of active nodes.

Estimation of Network Size. Lbx1GFP knockin mice were used to
test the partitioning model and to estimate the size of the
transcriptional network that would describe NT patterning.
These mice were developed initially for the analysis of limb
muscle (29) and NT (23) development. EGFP is knocked in so
that it is under the control of endogenous Lbx1 control elements
and tightly reproduces the expression pattern observed with
anti-Lbx1 antibodies. EGFP (Lbx1) is expressed in the vast
majority of cells in the dorsal half of the spinal cord at E12.5 but
is generally absent in the ventral half (Fig. 1). The EGFP� green
cell pool (G) contains the dI4–6, dI4LA and dI4LB populations.
The EGFP� cell pool (W) contains the 10 progenitor popula-
tions (p1–p10) and the postmitotic dI1–dI3, V0–V3, and several
MN populations. Flow sorting was used to separate the two
population pools (Fig. 1). Total RNA from 2 � 106 green and
nongreen neurons was obtained from E12.5 heterozygous NTs in
a serum-free procedure that took 60 � 5 min from dissociation

Fig. 1. Population sorting of dissociated neural tubes. (A) Cross-section of
E12.5 neural tube of Lbx1EGFP/� embryo stained with anti-GFP antibody.
Section was taken at the forelimb level. (B) Bioanalyser run of four sets of total
RNA after DNase treatment. Three sets were used to generate microarray
probes. (C) Sorting profiles of cells from dissociated E12.5 neural tubes from
wild-type (Upper Left) and LbxEGFP/� embryos (Upper Right). Aliquots of each
pool were run after the sort was complete to determine sort purity. GFP-
negative (Lower Left) and -positive (Lower Right) pools were always �95%
pure.
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to RNA extraction buffer. GFP� cells constituted 41 � 6% of the
sorted events. The ratio of positive to negative cells accurately
reflected the GFP expression observed in histology (Fig. 1).

The concentration of RNAs encoding SSTFs was compared
between G and W population pools by using Affymetrix mouse
430 arrays. The reproducibility of the microarray analysis in
experimental repeats was assessed by comparing samples of the
same or different kind (Fig. 2). Internal comparisons of G or W
expression profiles showed relatively few changes from the unity
line. In contrast, cross-comparisons between G and W showed

many points off the unity line (Fig. 2 A). The flow sorting and
RNA preparation methods therefore gave stable, reproducible
expression results.

The number of active nodes in the NT transcriptional network
corresponds to the number of genes that show differential
expression in the NT. In an ideal system, the number of nodes
would correspond to the number of SSTFs off the unity line.
However, measurement noise creates false positives. The num-
ber of false positives therefore was measured at different fold
cutoffs by comparing sample replicates to each other (Fig. 2B;
G vs. G or W vs. W). If the samples were identical, all genes
should be expressed at identical levels and their data points
should map to a line with a slope of 1. Points that deviate from
that line therefore are false positives. The number of probe sets
that were false positives in all three green–green (or white–
white) comparisons was counted at fold cutoffs between 1.05 and
2. The number of false positives in these internal comparisons of
green and white (squares) replicates was nearly identical at all
fold cutoffs (triangles). In contrast, cross-comparisons between
green and white samples produced far greater numbers of probe
sets off the unity line at all fold cutoffs (circles). The rate of false
positives was computed at each fold cutoff by dividing the
number of false positives by the total number of positives in
cross-comparisons.

The average and standard deviation of the three green and
three white values also was determined for each probe set.
Two-tailed t tests were performed to identify probe sets that
differed significantly at a 95% confidence interval. The number
of significantly changing SSTFs above each fold cutoff is shown
in Fig. 2C (squares). This figure also shows the number of correct
and incorrect calls calculated by using the false positive rates
measured in Fig. 2B. Clearly, the number of correct calls reaches
a maximum at the 1.2-fold cutoff. At lower fold cutoffs, mea-
surement noise increased the number of false positives. At higher
fold cutoffs, the number of calls was reduced because the real
fold changes were not that large. Each correct call corresponds
to a differentially expressed SSTF and, therefore, to an active
node. The NT patterning network therefore contains at least 510
SSTFs (Fig. 3C, arrow) or approximately one-third of the
available SSTFs.

If the measurement of 621 significant changes is reduced by
111 expected false positives (18% at the 1.2-fold cutoff), then it
could also be increased by the expected fraction of false nega-
tives. The analysis described below indicates that only 71% of
known positives are detected at the 1.2-fold threshold. There-
fore, the estimate of 510 represents only 71% of active nodes.
The total number of active nodes therefore would be estimated
at 718, or approximately one-half of the available SSTFs.

Validation with Known Factors. The relevance of the active nodes
identified by the population partitioning scheme was tested by
asking which SSTF genes that have known functions in NT
patterning were identified. Review articles on NT development
therefore were used to assemble an initial list of 51 genes
relevant to NT patterning. Followup of literature on expression
patterns, knockout analyses, and new publications in the field
added 15 further genes to the list. These 66 genes were tracked
by using literature citations in the Mouse Genome Informatics
web site to find publications that describe their expression
patterns in the NT [see supporting information (SI) Table 1 ]. All
66 were differentially expressed in the NT during the specified
developmental interval. The population distribution listed in the
table is a crude estimate for some of the genes because published
information over the developmental time course and by coex-
pression analyses is irregular. The known list of 66 factors
consisted of 46 homeodomain factors, 8 basic helix–loop–helix,
8 zinc-coordinated, and 2 winged-helix, and one �-scaffold
factor(s). The fact that they are all SSTFs supports our working

Fig. 2. False-positive rates and network size. (A) Single-array comparisons of
3,108 probe sets corresponding to 1,567 SSTFs. Six Affymetrix mouse 430
arrays were exposed to probes from independent RNA isolates. Three probes
(G1, G2, and G3) were obtained from GFP� cells, and three probes (W1, W2,
and W3) were obtained from GFP� cells. GCRMA normalized intensities for
each SSTF probe set are plotted against each other for different pairings of
arrays. (B) The number of probe sets with changes above each fold cutoff in
three internal (filled) or in three cross-(open) comparisons. Internal compar-
isons were among W1–W3 arrays (triangles) or among G1–G3 arrays (squares).
Cross-comparisons were between G and W arrays (circles). The plotted values
are averages from all 84 permutations of three cross-comparisons. The num-
ber of differences in internal comparisons was divided by the number of
differences in cross-comparisons to compute the false-positive rates (percent-
ages shown at each fold cutoff). (C) The total number of SSTF genes with
significant differences (95% confidence by t test) between the averaged green
and averaged white signals is plotted at different fold cutoffs (squares). The
false-positive rates from B were used to calculate how many these significant
differences were expected to be correct (circles) or incorrect (triangles). The
maximum number of correct differences was 510 at the 1.2-fold cutoff. This is
the minimum network size.
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hypothesis that a network of SSTFs governs the patterning
process. The fact that they are all differentially expressed
suggests that differential expression within the NT is a good
heuristic to identify functionally relevant SSTFs of the network.

The functional significance of this set of 66 SSTFs was assessed
by tracking literature citations on knockout analyses for each
gene. NT defects were reported for at least 47 of the genes. Many
genes also had been analyzed by overexpression analyses in chick
embryos (references not shown). The functional analyses typi-
cally involved tracking alterations in expression levels of SSTF
target genes, again supporting the working hypothesis that a
SSTF network governs the NT patterning process.

Only 3 of the 66 knowns were not represented on the
microarray. The incidence of knowns that passed the 1.2-fold
cutoff and the t test at the 95% confidence interval was 71% (45
of 63). This demonstrated a clear enrichment of knowns in the
identified set, but also suggested that 29%, or 18, of the known
factors were not being found. Four of the 18 passed at the 90%
confidence interval. Eleven of the remaining 14 had no signal
greater than 33 units in a dynamic range from 1 to 30,000 units,
making them unreliable. The low signal intensity for Lmx1b,
which is expressed broadly in the neural tube, was due to a
dysfunctional probe set because qRTPCR demonstrates a robust
9-fold difference (data not shown). The low signal intensities for
Phox2a, Evx2, En1, Lhx4, Isl2, Hlxb9, Etv4, Sim1, Lmx1a, Dbx2,
Nkx6.2, Olig2, and Nkx2.9 were more likely due to the fact that
these factors are expressed in very small populations and play a
role earlier in NT development. If knowns with maximum
signals � 33 are selected, then 87% (41 of 48) and 92% (44 of
48) pass the 1.2-fold threshold at 95% and 90% confidence
thresholds, respectively. These results clearly demonstrate that

population partitioning identifies active nodes of demonstrated
function very efficiently. More biological replicates would in-
crease the reliability of low signals and increase our ability to
identify nodes that are active only in small populations of the
system.

Identification of New Active Nodes. To observe how the known
genes perform in the population partitioning analysis, they were
color coded and displayed in the context of all of the known
changes (Fig. 3). Many of the known genes were represented by
multiple probe sets on the array. To ensure that each known gene
is represented by only one colored point, the probe set with
largest absolute signal was selected for display. The probe sets
that were omitted generally gave similar results (Table 1). The
data clearly show that nearly all of the known genes change
significantly. The known factors were not only significantly
different, but were also among the SSTFs with the greatest fold
changes.

This observation was exploited to assemble a list of the most
salient SSTFs in the NT patterning network (SI Tables 2 and 3)
that are not included in the known list (SI Table 1). The known
genes were used to empirically set selection cutoffs for ‘‘inter-
esting’’ SSTFs. With few exceptions, the known genes change
2-fold or more (Fig. 3). Those known genes that change �2-fold
generally had signals �33 (see above). SSTFs that were above
the 33 unit baseline and showed �2-fold changes therefore were
selected as active nodes of the NT transcription network that are
the most promising to focus on in an early network description.
SI Table 2 shows predicted nodes that show higher expression in
the Lbx1-expressing pool. These are SSTFs likely to play a role
in dorsal postmitotic populations and essentially pool with the
genes known to play a role in these populations (Fig. 3; below the
unity line). SI Table 3 shows predicted nodes that show higher
expression in the non-Lbx1 pool. These are SSTFs likely to play
a role in ventral postmitotic populations and in progenitor
populations of the ventricular zone. They also essentially pool
with the genes known to play a role in these populations (Fig. 3;
above the unity line). A total of 188 new SSTFs nodes were
identified that behave like the 66 known SSTF nodes. This
expands the working model network 4-fold to 254 SSTFs, half of
the estimated total size.

Validation of Active Nodes by qRTPCR. Microarray results were
validated by qRTPCR. Twenty-nine SSTF genes, corresponding
to 10 known, 16 predicted, and 3 nonpredicted active nodes, were
selected. Known active nodes included those that were expressed
at higher (Lbx1, Pax2, Lmx1b, and Zic1), lower (Isl1, Foxd3, and
Olig3), or similar (Zic2, Zic4, and Zic5) levels in green pools.
Newly predicted active nodes also included those that were
measured at higher (Mafa, Sall4, Bcl11a, Bcl11b Gbx2, Pknox2,
Satb2, Uncx4.1, Tsh2, and Pax8) or lower (Nr4a2, Sall1, Hmx2,
Hmx3, Otp, and FoxP2) levels in green cells. Three nodes that
were not predicted to be active also were included (Sall2, Sall3,
and Zic3). Primers were designed by consulting an online primer
bank (30), and the amplification of single bands were confirmed
for all except Bcl11a. Standard curves were generated for each
of the remaining 26 amplicons by using serial dilutions over four
orders of magnitude of reverse-transcribed E12.5 neural tube
total RNA. Five biological replicates were measured. Three
technical replicates were performed for two of these biological
replicates. The average fold change from the qRTPCR and
microarray replicates were compared (Fig. 4). The fold changes
observed by these two methods are qualitatively identical and
quantitatively very similar, indicating that no false positives were
detected in a screen of �10% of the predicted active nodes. This
low error rate is consistent with the results of Fig. 2B, which
predict �1% error at the 2-fold cutoff.

Fig. 3. Identification of new active nodes by using properties of known SSTFs
as constraints. The averages signal intensities of three microarrays were
plotted against each other. Probe sets of known genes (SI Table 1) were
color-coded by their known expression (orange, ventricular zone; red, mantle
zone outside Lbx1-expressing populations; green, mantle zone in Lbx1-
expressing populations; cyan, Zics 1, 2, 4, and 5; olive Hox genes b6, b8, c8, d9,
and d10; see SI Table 1 for more details) and plotted with all other SSTF probe
sets (black or gray). Error bars indicate the SD in the three replicates in each
dimension and are only shown for knowns. Probe sets which exhibit a �2-fold
change are indicated in black, whereas those that have fold changes below
that threshold are indicated in gray. Two-fold change and �33 intensity
thresholds accommodate the vast majority of known genes and can be used
to identify SSTFs that change as much as the knowns. These are listed in SI
Tables 2 and 3.
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Discussion
The mouse NT is an attractive system to begin to understand how
a network model can be used to describe mammalian developmen-
tal patterning events. It is a relatively large structure with well
defined dorsal-ventral (D-V) and rostral-caudal (R-C) axes. Its tube
shape allows many similar sections to be compared. This has
allowed a large amount of gene expression information to be
compared and assimilated into a population model. Different cell
populations of the NT are defined by combinatorial expression of
SSTFs. Loss or gain of many of these SSTF functions results in
redirection of the patterning process. Our results identify 188 SSTFs
that are differentially expressed to the same extent as a set of 66
‘‘known’’ SSTFs that are extensively reviewed in articles on NT
patterning. This represents a significant expansion in the number of
nodes in the current working model. Our results also indicate that
at least 510 active nodes would be required for a comprehensive NT
patterning model. Genes that compensated across pools were
missed. The current analysis also did not examine populations
during the entire E9–E13 time frame. Thus, our estimate represents
a lower bound on the complexity of the system.

A total of 3,108 probe sets representing 1,567 SSTFs were
compared. If the network size is 510, then approximately one-
third of the SSTFs in the genomes are active nodes in the NT
patterning network. This is a large number if one considers that
only 66 factors have been implicated and only 47 have demon-
strated functional deficiencies (SI Table 1). On the other hand,
the large number of changes is not surprising if one considers the
number of populations being compared in the partitioned green
and white pools. The current D-V patterning literature describes
at least 10 progenitor and 15 postmitotic populations. Although
the R-C patterning literature is less extensive, it indicates that the
Hox genes create specifications along this axis (31, 32). The
nested expression domains of these genes suggest that five to
seven specifications exist along this axis below the hindbrain
(more if the paralogs are not completely redundant). These must
be multiplied by the postmitotic D-V populations because Hox

genes appear to be off in the progenitor cells. This leads to a
crude lower estimate of 85 specified populations (10 progenitor
� (15 D-V � 5 R-C) postmitotic � 85). There is also some
evidence that the progenitors layers produce successive rounds
of differentially specified neurons and/or glial cells. This has
been well documented in fly neurogenesis. If each progenitor
layer produces four specified cell types in succession as fly
neuroblasts do, then we would estimate 40 progenitor specifi-
cations (10 layers � 4 cycles) and their resultant 40 postmitotic
specifications. This would lead to an estimate of 240 populations
(40 progenitor � (40 D-V � 5 R-C) postmitotic � 240). These
considerations place the estimate of NT populations between 85
and 240 and raise the following two questions. First, is it useful
to define so many populations? Second, what is the most
practical method to define populations and their specifications?

The utility of defining so many populations will depend on
tracing each population into adulthood and establishing its
function by using anatomical or electrophysiological methods. If
two populations give rise to functionally equivalent neurons, the
population distinction would not be useful. If, as many current
working models suggest, each population becomes a different
type of neuron, then the population model will provide an
extremely useful organizing principle to study neuronal circuits
in the adult spinal cord. It would allow a population of neurons
that have a uniform, genetically defined predisposition to be
tracked to see how individual neurons of this population adapt
or diversify in response to environmentally induced nervous
activity. Lineage-tracing mice that have CRE drivers knocked
into the SSTF loci are being used to pioneer this approach. A
full implementation requires that the populations be correctly
defined.

As stated above, the populations are thought to be defined by
a combination expressed SSTFs. How many and what type of
factors are needed to define a population? The very limited
expression patterns of some homeodomain SSTFs, such as Evx1,
Lhx2, Lhx9, etc., held out the hope that populations can be coded
by single factors if we search through the genome. The mam-
malian genome contains �250 homeodomain proteins. Our
analysis used 361 probe sets to evaluate 222 of these. One
hundred twenty-nine probe sets corresponding to 93 homeodo-
main SSTFs changed at the 95% confidence interval. All of these
changes were �1.2-fold (only 116 above 1.3-fold), where we
expect 18% false positives. Thus, 76 homeodomain SSTFs are
among the expected 510 active nodes. Most of these are among
the known list (SI Table 1) and are expressed in more than one
population. Thus, homeodomain proteins are unlikely to provide
single-factor population codes in the future. Similar arguments
can be made for the Ets transcription factors that have also been
postulated to form a simple code. It appears that specification by
individual factors may be the exception rather than the rule.

Are certain types of SSTFs better at defining populations than
others? The relative contribution of the four superclasses of
SSTFs was measured. Helix–turn–helix factors contributed 42%
of the active nodes (50% of class participate in network),
zinc-coordinated factors contributed 34% of active nodes (31%
of class), basic factors contributed 10% (34% of class), and
�-scaffold and others contributed 7% each (31% and 28% of
class). Helix–turn–helix SSTFs clearly contribute the most nodes
to the network and have the highest superclass participation.
However, the contributions of the other classes are substantial
and well distributed and therefore cannot clearly be ignored. The
specification of populations by combinatorial codes of SSTFs
therefore is likely to involve SSTFs of all superclasses and many
of their classes (see SI Tables 2 and 3).

The population model implies that groups of cells exist that have
similar combinatorial expression profiles. Formally, a population is
homogeneous if it can no longer be partitioned by SSTF expression.
How much deviation of SSTF expression is allowed within a

Fig. 4. Validation of microarray measurements by qRTPCR. The average fold
change observed between G and W population pools in three replicate
microarrays is plotted against the average fold change measured by qRTPCR
in five replicates. The expression of 25 different SSTF genes was compared. A
strong correlation in fold change measured by the two methods was observed.
No qualitative discrepancies in direction of change were observed. The outlier
in the upper right quadrant corresponds to Mafa, which gave erroneous low
values in qRTPCR because the crossing thresholds occurred after �30 cycles.
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population before it become formally split into two populations?
One expects a certain level of stochastic change within the cells of
population as they respond to their microenvironments. It would
not be useful to divide a population up on the basis of such changes.
However, it is also apparent that the patterning process can specify
very small groups of cells in an organized manner. If a large number
of very small populations is specified (e.g., 240; see above), it will
be necessary to monitor many SSTFs at once to define and compare
combinatorial codes. Development of a formal network model will
be useful in tracking the development of such codes.

Progressive application of the population partitioning paradigm
could provide a systematic means of honing in on SSTF codes of
rare populations. An initial partition, such as the one presented
here, is used to identify SSTFs to be tested as population markers.
An SSTF that marks a subpool of the initially marked pool (green)
must be labeled with a different dye (red) and used to partition the
initial green population into further population pools. One would
expect that the number of identified SSTFs to decline as the
structure that is partitioned contains less populations. Similarly, one
would expect the fold changes of identified SSTFs to increase
because there is less dilution by other populations in each pool. At
the end of the analysis, one pool will contain only one population.
None of the factors overexpressed in this terminal pool will
systematically bifurcate the population.

Materials and Methods
Synchronous Lbx1GFP/� containing litters were removed at E12.5
and rapidly genotyped under a fluorescent microscope to iden-

tify heterozygotes. NTs between the caudal edge of the fourth
ventricle and lumbar region were removed from the embryos and
stored on ice until dissociation. NTs were dissociated 6 � 1 min,
sorted 30 min and were lysed at 1 h. Biotiylated probes for
Affymetrix Mouse 430 arrays were generated by one cycle
labeling of 3 �g of total RNA.

Data were normalized by using GCRMA on Genespring
software. The TRANSFAC (Braunschweig) tree was used to
guide a computer-assisted manual annotation effort that iden-
tified 3,108 probe sets for 1,567 genes encoding known DNA-
binding domains. The RIKEN Genome Science Center recently
has reported the nonredundant number of mouse transcription
factors at 1,585 (33). However, this group includes general
transcription factors and chromatin remodeling factors in their
collection. Detailed methods are included as SI Materials and
Methods.
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