Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2003 Aug 7;270(Suppl 1):S69–S72. doi: 10.1098/rsbl.2003.0016

Evidence for the presence of a cellulase gene in the last common ancestor of bilaterian animals.

Nathan Lo 1, Hirofumi Watanabe 1, Masahiro Sugimura 1
PMCID: PMC1698037  PMID: 12952640

Abstract

Until recently, the textbook view of cellulose hydrolysis in animals was that gut-resident symbiotic organisms such as bacteria or unicellular eukaryotes are responsible for the cellulases produced. This view has been challenged by the characterization and sequencing of endogenous cellulase genes from some invertebrate animals, including plant-parasitic nematodes, arthropods and a mollusc. Most of these genes are completely unrelated in terms of sequence, and their evolutionary origins remain unclear. In the case of plant-parasitic nematodes, it has been suggested that their ancestor obtained a cellulase gene via horizontal gene transfer from a prokaryote, and similar suggestions have been made about a cellulase gene recently discovered in a sea squirt. To improve understanding about the evolution of animal cellulases, we searched for all known types of these enzymes in GenBank, and performed phylogenetic comparisons. Low phylogenetic resolution was found among most of the sequences examined, however, positional identity in the introns of cellulase genes from a termite, a sea squirt and an abalone provided compelling evidence that a similar gene was present in the last common ancestor of protostomes and deuterostomes. In a different enzyme family, cellulases from beetles and plant-parasitic nematodes were found to cluster together. This result questions the idea of lateral gene transfer into the ancestors of the latter, although statistical tests did not allow this possibility to be ruled out. Overall, our results suggest that at least one family of endogenous cellulases may be more widespread in animals than previously thought.

Full Text

The Full Text of this article is available as a PDF (153.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Byrne K. A., Lehnert S. A., Johnson S. E., Moore S. S. Isolation of a cDNA encoding a putative cellulase in the red claw crayfish Cherax quadricarinatus. Gene. 1999 Nov 1;239(2):317–324. doi: 10.1016/s0378-1119(99)00396-0. [DOI] [PubMed] [Google Scholar]
  2. Davis Eric L., Hussey Richard S., Baum Thomas J., Bakker Jaap, Schots Arjen, Rosso Marie-Noelle, Abad Pierre. NEMATODE PARASITISM GENES. Annu Rev Phytopathol. 2000;38(NaN):365–396. doi: 10.1146/annurev.phyto.38.1.365. [DOI] [PubMed] [Google Scholar]
  3. Dehal Paramvir, Satou Yutaka, Campbell Robert K., Chapman Jarrod, Degnan Bernard, De Tomaso Anthony, Davidson Brad, Di Gregorio Anna, Gelpke Maarten, Goodstein David M. The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science. 2002 Dec 13;298(5601):2157–2167. doi: 10.1126/science.1080049. [DOI] [PubMed] [Google Scholar]
  4. Erwin Douglas H., Davidson Eric H. The last common bilaterian ancestor. Development. 2002 Jul;129(13):3021–3032. doi: 10.1242/dev.129.13.3021. [DOI] [PubMed] [Google Scholar]
  5. Girard C., Jouanin L. Molecular cloning of cDNAs encoding a range of digestive enzymes from a phytophagous beetle, Phaedon cochleariae. Insect Biochem Mol Biol. 1999 Dec;29(12):1129–1142. doi: 10.1016/s0965-1748(99)00104-6. [DOI] [PubMed] [Google Scholar]
  6. Henrissat B., Bairoch A. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J. 1993 Aug 1;293(Pt 3):781–788. doi: 10.1042/bj2930781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kishino H., Hasegawa M. Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in hominoidea. J Mol Evol. 1989 Aug;29(2):170–179. doi: 10.1007/BF02100115. [DOI] [PubMed] [Google Scholar]
  8. Lo N., Tokuda G., Watanabe H., Rose H., Slaytor M., Maekawa K., Bandi C., Noda H. Evidence from multiple gene sequences indicates that termites evolved from wood-feeding cockroaches. Curr Biol. 2000 Jun 29;10(13):801–804. doi: 10.1016/s0960-9822(00)00561-3. [DOI] [PubMed] [Google Scholar]
  9. Rosso M. N., Favery B., Piotte C., Arthaud L., De Boer J. M., Hussey R. S., Bakker J., Baum T. J., Abad P. Isolation of a cDNA encoding a beta-1,4-endoglucanase in the root-knot nematode Meloidogyne incognita and expression analysis during plant parasitism. Mol Plant Microbe Interact. 1999 Jul;12(7):585–591. doi: 10.1094/MPMI.1999.12.7.585. [DOI] [PubMed] [Google Scholar]
  10. Smant G., Stokkermans J. P., Yan Y., de Boer J. M., Baum T. J., Wang X., Hussey R. S., Gommers F. J., Henrissat B., Davis E. L. Endogenous cellulases in animals: isolation of beta-1, 4-endoglucanase genes from two species of plant-parasitic cyst nematodes. Proc Natl Acad Sci U S A. 1998 Apr 28;95(9):4906–4911. doi: 10.1073/pnas.95.9.4906. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Suzuki Ken-ichi, Ojima Takao, Nishita Kiyoyoshi. Purification and cDNA cloning of a cellulase from abalone Haliotis discus hannai. Eur J Biochem. 2003 Feb;270(4):771–778. doi: 10.1046/j.1432-1033.2003.03443.x. [DOI] [PubMed] [Google Scholar]
  12. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997 Dec 15;25(24):4876–4882. doi: 10.1093/nar/25.24.4876. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Tokuda G., Lo N., Watanabe H., Slaytor M., Matsumoto T., Noda H. Metazoan cellulase genes from termites: intron/exon structures and sites of expression. Biochim Biophys Acta. 1999 Oct 28;1447(2-3):146–159. doi: 10.1016/s0167-4781(99)00169-4. [DOI] [PubMed] [Google Scholar]
  14. Tomme P., Warren R. A., Gilkes N. R. Cellulose hydrolysis by bacteria and fungi. Adv Microb Physiol. 1995;37:1–81. doi: 10.1016/s0065-2911(08)60143-5. [DOI] [PubMed] [Google Scholar]
  15. Watanabe H., Noda H., Tokuda G., Lo N. A cellulase gene of termite origin. Nature. 1998 Jul 23;394(6691):330–331. doi: 10.1038/28527. [DOI] [PubMed] [Google Scholar]
  16. Watanabe H., Tokuda G. Animal cellulases. Cell Mol Life Sci. 2001 Aug;58(9):1167–1178. doi: 10.1007/PL00000931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Whelan S., Goldman N. A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol. 2001 May;18(5):691–699. doi: 10.1093/oxfordjournals.molbev.a003851. [DOI] [PubMed] [Google Scholar]
  18. Xu B., Janson J. C., Sellos D. Cloning and sequencing of a molluscan endo-beta-1,4-glucanase gene from the blue mussel, Mytilus edulis. Eur J Biochem. 2001 Jul;268(13):3718–3727. doi: 10.1046/j.1432-1327.2001.02280.x. [DOI] [PubMed] [Google Scholar]
  19. Yan Y., Smant G., Stokkermans J., Qin L., Helder J., Baum T., Schots A., Davis E. Genomic organization of four beta-1,4-endoglucanase genes in plant-parasitic cyst nematodes and its evolutionary implications. Gene. 1998 Oct 5;220(1-2):61–70. doi: 10.1016/s0378-1119(98)00413-2. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES