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Abstract

Background: Proteins containing ubiquitin-like (UBL) and ubiquitin associated (UBA) domains
have been suggested to shuttle ubiquitinated substrates to the proteasome for degradation. There
are three UBL-UBA containing proteins in budding yeast: Ddil, Dsk2 and Rad23, which have been
demonstrated to play regulatory roles in targeting ubiquitinated substrates to the proteasome for
degradation. An involvement of these proteins in cell cycle related events has also been reported.
We tested whether these three proteins act redundantly in the cell cycle.

Results: Here we show that the UBL-UBA proteins are partially redundant for cell cycle related
roles. RAD23 is redundant with DDII and DSK2, but DDI| and DSK2 are not redundant with each
other and the triple deletion shows a synthetic effect, suggesting the existence of at least two roles
for RAD23 in cell cycle control. The rad23A4ddil Adsk2 A triple deletion strain delays both in G2/M-
phase and in mid-anaphase at high temperatures with duplicated spindle pole bodies. Cell cycle
progression in the triple deletion strain can only be partially rescued by a rad23 allele lacking the
c-terminal UBA domain, suggesting that RAD23 requires its c-terminal UBA domain for full function.
In addition to their ability to bind ubiquitin and the proteasome, the UBL-UBA proteins also share
the ability to homodimerize. Rad23 and Dsk2 dimerization requires their UBL and/or UBA domains
whereas Ddil dimerization does not. Here we show that Ddil homodimerization is necessary for
its cell cycle related functions.

Conclusion: The three yeast UBL-UBA proteins have partially redundant roles required for
progression through mitosis.

Background

The ubiquitin-proteasome pathway is a complex protein
degradation system that is conserved from yeast to mam-
mals and plays an important role in many processes such
as cell cycle control, endocytosis and DNA repair [1-5]. In
Saccharomyces cerevisiae Rad23, Ddil and Dsk2 are the

three UBL-UBA proteins, which are hypothesized to shut-
tle ubiquitinated substrates to the proteasome for degra-
dation [6-11] due to their ability to interact with the
proteasome through their UBL domains [12-15] as well as
with ubiquitin and polyubiquitinated substrates through
their UBA domains [7,8,16-18]. Consistent with the shut-
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tling hypothesis, downregulation of human RAD23
(hHR23) using siRNA induces accumulation of p53
which is known to be continuously degraded by the ubig-
uitin-proteasome pathway [19]. In addition, yeast Rad23
is sufficient for docking of ubiquitin conjugates to protea-
somes isolated from a strain carrying a mutation in the
ubiquitin-interacting-motif (UIM) of the proteasome sub-
unit Rpn10 [20], which is thought to act as a receptor that
binds ubiquitinated substrates. Furthermore, proteas-
omes isolated from a rad23Adsk2A strain are defective in
their association with endogenous ubiquitin conjugates
and this defect is stronger than the one observed in rpn10
mutants that are unable to bind ubiquitin, suggesting that
the UBL-UBA proteins are more active than Rpnl0 in
delivery of ubiquitinated substrates to the proteasome
[20].

Interestingly, none of the UBL-UBA proteins are essential
for viability. Single deletion of RAD23 or DSK2 induces
partial stabilization of a model degradation-substrate
whereas the rad234dsk2A double deletion completely sta-
bilizes the substrate [7] and accumulates endogenous
polyubiquitinated proteins at high temperatures [21],
suggesting that Rad23 and Dsk2 function redundantly in
ubiquitin-mediated protein degradation. In addition to
these genetic interactions, UBL-UBA proteins have been
shown to physically interact, forming both homodimers
and heterodimers [7,22]. Dsk2 and Rad23 homodimeri-
zation occurs through their UBL and/or UBA domains
[17,23,24], whereas Ddil homodimerization requires
neither of these domains [17]. Although, in vivo, het-
erodimerization of UBL-UBA proteins is likely to also
occur via bridging molecules [22], direct interactions
between the UBL and UBA domains promoting het-
erodimer formation have been demonstrated [22,23].
Rad23 homo and heterodimerization of UBL-UBA family
members has been suggested to play a role in regulating
their interactions with other components of the ubiqui-
tin-proteasome pathway and to lead to the formation of
multimeric complexes with polyubiquitin chains [23,25].
Such interactions could increase the targeting efficiency of
ubiquitinated substrates for degradation.

One of the cellular processes that relies on ubiquitin-pro-
teasome dependent proteolysis is cell cycle progression.
Cell division is a complex process; it requires that a series
of steps are fulfilled in a specific and unidirectional order.
When cell cycle regulation fails genetic instability and
aneuploidy often arise, which are hallmarks of and might
initiate cancers [26,27]. A long list of cell cycle regulators
are known to be degraded by the ubiquitin-proteasome
pathway [2]. Several pieces of evidence suggest a role for
UBL-UBA containing proteins in cell cycle control. In bud-
ding yeast, overexpression of Dsk2 is toxic, inducing accu-
mulation of ubiquitinated substrates [12] and arresting
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the cells in mitosis with abnormal nuclear position and
short bipolar spindles [28]. Ddi1 is involved in the degra-
dation of an SCF component, the F-box protein Ufol,
involved in the G1/S transition [29], as well as one of its
targets the Ho endonuclease [30]. Overexpression of
DDI1 or RAD23 suppresses the temperature sensitive phe-
notype of a PDS1 mutant allele (pds1-128) [31]. Com-
bined deletion of the RAD23 and DDI1 C-terminal UBAs,
but not the single deletions, results in premature loss of
cohesion and spindle elongation in the presence of
hydroxyurea (HU), which is known to activate the S-
phase checkpoint [31]. In addition, the dsk2Arad23A4 dou-
ble deletion, but not the single deletions, is reported to be
defective in Spindle Pole Body (SPB) duplication at high
temperature, inducing the formation of monopolar spin-
dles and subsequently arresting the cells in mitosis [28].
These results suggest redundant roles for the UBL-UBA
proteins in cell cycle events.

Here we demonstrate that deleting RAD23 in combina-
tion with either DDI1 or DSK2 induces cell cycle delays in
the G2/M-phase and anaphase at high temperatures, indi-
cating that DDI1 and DSK2 are redundant with RAD23. In
addition, we provide evidence that DDI1 and DSK2 are
not functionally redundant and therefore that RAD23 has
at least two cell cycle-related functions. This hypothesis is
supported by the synthetic effect observed in the triple
deletion, confirming that RAD23-DDI1 redundancy is dif-
ferent from that of RAD23-DSK2 (i.e. the triple deletion
shows an additive phenotype). Surprisingly however, the
arrest is not due to failure in SPB duplication.

Results

RAD23, DDII and DSK2 have partially redundant roles in
cell cycle progression

Possible roles for Rad23 and Ddil in the cell cycle have
been suggested by their ability to rescue the temperature
sensitivity of pds1-128 [31], while Rad23 and Dsk2 have
been reported to have roles in SPB duplication and Dsk2
overexpression leads to mitotic arrest [28]. To test whether
the three yeast UBL-UBA proteins have a redundant role
in cell cycle progression we took a genetic approach,
obtaining strains deleted for each one of the UBL-UBA
genes (Table 1) as well as all the double deletion combi-
nations and the triple deletion, and asked whether any
redundancy in terms of functions in cell cycle progression
could be observed.

Although none of the single deletions have temperature
sensitive phenotypes, the rad234dsk2A double deletion
has been reported to accumulate ubiquitinated substrates
at37°C[21], as well as have a temperature sensitivity phe-
notype at 35°C [28]. Partially consistent with these
results, we observed that rad234, ddilA or dsk2A singly
deleted strains as well as rad234ddilA and ddilAdsk2A
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Table I: Yeast strains used in this study
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1167
1494
1493
1671
2073
2074
LI153
L156
LI50
L169
L182
L185
L187
L194
L196
L201
L218
L221
L263

MATalpha pds|—128

pds[—128 GAL-ddil AUBA [HIS]

pds|—128 GAL-DDII [HIS]

MATa bar! A GFP:TUBI::uRA3 ARG4

MATalpha pds|—128 GAL-ddil-A407L

MATalpha pds|—128 GAL-ddil-L426A

MATalpha pds|—128 arg 4 GAL:ddil Al 84-285

MATalpha pds|—128 arg 4 GAL:ddil Al 84-285

MATalpha pds|—128 arg 4 GAL:DDI| [LEU]

MATa barl A spc42:GFP [TRP]

MATa barl A dsk2::KAN spc42:GFP [TRP]

MATa barl A rad23:KAN dsk2::KAN SPC42:GFP [TRP]

MATa barl A ddil::KAN dsk2:KAN SPC42:GFP [TRP]

MATa barl A rad23:KAN SPC42:GFP [TRP]

MATa barl A ddil :KAN rad23:KAN SPC42:GFP [TRP]

MATa barl A ddil::KAN rad23:KAN dsk2:KAN TUBI:GFP [URA]
MATa barl A ddil :KAN dsk2::KAN rad23:KAN SPC42:GFP [TRP]
MATa barl A ddil :KAN SPC42:GFP [TRP]

MATa barl A ddil ::KAN dsk2:KAN TUB[:GFP::URA3 RAD23 AUBA2-MYC [TRP] SPC42:GFP [TRP]

doubles were not temperature sensitive. Surprisingly, the
rad23Adsk24 double deletion was also alive at 37°C. In
contrast, the rad23Adsk2A4ddi1A triple deletion was tem-
perature sensitive at 37°C, suggesting the existence of
redundant roles for Ddil, Dsk2 and Rad23 at high tem-
peratures.

Next we asked whether these proteins were involved in
cell cycle progression. Briefly, all the combinations of sin-
gle, double and the triple deletions were incubated in
YEPD overnight at 30°C, diluted the next morning and
incubated at 37°C. Cell cycle progression was evaluated
by scoring the proportions of the different cell morpholo-
gies: unbudded cells (G1, yellow), cells with small to
medium buds (S phase, blue) and dumbbells (G2/M, red)
(Figure 1, upper panel). Samples were also taken for FAC-
Scan analysis of DNA content (Figure 1, lower panel).
Interestingly both rad234dsk2A and rad234ddi1 A showed
a slight accumulation of cells in G2/M, but the accumula-
tion observed in the rad234ddilAdsk2A triple deletion
reached ~70% after 6 hours at the non-permissive temper-
ature (Figure 1). On the other hand, cell cycle distribution
in the ddi1 Adsk2 A double deletion was not different from
those of the single deletions. These results suggest that
RAD23 is redundant with DDI1 and DSK2 but that DDI1
and DSK2 do not share a common functional role needed
for timely cell cycle progression. Furthermore, these data
suggest a synthetic effect, that is, RAD23 redundancy with
DDI1 is different than that of RAD23 with DSK2 and the
effect seen in the triple deletion is the result of both
defects combined (Figure 1).

The c-terminal UBA domain of Rad23 is necessary for its
cell cycle functions

Although both UBA domains of Rad23 have been shown
to bind ubiquitin both in yeast [17] and in humans
(hHR23A) [32], there is a specific requirement for its c-ter-
minal UBA domain (UBA2) in mediating cell cycle arrest
after binding to the HIV-1 Vpr protein [33]. Therefore we
tested whether UBA?2 is required for the cell cycle function
of Rad23 by examining cell cycle progression in a strain in
which the sole UBL-UBA protein is rad234UBA2 (Figure
2). A recent study suggested that the C-terminal UBA
domain of Rad23 acts as a stabilization domain [34], pre-
venting proteasome-dependent degradation of RAd23. It
was therefore important to determine if rad23AUBA2 was
stable in our strains. As shown in Figure 2A, the protein
levels of rad23AUBA2 and Rad23 were identical, whether
these genes were expressed from their endogenous pro-
moters or exogenously from the GALI promoter. This was
also the case when we compared the protein levels of
Ddil and ddi1 AUBA (Figure 2A). After confirming that the
wild type and mutant proteins were present in identical
amounts in our strains, we spotted serial dilutions of the
corresponding strains onto rich medium and grew at a
range of temperatures for several days (Figure 2B). A par-
tial recovery of the temperature sensitivity of the
rad23Addil Adsk2A triple deletion strain was observed
after introducing rad23AUBA2, but full recovery was
observed only when the full-length RAD23 gene was
introduced (Figure 2B). These data suggest that, although
both UBA-motifs can interact with ubiquitin [17], full
Rad23 activity requires both UBA domains.

To explore this result in more detail, we examined the

kinetics of cell cycle progression in strains that contained
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Deletion of DDII, DSK2 and RAD23 has a synthetic effect on cell cycle progression at high temperatures. (A)
Cells were grown to mid-log phase in liquid YEPD at 30°C then shifted to 37°C for 0, 4 and 6 hrs. Cell cycle distribution was
determined by bud morphology: cells in GI are unbudded (yellow), S-phase cells with small buds (blue) and G2/M cells with
large buds (red). Large buds (dumbbells) are defined as cells where the bud is as big as the mother cell. In parallel, samples
were taken for FACScan analysis of DNA content (lower panel).
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Figure 2

Cell cycle arrest in cells lacking DDI I, DSK2 and the c-terminal UBA (UBA?2) domain of Rad23. (A) Western blots
showing relative protein levels of Rad23, Ddil and mutant forms in yeast extracts. Left two panels show endogenous levels of
these proteins and the right panel shows levels produced after expression of constructs from the GAL/ promoter. In each case,
the wild type and mutant version were tagged identically at their C-termini — [MYC]6x for Rad23 and [HIS]éx for Ddil.
PSTAIRE is a loading control. Strains expressed (from left to right) — Left panel: RAD23 [MYC]6x, DDI| [HIS]é6x,
RAD234UBAZIMYC]6x, DDI 1 4UBATHIS]6x; Middle Panel: no tag control, RAD23[MYC]éx and DDI I [HIS]6x, RAD234UBAZ[MYC]6x and
DDII[HIS]6x, RAD23[MYC]6x and DDI|4UBA[HIS]6x, RAD234UBAZIMYC]éx and DDII4UBA[HIS]6x; Right Panel: no tag control,
GALI-RAD23[MYC]6x, GALI-RAD234UBAZIMYC]6x, GALI-DDI | [HIS]6x, GALI-DDI|4UBA[HIS]6x. Upper band of Ddil is a phospho-
rylated species (data not shown). (B) Synthetic effect of UBL-UBA mutants on temperature sensitivity. The indicated strains
were grown to mid-log phase and serial dilutions were spotted onto YEPD plates and incubated at the indicated temperatures
for 48 hrs. Levels of Rad23 and Rad234YBA2 protein expression were determined as shown in A. (C) Kinetics of cell cycle pro-
gression in wild type , ddil A dsk2A rad234 and ddil A dsk2A rad23 AUBA2 cells. (ddil Adsk2A strains behaved identically to the
wild type control; Figure | and data not shown.) Cells were arrested in G| at 30°C with alpha-factor and released in rich
medium at 37°C. Cell cycle progression was monitored by bud morphology: unbudded cells (G1, yellow line), cells with small
buds (S-phase, blue line) and cells with large buds (G2/M, red line).
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either no UBL-UBA proteins (rad234ddilAdsk24) or
rad23AUBA2 (ddil Adsk2Arad23AUBA2) as the sole UBL-
UBA protein (Figure 2C). After release from a G1 arrest
induced by alpha-factor treatment at the non-permissive
temperature of 37°C, re-entry into the cell cycle and bud-
ding occurred with the same kinetics in these strains and
in a wild type control. G2/M accumulation (red line) in
the wild type strain peaked at 120 minutes and decreased
to 28% 140 minutes after release as the cells entered the
next cell cycle. Initiation of a second cell cycle was also
indicated by the presence of a second wave of small-bud-
ded cells (blue line) appearing at 130 minutes. In con-
trast, the triple deletion strain entered G2/M with the
same kinetics as wild type, but remained there even after
140 minutes (75% in G2/M). Meanwhile, ddilA dsk2A
rad23AUBA2 cells entered G2/M with the same kinetics as
both the wild type and the triple deletion strains, but
accumulated in G2/M, albeit to a lesser extent than the tri-
ple deletion (60% at 140 minutes). This finding suggests
that rad23AUBA2 partially alleviates the delay and con-
firms that complete function of Rad23 requires the full-
length protein and that the internal UBA domain (UBA1)
can only partially alleviate the G2/M delay.

G2/M arrest is not due to a failure in SPB duplication

Since defects in SPB duplication leading to G2/M arrest
have been reported for strains lacking RAD23 and DSK2
[28], we asked if there is a SPB duplication defect in the
triple deletion strain. To visualize SPBs in live cells we
used strains expressing SPC42:GFP (Table 1). Wild type or
rad23Addil Adsk2A  triple deletion strains expressing
SPC42:GFP were arrested in G1 using alpha-factor and
released into fresh medium at the restrictive temperature.
Samples were taken every 10 minutes, visualized (Figure
3A-B) and scored according to SPB number (Figure 3C).
Surprisingly, the triple deletion strain separated SPBs nor-
mally (Figure 3A-C). The kinetics of SPB separation in the
triple deletion were indistinguishable from that of the
wild type strain (Figure 3D), except that the triple deleted
cells arrested as large budded cells with two SPBs (Figure
3E,D). In the wild type strain, SPB separation initiated at
~40 minutes after release from G1 at the restrictive tem-
perature (Figure 3C, yellow line) and peaked at ~80 min-
utes. In accordance, the population of cells with a single
SPB signal (Figure 3C, blue line) was depleted within the
same timeframe. After 100 minutes a second wave of cells
with a single SPB signal peaked, followed by a second
wave of SPB separation as cells enter another cell cycle. A
mixed population of unbudded cells with single SPB sig-
nals and re-budded cells with newly separated SPBs could
be observed 110 minutes after the alpha-factor release
(Figure 3A, arrow head), consistent with cells entering the
next cell cycle. ddilAdsk2Arad23A cells separated their
SPBs with the same kinetics as wild type cells, but then
delayed or arrested with large buds and two SPBs (Figure
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3C, red line). A very similar phenotype was seen in
dsk2 Arad23A mutants (data not shown). Interestingly, the
arrest observed in the dsk24rad23A4 and the triple deleted
cells was not homogeneous, since some of the cells
arrested as dumbbells with well separated SPBs, resem-
bling anaphase cells (Figure 3B, right cells, and Figure
3D), while the rest of the arrested cells possessed SPBs that
were separated by a distance typical of G2 cells (Figure 3B,
arrow).

DAPI staining of DNA in these arrested cells confirmed
that some cells were arrested in a G2-like stage with a sin-
gle nucleus (Figure 3E, left two panels), while other cells
were arrested in early (3t panel) or late anaphase (right-
most panel). Arrest in G2 or anaphase could have been
due to defects in spindle assembly. Therefore, to further
explore these results and examine in more detail the
dynamics of spindle assembly in the triple deletion, we
constructed strains harboring a TUB1:GFP gene (Table 1).
In agreement with the results observed in the SPC42:GFP
strains, wild type cells and ddil Adsk2 Arad23 A cells assem-
bled their spindles with the same timing, relative to bud
emergence (Figure 3F).

In a final series of experiments, we performed time
courses in which cells were released from a nocodazole
arrest at the restrictive temperature of 37°C (Figure 3G).
The percentage of wild type cells with G2-SPBs (Figure 3G,
top panel, blue line) began to decrease by 20 minutes after
release from nocodazole and cells with G2-SPBs were
completely depleted (i.e. the cells had undergone ana-
phase) 90 minutes after the release. In contrast, the triple
deleted cells showed a delay in anaphase onset, as judged
by the distance between the SPBs, and ~30% remained in
G2 (Figure 3G, top panel, green line) at the time wild type
G2-cells had been completely depleted. Similar data were
obtained in strains expressing TUB1-GFP. Within about
10 minutes after release of the nocodazole block, almost
all large budded cells had assembled G2 spindles (Figure
3G, lower panel). Wild type cells initiated spindle elonga-
tion ~20 minutes after release from nocodazole and by 40
minutes most of the cells had completed anaphase (Figure
3G, lower panel, blue line). In contrast, some
ddil Adsk2Arad23A cells remained in G2, as judged by
their short (1-4 uM) spindles, even 90 minutes after the
release (Figure 3G, lower panel, green line). Together,
these results suggest ddilAdsk2Arad23A4 cells delay cell
cycle progression at two distinct points when grown at
high temperatures: a fraction of the triple deleted cells
delay before anaphase with duplicated SPBs but short
spindles, whereas other cells delay in a mid-anaphase or
late-anaphase state with partly-elongated or fully-elon-
gated spindles. This suggests that combined deletion of
RAD23, DDI1 and DSK?2 affects spindle dynamics and cell
cycle progression, but not SPB duplication.
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Figure 3

SPB duplication and spindle function. (A) Photomicrograph of wild type SPC42:GFP cells from time course in C, 110 min-
utes after alpha-factor release. Arrowhead shows rebudded cell that has already undergone a second SPB duplication. (B) Pho-
tomicrograph of rad23Adsk2 Addil ASPC42:GFP cells from time course in C, | |0 minutes after alpha factor release. Arrow
shows cell with G2-like short inter-SPB distance. (C) SPB duplication kinetics. Wild type (WT) and rad23Adsk2Addil A (3A)
cells were arrested with alpha factor and released into rich medium at 37°C. Samples were taken every 10 minutes and SPBs in
each cell were counted. (D) Photomicrographs showing SPBs (SPC42:GFP) in wild type, rad23Adsk2A and rad23 Adsk2 Addil A
cells at 90 minutes after release from GI arrest at the restrictive temperature. (E) Photomicrographs showing DIC, SPC42:GFP
signals, and DAPI staining of DNA in rad234dsk2Addil A cells at 180 minutes after release from G| arrest at the restrictive
temperature of 37°C. Left two panels show G2-like cells (52% of the large budded cells) with a single nucleus and SPBs typically
separated by less than 4 um. Right two panels show anaphase cells with divided nuclei (44% of the large budded cells) and SPBs
typically separated by > 4 um. The remaining large budded cells had stretched single nuclei. (F) Timing of bud emergence and
spindle assembly after release from alpha-factor induced G1 arrest in wild type, rad23Adsk2 A, and rad23 Adsk2Addil A cells.
Photomicrograph shows rad23Adsk2 Addil ATUBI:GFP cells at 37°C with both G2 and anaphase spindles. (G) Nocodazole
release experiment in rad23Adsk2Addil ASPC42:GFP cells. Cells were arrested with alpha factor, released into medium contain-
ing nocodazole and grown at 30°C for 2 hours, then washed and released into medium containing alpha factor to prevent re-
budding upon progression to G1. Samples were taken every |0 minutes and SPBs with short G2-like inter-SPB distance (14
pum, inset micrograph) were counted (upper panel). This protocol was repeated in rad23Adsk2Addil A TUB[:GFP cells (lower
panel). Samples were taken every 10 minutes and short G2 spindles (inset micrograph) were counted.
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Ddil homodimerization is necessary for pds|-128 rescue

In addition to their abilities to bind ubiquitin and the pro-
teasome, Dsk2, Ddil and Rad23 share the ability to form
homodimers [22,24]. The importance of dimerization for
the function of these proteins is not known however.
Dsk2 and Rad23 homodimerization involves their UBL
and/or UBA domains [17,23,24], which makes it difficult
to obtain mutants that disrupt homodimerization but
remain capable of binding to ubiquitin and the proteas-
ome. Ddil, on the other hand does not require either the
UBA or the UBL domains for homodimerization [22].
Therefore we tested whether homodimerization is impor-
tant for the role of Ddil in one specific cell cycle related
event; stabilization of Pds1-128. Firstly we more precisely
defined the domain important for Ddil homodimeriza-
tion to a region encompassing residues 184 to 285 (Figure
4A, plum). By deleting this region a new DDII allele,
ddi1A184-285, was obtained that was no longer able to
dimerize with wild type Ddil but was still able to bind
both Rad23 (Figure 4B) and ubiquitin (data not shown).

To ask whether Ddil dimerization was important for the
role of Ddil in stabilizing Pds1-128, we overexpressed
exogenous ddi1A184-285 in a pds1-128 DDI1 strain (Fig-
ure 4C) and asked whether this mutant could rescue the
temperature sensitivity of this strain (Figure 4D). When
overexpressed, neither ddi1 A184-285, nor ddil alleles that
disrupt UBA-ubiquitin interaction (ddilAUBA or ddil-
L426A [17]) rescued the temperature sensitivity of the
pds1-128 strain but overexpression of wild type DDI1 or
ddi1-A407L (a ddil-UBA mutant that still interacts with
ubiquitin) did rescue the temperature sensitivity of pds1—
128. The protein levels of wild type Ddil and the mutant
forms after expression from the GALI promoter were all
similar (Figure 4C). This was also the case when tagged
versions of DDI1 and mutants were expressed from the
GAL1 promoter (Figure 2A). Therefore, these results sug-
gest that both homodimerization and ubiquitin interac-
tion are required for rescue of pds1-128 by overproduced
Ddil.

Discussion

The UBL-UBA proteins Ddil, Dsk2 and Rad23 are con-
served from yeast to humans but are not essential for via-
bility in yeast, suggesting that they might perform
overlapping functions. We investigated this possibility by
removing all three UBL-UBA proteins to find that they are
essential for viability and cell cycle progression at high
temperatures. Interestingly, these analyses did not provide
evidence for a functional overlap between Ddil and Dsk2,
but rather indicate that Rad23 has redundant functions
with each of Ddil and Dsk2. A strain deleted for all three
of these genes exhibited a synthetic effect, suggesting that
RAD23 has at least two independent roles that are
required for viability at high temperatures; one of them

http://www.celldiv.com/content/1/1/28

shared with DDI1 and the other one with DSK2. Interest-
ingly, these redundancies do not seem to be a product of
evolutionary divergence of duplicated genes, since neither
RAD23, DSK2 or DDI1 are elements in the duplication
blocks that have been described to have arisen after the
yeast genome duplication event. Furthermore, they lie
next to elements from different duplication blocks: block
28 for RAD23, block 46 for DSK2 and block 13 for DDI1
[35], which further suggests that they are functionally
related, but not evolutionarily related.

Since these proteins have been shown to be involved in
cell cycle related phenomena [28,31], we examined cell
cycle progression at the restrictive temperature and found
that ddil Adsk2Arad23A cells arrest or delay in G2/M and
anaphase. Surprisingly, the arrest observed in the triple
deletion was not due to a failure in SPB duplication. We
were also not able to observe SPB duplication defects in
the rad23 Adsk2 A double deletion strains at 37 °C (data not
shown), as had been previously reported [28]. We cur-
rently do not know the reason for this contradictory
result, but it could be due to differences in the genetic
background between the BF264-15Daub (this study) and
S288c strains [28].

Interestingly, when we examined the kinetics of spindle
elongation (Figure 3) we found that the arrest observed in
the triple deletion strain was not homogeneous. There
were two distinct populations: cells that arrested with G2-
like spindles and had a single nucleus, and cells that
arrested with partly or fully elongated spindles and
divided nuclei. One possibility is that the
ddil Adsk2 Arad23 A cells progressively accumulate ubiqui-
tinated substrates that somehow interfere with degrada-
tion of other cell cycle regulatory proteins. The existence
of two arrest points might therefore be a reflection of two
cell cycle stages at which proteasome function is required:
some of the mutant cells may have accumulated enough
substrates to enforce arrest at the earlier time point
whereas other cells might be able to reach the latter cell
cycle stage. However, the specific reasons why subpopula-
tions of the triple deleted cells arrest at the earlier or later
time point remain to be determined.

The ability of UBL-UBA proteins to both hetero and
homodimerize, as well as to bind to polyubiquitin in tan-
dem [23] suggests the possibility that UBL-UBA dimeriza-
tion regulates binding of these proteins to ubiquitinated
substrates, possibly by bringing more than one UBL-UBA
protein in close proximity to the ubiquitin chain [23,36].
Ddil is the only UBL-UBA protein in which homodimer-
ization does not involve the UBL or UBA domains, allow-
ing the study of the role of dimerization without affecting
its interaction with ubiquitin or the proteasome. We have
shown that disruption of Ddil homodimerization affects
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Ddil homodimerization is required for rescue of pdsI-128 temperature sensitivitity. (A) Ddil sequence with the
UBL and UBA domains in green and orange, respectively. Residues 184285 are displayed in plum and C276 and C300 in blue.
(B) Yeast two hybrid assay reveals that residues 184-285 are important for homodimerization of Ddil but not for its interac-
tion with Rad23. Production of blue color in x-gal containing medium signals for a positive interaction between two proteins
[17]. ddil A184—285 interaction with DDI ! is highly reduced but ddil A184—285 interaction with RAD23 is similar to that of wild
type DDII. (C) Western blots showing levels of different Ddil variants. Cells were grown on YEPR overnight, diluted 1:10 and
expression of DD/ constructs was induced from the GALI promoter by Galactose addition. These strains corresponded to the
pds|—128 DDI| strains assayed in D and expressed the indicated constructs exogenously from GAL/ in addition to expressing
endogenous DDI/ (which is approximately 47 kD) from its native locus. The leftmost lane contains a vector control, not
expressing DDI| exogenously. The Western blot was probed with poly-clonal anti-sera against Ddil that recognized all of the
mutant forms tested. Where wild type DDI| is expressed from the GALI promoter, the upper band contains endogenous and
exogenous Ddil. (D) Rescue of pds/—/28 temperature sensitivity. Serial dilutions of the indicated strains (corresponding to
those tested in D) were spotted onto YEPD or YEPG plates and incubated for 24 hr at the indicated temperatures.
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Ddil's ability to rescue the pds1—128 temperature sensitiv-
ity, suggesting that Ddil homodimerization is necessary

not shown). Interestingly, it has been suggested that
Pds1-128 stabilization by Ddil might be due to de-ubig-

for its role in Pds1-128 stabilization. Ddil dimerization
does not involve the cystein residues at positions 276 and
300 (Figure 4A, blue) since a C276S C300S double
mutant is still able to interact with wild type Ddil (data

uitination of Pds1-128 through the aspartyl-protease
domain of Ddil (underlined in Figure 4A)[37]. Our
results suggest that this could be possible. First, the
ddi1A184-285 allele lacks half of the aspartyl-protease

Page 9 of 11

(page number not for citation purposes)



Cell Division 2006, 1:28

domain. Second, the aspartyl protease domain requires
dimerization to become active, and the ddi1A184-285
allele does not dimerize, suggesting that the predicted
Ddil aspartyl-protease activity is not functional in
ddi1A184-285 and could hypothetically be involved in
pds1-128 rescue.

Conclusion

Redundancy of function among the budding yeast UBL-
UBA proteins can be predicted based on their common
abilities to bind ubiquitin and the proteasome. We have
shown that the yeast UBL-UBA proteins have partially
redundant functions, Rad23 being redundant with both
Ddil and Dsk2. Surprisingly Ddil and Dsk2 do not share
redundant functions but a synthetic phenotype is
observed in the triple deletion strain in which cells
become delayed in both G2 and anaphase.

Materials and methods

Strains and Plasmids

Strains are derivatives of BF264-15Daub [38], unless oth-
erwise noted. Standard genetic procedures were used [39].
Spindles were visualized by expressing a GFP:TUB1 con-
struct [40,41] integrated at the URA3 locus. SPBs were vis-
ualized by expressing a GFP-SPC42 construct [28].
Cultures were grown on YEPD at 30°C unless otherwise
stated. Micrographs were acquired with a Zeiss Axioplan2
Microscope, using an alpha-Plan-FLUAR 100X/1,45 oil
objective, an Axiocam HRm camera and Axiovision soft-
ware.

The pB42AD-ddi1A184-285 vector was obtained by Clal
digestion of the pB42AD-DDI1 two-hybrid vector [17,31]
followed by self-ligation. pYIPG2-DDI1 and pYIG2-
ddi1A184-285 were obtained by PCR from the respective
pB42AD-vectors. The PCR fragments were cloned into a
pCR2.1-TOPO vector (Invitrogen), cut out with BamHI
and cloned into the pYIPG2 vector. These constructs were
subsequently integrated at the LEU2 locus. pB42AD-
DDI1-C276S-C300S was constructed using the Quick-
Change site directed mutagenesis kit (Stratagene) using
the following mutagenesis primers: DDIC300S-1
5'CTGAAAAGGCATTGGCTAGTGTGGACTITAAAGGAAA
AC3', DDIC300S-2
5'GTTITCCTTTAAGTCCACACTAGCCAAATGCCTITTCA
G3, DDIC276S-1
5'AAAATAGAAACACAATATATTCCAAGCAGTTTTACCGT
CITAGATACTG3' and DDIC276S-2
5'CAGTATCTAAGACGGTAAAACTGCTTGGAATATATTG
TGTTTCTATTTTS'.

DSK2 was disrupted by homologous recombination using
a fragment obtained by PCR from the FAG cassette using
the primers: dsk2kan-5' (5'-
ATAAGACGGATCAAAGACACCGAATCATTCTAGCAC-

http://www.celldiv.com/content/1/1/28

GATACAGCTGAAGCITCGTACGCT-3") and dsk2kan-3'
(5'-TAGGGTAAAAGTATATAGGTTGCGGCATCTA-
GACGTTTATGCATAGGCCACTAGTGGATC-3")

Time courses

Yeast strains were grown in rich YEPD medium containing
extra adenine overnight and diluted 1:20 before the exper-
iment. For G1-release, diluted cultures were incubated for
~2 hours in the presence of 0.2 pg/mL alpha-factor
(Sigma), then washed twice and released in fresh medium
at 37°C. For nocodazole release, an alpha-factor arrest
was performed first and cells were released into fresh
medium at 37°C containing 15 pg/mL Nocodazole for
11/2 hours. Cells were washed twice with pre-warmed
sterile water and released into pre-warmed rich medium
containing 0.4 pg/mL alpha-factor to stop the cells from
entering the next cell cycle. Alpha-factor was also added to
the nocodazole-arrest medium 1/2 hour before releasing.
At least 100 cells were counted per timepoint.

Western blots

Whole cell lysates were separated by SDS-PAGE (10% acr-
ylamide w/v), transferred to an Immobilon PVDF mem-
brane and probed using rabbit polyclonal anti-Ddil
1:5000, or rabbit polyclonal anti-Rad23 1:5000 [22].
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