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ARTICLE

Test for Interaction between Two Unlinked Loci
Jinying Zhao,* Li Jin, and Momiao Xiong

Despite the growing consensus on the importance of testing gene-gene interactions in genetic studies of complex diseases,
the effect of gene-gene interactions has often been defined as a deviance from genetic additive effects, which is essentially
treated as a residual term in genetic analysis and leads to low power in detecting the presence of interacting effects. To
what extent the definition of gene-gene interaction at population level reflects the genes’ biochemical or physiological
interaction remains a mystery. In this article, we introduce a novel definition and a new measure of gene-gene interaction
between two unlinked loci (or genes). We developed a general theory for studying linkage disequilibrium (LD) patterns
in disease population under two-locus disease models. The properties of using the LD measure in a disease population
as a function of the measure of gene-gene interaction between two unlinked loci were also investigated. We examined
how interaction between two loci creates LD in a disease population and showed that the mathematical formulation of
the new definition for gene-gene interaction between two loci was similar to that of the LD between two loci. This
finding motived us to develop an LD-based statistic to detect gene-gene interaction between two unlinked loci. The null
distribution and type I error rates of the LD-based statistic for testing gene-gene interaction were validated using extensive
simulation studies. We found that the new test statistic was more powerful than the traditional logistic regression under
three two-locus disease models and demonstrated that the power of the test statistic depends on the measure of gene-
gene interaction. We also investigated the impact of using tagging SNPs for testing interaction on the power to detect
interaction between two unlinked loci. Finally, to evaluate the performance of our new method, we applied the LD-
based statistic to two published data sets. Our results showed that the P values of the LD-based statistic were smaller
than those obtained by other approaches, including logistic regression models.
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Complex diseases are typically caused by multiple factors,
including multiple genes, primarily through nonlinear
gene-gene interactions and gene-environment interac-
tions. Gene-gene interaction is an important but complex
concept.1 Despite growing recognition of the importance
of gene interactions in genetic studies of complex diseases,
classical genetic analysis either ignores gene interactions
or defines the effect of gene interactions as a deviance
from genetic additive effects, which is essentially treated
as a residual term in genetic analysis.2 Fisher3 mathemat-
ically defined the effect of gene interactions as a statistical
deviance from the additive effects of single genes, which
is often referred to as “statistical interaction” between
genes. This was further developed by Cockerham4 and
Kempthorne5 into the modern representation that treats
statistical gene interactions as interaction terms in a re-
gression model or a generalized linear model on allelic
effects.2,6–11 Modeling a trait as an additive combination
of its single-locus main effects and interaction terms is
likely to limit the power to detect interaction.

In the past several years, combinatorial partitioning12

and various data-mining methods1,13–21 have been ex-
plored to detect gene-gene interaction. The limitations of
these methods include (1) the lack of clear biological in-
terpretation of gene-gene interaction, (2) the requirement

of intensive computation, and (3) the fact that the power
to detect gene-gene interaction may depend on the data
structure.

To overcome these limitations, we propose to define
interaction between two unlinked loci (or genes) for a
qualitative trait as the deviance of the penetrance for a
haplotype at two loci from the product of the marginal
penetrance of the individual alleles that span the haplo-
type. This definition of gene-gene interaction between two
unlinked loci measures the dependence of the penetrance
at one marker locus on the genotypes at another locus,
which is not derived from the additive model. Interaction
between two unlinked loci will result in deviation of the
penetrance of the two-locus haplotype from indepen-
dence of the marginal penetrance of the alleles at an in-
dividual locus, which in turn will create linkage disequi-
librium (LD) even if two loci are unlinked. The level of
LD created depends on the magnitude of interaction be-
tween two unlinked loci. Therefore, it is possible to de-
velop statistics for detection of interaction between two
unlinked loci by use of deviations from LD. Such statistics
for interaction detection between two unlinked loci have
advantages, as follows. First, since interaction between
two unlinked loci can be characterized by LD between two
interacting loci, the LD-based statistics for detection of
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Table 1. Interaction between Two
Unlinked Disease Loci under Six
Two-Locus Disease Models

Model and
First Locus

Second Locus
Interaction

MeasureD D2 2 D d2 2 d d2 2

Dom ∪ Dom: 2�P P fd d1 2

D D1 1 f f f
D d1 1 f f f
d d1 1 f f 0

Rec ∪ Rec: 2�P P fD D1 2

D D1 1 f f f
D d1 1 f 0 0
d d1 1 f 0 0

Threshold: 2 2 2�P P fD D1 2

D D1 1 f f 0
D d1 1 f 0 0
d d1 1 0 0 0

Dom ∪ Rec: 2�P P fd D1 2

D D1 1 f f f
D d1 1 f f f
d d1 1 f 0 0

Epistasis: 2 2�P P fD D1 2

D D1 1 f f 0
D d1 1 f 0 0
d d1 1 f 0 0

Modifying: 2 2�P P fD D1 2

D D1 1 f f f
D d1 1 f 0 0
d d1 1 0 0 0

interaction between two unlinked loci will have a clear
biological interpretation. Second, they will not treat in-
teraction as a residual term in the model and can implicitly
consider nonlinear interaction between two unlinked loci.
Hence, LD-based statistics for detection of interaction be-
tween two unlinked loci will have higher power than that
of the traditional Fisher’s method. Third, computation of
LD-based statistics is much faster than logistic regression
models; thus, they are particularly suitable for genome-
wide association studies.

To date, formal statistics for testing gene interactions by
use of LD among loci are not yet developed, although
several empirical studies to assess the role of gene inter-
action by use of LD have been conducted.22–25 These stud-
ies assessed deviations from equilibrium in the affected
population to indicate interaction between two unlinked
loci. These empirical studies for testing interaction be-
tween two unlinked loci have limitations. Most of the LD-
based empirical studies are descriptive. They separately
tested deviation from equilibrium in cases and controls
but did not provide a unified statistic to test gene inter-
action by assessing difference in LD between cases and
controls. Furthermore, they did not examine the null dis-
tributions, type I error rates, and power of the test statis-
tics. As a consequence, in the presence of complex LD
patterns in populations, these LD-based empirical studies
for identifying gene interactions may have high false-pos-
itive rates.

The main purpose of this article is to develop statistics
with high power for detection of interaction between two

unlinked loci. To accomplish this, we first develop general
theory to study LD patterns under two-locus disease mod-
els. We then develop a novel definition of gene interaction
and a measure of interaction between two unlinked dis-
ease loci under the framework of LD analysis. The pattern
of LD between two unlinked loci created by gene-gene
interaction provides a foundation for developing statistics
for detection of interaction. This motives us to develop
the LD-based statistics for testing interactions between
two unlinked loci. We also investigate type I error rates
of the LD-based statistics. Furthermore, we explore the
possibility of using two unlinked tagging SNPs (tSNPs) for
detecting interaction between two disease loci that are in
LD with the chosen tSNPs. To investigate the impact of
using tSNPs on interaction detection, we evaluate the
power of directly using interacting disease loci and of us-
ing tSNPs that are in high LD with the interacting disease
loci to detect interaction. To evaluate the performance of
the new statistic, we also applied it to two real examples.
We conclude with a discussion of the advantages and po-
tential limitations of the proposed statistic.

Methods
LD Generated by Gene-Gene Interactions

To investigate the LD pattern generated by gene-gene interaction,
we assume that two disease-susceptibility loci are in Hardy-Wein-
berg equilibrium (HWE) and are unlinked. Let and be theD d1 1

two alleles at the first disease locus, with frequencies andPD1

, respectively. Let and be the two alleles at the secondP D dd 2 21

disease locus, with frequencies and , respectively. AllelesP PD d2 2

and can be indexed by 1 and 2, respectively. At the firstD d1 1

disease locus, let be genotype 11, be genotype 12, andD D D d1 1 1 1

be genotype 22. The genotypes at the second disease locusd d1 1

are similarly defined. Two-locus genotypes are simply denoted by
ijkl for individuals carrying the haplotypes ik and jl arranged from
left to right. Let be the penetrance of the individuals withfijkl

haplotypes ik and jl arranged from left to right. Let , , ,P P P11 12 21

and be the frequencies of haplotypes , , , andP H H H22 D D D d d D1 2 1 2 1 2

in the general population, respectively. Let , , , andA A AH P P Pd d 11 12 211 2

be their corresponding haplotype frequencies in the diseaseAP22

population. Let , , , and be the frequencies of the allelesA A A AP P P PD d D d1 1 2 2

, , , and in the disease population, respectively.D d D d1 1 2 2

For ease of discussion, we introduce a concept of haplotype
penetrance. Consider a haplotype with allele i at the first disease
locus and allele k at the second disease locus. Then, the pene-
trance of haplotype is defined asHik

h p P P f � P P f � P P f � P P f .ik D D i1k1 D d i1k2 d D i2k1 d d i2k21 2 1 2 1 2 1 2

Let be the LD measure in the general population.d p P � P P11 D D1 2

In appendix A, we show that haplotype frequencies in disease
population can be expressed as

P P h P P hD D 11 D d2 12A A1 2 1P p , P p ,11 12P PA A

P P h P hd D 21 d d 22A A1 2 1 2P p , and P p , (1)21 22P PA A
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Figure 1. LD between two unlinked loci in a disease population
under three two-locus disease models as a function of allele fre-
quency at the first locus, under the assumption that the allele
frequency at the second locus equals 0.1.

where denotes disease prevalence and is given byPA

2 2 2 2P p P P f � P P P f � P P P fA D D 1111 D D d 1112 D d D 11211 2 1 2 2 1 2 2

2 2 2�P P f � P P P f � P P P P fD d 1122 D d D 1211 D d D d 12121 2 1 1 2 1 1 2 2

2 2�P P P P f � P P P f � P P P fD d d D 1221 D d d 1222 d D D 21111 1 2 2 1 1 2 1 1 2

2�P P P P f � P P P P f � P P P fd D D d 2112 d D d D 2121 d D d 21221 1 2 2 1 1 2 2 1 1 2

2 2 2 2�P P f � P P P f � P P P fd D 2211 d D d 2212 d d D 22211 2 1 2 2 1 2 2

2 2�P P f .d d 22221 2

Now, we calculate the LD measure in the disease population
under a general two-locus disease model. The measure of LD in
the disease population is defined as . We canA A A A Ad p P P � P P11 22 12 21

show (appendix A) that it can be given by

P P P PD D d dA 1 2 1 2d p I , (2)2PA

where , which is defined as a measure of inter-I p h h � h h11 22 12 21

action between two unlinked loci and quantifies the magnitude
of interaction. Absence of interaction between two unlinked loci
is then defined as

h h p h h . (3)11 22 12 21

Under this definition, in the absence of interaction, two unlinked
loci in the disease population will be in linkage equilibrium.

From equation (2), we can see that, if , even ifh h ( h h11 22 12 21

two loci are in linkage equilibrium in the general population, two
loci will be in LD in the disease population. LD in the disease
population is created by the interaction between two unlinked
loci. This provides a basis for testing interaction between two
unlinked loci, as shown in the “Test Statistic” section.

Define and . In ap-h p P(AffectedFD ) h p P(AffectedFD )D 1 D 21 2

pendix A, we show that equation (3) implies that

1 h h h11 D D1 2h p h h , or p .11 D D1 2P P P PA A A A

Similar to linkage equilibrium, where the frequency of a haplo-
type is equal to the product of the frequencies of the component
alleles of the haplotype, absence of interaction between two un-
linked loci implies that the proportion of individuals carrying a
haplotype in the disease population is equal to the product of
the proportions of individuals carrying the component alleles of
the haplotype in the disease population, if we assume that the
disease is caused by only two investigated disease loci. In other
words, interaction between two disease-susceptibility loci occurs
when contribution of one locus to the disease depends on another
locus.

Suppose that the first locus postulated above is a disease-
susceptibility locus and that the second is a marker locus that
does not predispose carriers to a disease phenotype. Let be thefij

penetrance of the genotype at the disease-susceptibility lo-ij
cus. Then, we have , ,h p P f � P f h � P f � P f h p11 D 11 d 12 22 D 21 d 22 121 1 1 1

, and , which implies thatP f � P f h p P f � P fD 11 d 12 21 D 21 d 221 1 1 1

(P f � P f )(P f � P f )D 11 d 12 D 21 d 22A 1 1 1 1d p d .2PA

That is, the measure of LD between a disease locus and a marker
locus in the disease population ( ) can be expressed in terms ofAd

the measure of LD in the general population and a multiplicative
factor. If the disease locus and the marker locus are unlinked,
then the disease and marker loci will be in linkage equilibrium.
This demonstrates that, in the absence of interaction between the
unlinked marker and the disease loci, LD in the disease popula-
tion cannot be created.

To further understand the measure of interaction between two
unlinked loci, we examined the interactions between two un-
linked loci under six two-locus disease models. Results are listed
in table 1, in which the values represent the penetrances of the
given genotypes.26–28 The measure of interaction between two un-
linked loci depends not only on penetrance but also on the fre-
quencies of the disease alleles.

Indirect Interaction between Two Unlinked Marker Loci

In the previous section, we studied interaction between two un-
linked disease loci. Now, we consider two marker loci, each of
which is in LD with either of two interacting loci. Although there
is no physiological interaction between the two marker loci, if
each marker locus is in LD with one of the two unlinked inter-
acting loci, we still can observe LD between two unlinked marker
loci in the disease population. Assume that marker is in LDM1

with disease locus and that marker is in LD with diseaseD M1 2

locus . Furthermore, we assume that two disease loci, andD D2 1

, are unlinked. Let be the LD measure between two markerAD d2 M

loci in the disease population. Let be the LD measure betweendi

marker and disease locus ( ) in the general population.M D i p 1,2i i

Then, we can show (appendix B) that

d d (h h � h h ) d d1 2 11 22 21 12 1 2A Ad p p d , (4)M 2P P P P PA D D d d1 2 1 2



834 The American Journal of Human Genetics Volume 79 November 2006 www.ajhg.org

Figure 2. Measure of interaction between two unlinked loci as
a function of the penetrance parameter under six two-locus disease
models, under the assumption that allele frequencies at the first
and second loci equal either 0.3 and 0.8, respectively (A), or 0.2
and 0.4, respectively (B).

where is the measure of LD between two unlinked disease lociAd

in the disease population. It is clear that, when the marker loci
are the disease loci themselves, is reduced to . Equation (4)A Ad dM

can also be written in terms of the measure of interaction between
two unlinked loci:

d d1 2Ad p I .M 2PA

Since , the absolute value of the LD measure betweend � P Pi D di i

two unlinked marker loci in the disease population—for example,
—will be less than or equal to the absolute value of the LDAFd FM

measure between two unlinked disease loci in the disease
population.

Equation (4) shows that the LD between unlinked marker loci
in the disease population is proportional to the product of LD
between each marker locus and its linked disease locus, . Sinced d1 2

the criteria for tSNP selection are based on only one pairwise LD
between the marker and disease loci, the LD between tSNPs and

interacting loci may not be large enough to ensure that indirect
interaction between two unlinked marker loci will be detected.
Thus, if the interacting disease loci are not selected as tSNPs,
many loci with interactions will be missed. This will have a pro-
found implication on tSNP selection.

Test Statistic

In the previous section, we showed that interaction between un-
linked loci will create LD. Intuitively, we can test interaction by
comparing the difference in the LD levels between two unlinked
loci between cases and controls. Precisely, if we denote the esti-
mators of the LD measures in cases and controls by and ,ˆ ˆd dA N

respectively, then the test statistic can be defined as

2ˆ ˆ(d � d )A NT p , (5)I ˆ ˆV � VA N

where

A A Aˆ ˆ ˆ ˆd p P � P P ,A 11 D D1 2

ˆ ˆ ˆ ˆd p P � P P ,N 11 D D1 2

A A A A A A 2ˆ ˆˆ ˆ ˆ ˆ ˆ ˆP (1 � P )P (1 � P ) � (1 � 2P )(1 � 2P )d � dD D D D D D A A1 1 2 2 1 2V̂ p ,A 2nA

2ˆ ˆˆ ˆ ˆ ˆ ˆ ˆP (1 � P )P (1 � P ) � (1 � 2P )(1 � 2P )d � dD D D D D D N N1 1 2 2 1 2V̂ p ,N 2nG

and and denote the number of sampled individuals in casesn nA G

and controls, respectively. , , , , , and are definedA A A N N NP P P P P P11 D D 11 D D1 2 1 2

as before. , , , , , and are their estimators, theA A Aˆ ˆ ˆ ˆ ˆ ˆP P P P P P11 D D 11 D D1 2 1 2

variance of the LD measure was the large-sample variance,29 and
and are the estimators of the variances and , respec-ˆ ˆV V V VA N A N

tively. This statistic will be referred to as the “LD-based statistic”
throughout the article. We can show that test statistic is as-TI

ymptotically distributed as a central distribution under the2x(1)

null hypothesis of no interaction between two unlinked loci (ap-
pendix C).

In theory, when there is no interaction between two unlinked
loci, the LD between them should be zero. Thus, we can use case-
only design to study interaction between two loci. In this case,
equation (5) will be reduced to

A 2ˆ(d )
T p . (6)I V̂A

However, in practice, background LD between two unlinked loci
may exist in the population because of many unknown factors.
Therefore, using equation (6) to test for interaction will increase
type I error rates. The test statistic defined in equation (5) is more
robust than that in equation (6). In appendix C, we showed that,
for an admixed population, if differences in allele frequencies
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Figure 3. Null distribution of the test statistic by use of 150TI

individuals (A) or 250 individuals (B) from both the cases and the
controls in a homogeneous population.

Table 2. Type I Error Rates of the
Test Statistic in TestingTI

Interaction between Two Unlinked
Loci in a Homogeneous Population

Sample
Size

Type I Error Rate
for Nominal Level

a p .05 a p .01 a p .001

100 .0501 .0108 .0010
150 .0478 .0099 .0008
200 .0502 .0094 .0012
250 .0477 .0082 .0007
300 .0482 .0091 .0010
350 .0469 .0100 .0011
400 .0472 .0091 .0009
450 .0467 .0088 .0014
500 .0466 .0096 .0010

between two subpopulations at each of the two loci in cases and
controls are the same, test statistic in equation (5) is still a validTI

test for interaction between two unlinked loci.

Results
Patterns of Pairwise LD under Two-Locus Disease Models

Knowledge about differences in LD patterns between dis-
ease and general populations is crucial for association
studies of complex diseases. To illustrate how the differ-
ences in LD patterns between disease and general popu-
lations are influenced by disease models, we examined the
LD patterns between unlinked loci by assuming several
two-locus disease models. We first studied the LD between
two unlinked loci under three two-locus disease models:
the union of dominant and dominant (Dom ∪ Dom), the
union of recessive and recessive (Rec ∪ Rec), and threshold
models (table 1). Figure 1 shows the LD between two un-
linked loci, which is generated by the joint actions of two
disease loci, as a function of the allele frequency at the
first locus, under the assumption that the allele frequency

at the second locus and penetrance parameterP p 0.1D2

. Figure 1 shows that, although two unlinked loci inf p 1
the general population is in linkage equilibrium, the LD
between two unlinked loci in the disease population does
exist. The LD in disease population depends on the disease
models and the allele frequencies at two loci.

Pairwise Interaction Measure

The proposed measure of interaction between two un-
linked loci quantifies the magnitude of interaction be-
tween two unlinked loci. To further explore the properties
of the interaction measure between two unlinked loci, we
investigated the impact of the two-locus disease models
on the measure of interaction. Figure 2 plots the measure
of interaction between two unlinked loci under six two-
locus disease models (table 1) as a function of penetrance
parameter f, under the assumption that the allele fre-
quencies at the two loci are 0.3 and 0.8 (fig. 2A) or 0.2
and 0.4 (fig. 2B). The figures shows that the measure of
interaction is a monotonic function of the penetrance pa-
rameter. The measure of interaction depends on both the
disease models and the allele frequencies at the two loci.
However, the relationship between the measure of inter-
action and disease models is complex. For example, when
the allele frequencies at two loci are 0.2 and 0.4, the mea-
sure of interaction for the Dom ∪ Dom model is much
larger than that for Rec ∪ Rec model, whereas when the
allele frequencies at two loci are 0.3 and 0.8, the measure
of interaction for the Dom ∪ Dom model is smaller than
that for the Rec ∪ Rec model. This may partially explain
why gene-gene interaction detected in one population
cannot be replicated in another population, because allele
frequencies are different between populations.

Null Distribution of Test Statistics

In the previous sections, we have shown that, when sam-
ple size is large enough to apply large-sample theory, dis-
tribution of the statistic for testing interaction betweenTI

two unlinked loci under the null hypothesis of no inter-
action is asymptotically a central distribution. To ex-2x(1)
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Figure 4. Null distribution of the test statistic by use of 300TI

individuals from both the cases and the controls in an admixed
population.

amine the validity of this statement, we performed a series
of simulation studies. The computer program SNaP30 was
used to generate two-locus genotype data of the sample
individuals. A total of 10,000 individuals who were equally
divided into cases and controls were generated in the gen-
eral population. From each group of the cases and con-
trols, 100–500 individuals were randomly sampled; 10,000
simulations were repeated.

Figure 3A and 3B plots the histograms of the test statistic
for testing gene-gene interaction between two unlinkedTI

loci with sample sizes and ,n p n p 150 n p n p 250A G A G

respectively. It can be seen that the distributions of the
test statistic are similar to the theoretical central 2T xI (1)

distribution. Table 2 shows that the estimated type I error
rates of the statistic for testing interaction were notTI

appreciably different from the nominal levels ,a p 0.05
, and .a p 0.01 a p 0.001

To examine the impact of population substructure on
the null distribution of the test statistic , we performedTI

a series of simulations. We assumed that allele frequencies
at the first locus were 0.7 and 0.3 in population 1 and 0.3
and 0.7 in population 2. The allele frequencies at the sec-
ond loci were assumed to be 0.2 and 0.8 in population 1
and 0.8 and 0.2 in population 2. From each population,
10,000 individuals were sampled, and these individuals
were mixed to form an admixed population, which was
then equally divided into cases and controls. Three hun-
dred individuals were randomly sampled from each group
of the cases and controls, and 10,000 simulations were
repeated. Figure 4 shows the histograms of test statistic

. It can be seen that the distribution of is similar toT TI I

the theoretical central distributions, which shows that2x

population admixture has a mild impact on the null dis-
tribution of test statistic .TI

Power Evaluation

To further evaluate the performance of the proposed sta-
tistic in testing gene-gene interaction, we compared the
power of the LD-based statistic with that of the logistic
model. We considered three types of genotype coding
(genetic covariate variables). For a recessive model, ho-
mozygous wild-type, heterozygous, and homozygous mu-
tant genotypes were coded as 0, 0, and 1, respectively. For
a dominant model, these three genotypes were coded as
0, 1, and 1. For an additive model, they were coded as 0,
1, and 2. We considered two loci, denoted as G and H,
respectively. Power for the logistic regression model in
testing gene-gene interaction was calculated using the
software QUANTO.31 Figure 5A, 5B, and 5C presents the
power comparisons between logistic regression model and
LD-based statistic under the three genetic interaction mod-
els: recessive # recessive, dominant # dominant, and
additive # additive. We can see that the power of both
logistic regression and the new LD-based statistic in de-
tecting gene-gene interaction was a monotonic function
of the interaction odds ratio, a widely used measure in

quantifying the strength of interaction between two loci.
This implies that the proposed new interaction measure
and test statistic are closely related to the traditional in-
teraction measure. Figure 5A, 5B, and 5C also shows that
the power of the test statistic is much higher than thatTI

of the logistic regression model.
Pairwise LD is widely used in tSNP selection32—that is,

the chosen tSNPs show greater LD (measured by ) than2r
those nearby SNPs that were not selected for a preset
threshold. This approach ensures enough power in de-
tecting disease locus. We now investigate whether the se-
lected threshold can ensure enough power to detect in-
teraction between two unlinked loci. Figure 6A, 6B, and
6C shows the power of the statistic for detecting in-TI

teraction between two unlinked disease loci (using two
tSNPs) as a function of the interaction measure under
three two-locus disease models: Dom ∪ Dom, Dom ∪ Rec,
and Rec ∪ Rec (table 1). For the simplicity of presentation,
we assume that each of the two unlinked marker loci has
an equal correlation coefficient with one of the two un-
linked interacting disease loci. We fix the allele frequency
at the second locus and change the allele frequency at the
first locus to produce the changing measure of interaction
between two loci. Several remarkable features emerge from
figure 6A, 6B, and 6C. First, in many cases, power increases
as the measure of interaction increases. Second, using
neighboring tSNPs has much lower power than does using
the two interacting disease loci themselves directly. Third,
the magnitude of has large impact on the power of2r
interaction detection.

In figure 6A, 6B, and 6C, we studied the power as a
function of measure of interaction. However, in practice,
a measure of interaction cannot be directly observed. To
provide more practically useful information for tSNPs se-
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Figure 5. Power of the test statistic and logistic regression analysis as a function of interaction odds ratio ( ) under three differentT RI GH

models. A, Recessive # recessive model, under the assumption that the risk allele frequencies at both loci G and H are 0.2, number
of individuals in both cases and controls are 500, population risk is 0.001, significance level is 0.05, and odds ratios andR p 5G

. B, Dominant # dominant model, under the assumption that the risk allele frequencies at both loci G and H are 0.1, numberR p 5H

of individuals in both cases and controls are 500, population risk is 0.001, significance level is 0.05, and odds ratios andR p 2G

. C, Additive # additive model, under the assumption that the risk allele frequencies at both loci G and H are 0.1, number ofR p 2H

individuals in both cases and controls are 100, population risk is 0.001, significance level is 0.05, and odds ratios and .R p 2 R p 2G H

lection and association studies, we plot figure 7A, 7B, and
7C, showing the power of statistic for interaction de-TI

tection of two unlinked loci as a function of the allele
frequency at the first locus under three two-locus disease
models: Dom ∪ Dom, Dom ∪ Rec, and Rec ∪ Rec (table
1). Like figure 6A, 6B, and 6C, figure 7A, 7B, and 7C dem-
onstrated that using tSNPs to detect interaction between
two disease loci has much lower power than does using
disease loci themselves. Figure 7A, 7B, and 7C also showed
that allele frequencies have large impact on the power of
interaction detection, although the patterns of the impact
are different under different two-locus disease models.

Application to Real Data Examples

The proposed LD-based statistic was also applied to two
real data sets. The first data set is a case-control study. It
includes 398 white patients with breast cancer and 372
matched controls from the Ontario Familial Breast Cancer

Registry.33 A total of 19 SNPs from 18 key genes from the
pathways of DNA repair, cell cycle, carcinogen/estrogen
metabolism, and immune system were typed. All SNPs
were in HWE. Under a codominant model, multivariate
logistic analysis found significant gene-gene interactions
between four pairs of genes: XPD and IL10, GSTP1 and
COMT, COMT and CCND1, and BARD1 and XPD.33 We
used the statistic to test interactions between these fourTI

pairs of genes. The results are summarized in table 3. Table
3 also includes the crude P values obtained by Onay et
al.33 When calculating the crude P values, Onay et al.33

included all the main effects as well as the only interested
interaction term in their multivariate logistic regression
model. Using our LD-based statistic, we also found these
four pairs of significant interactions, however, with much
smaller P values. Moreover, two pairs of significant inter-
actions, XPD (Lys751Gln) with IL10 (G�1082A) and
GSTP1 (Ile241Val) with COMT (Met108/158Val), remained
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Figure 6. Power of the test statistic as a function of the interaction measure between two unlinked loci under a two-locus diseaseTI

model. A, Dom ∪ Dom, under the assumption that the number of individuals in both cases and controls are 500, penetrance parameter
, allele frequency at the second locus is 0.1, and significance level is 0.05. B, Dom ∪ Rec, under the assumption that the numberf p 1

of individuals in both cases and controls are 250, penetrance parameter , allele frequency at the second locus is 0.1, and significancef p 1
level is 0.05. C, Rec ∪ Rec, under the assumption that the number of individuals in both cases and controls are 500, penetrance
parameter , allele frequency at the second locus is 0.5, and significance level is 0.05.f p 1

significant after adjustment for multiple testing by use of
Bonferroni correction. But all four pairs of significant in-
teraction identified by logistic regression became nonsig-
nificant after adjustment for multiple comparisons by
use of the same Bonferroni correction procedure. It was
noticed in Onay et al.33 that these four identified interac-
tions can be justified by experiments and their biological
relationships.33–37

The second data set was a birth cohort study that re-
corded the incidence of hospital admission with malaria
and severe malaria from Kilifi District Hospital on the
coast of Kenya in Africa.38 A total of 2,104 children from
the study was genotyped for both hemoglobin (Hb) and
a�-thalassemia genes to test their interaction. The Hb gene
has two alleles, A and S. The mutant S causes sickle cell
disease. The normal and mutant alleles in the gene a�-
thalassemia are denoted by a and �. We applied the pro-
posed statistic to this data to test interaction betweenTI

the Hb and a�-thalassemia genes. The results are sum-
marized in table 4. For comparison, table 4 also lists P
values obtained by Poisson regression analysis performed
by Williams et al.38 We can see that the P values of the
test statistic were smaller than those of the PoissonTI

regression analysis. Each of the structural variant HbS and
a�-thalassemia is protective against severe Plasmodium
falciparum malaria. However, if they were inherited to-
gether, protection against malaria was lost. The negative
epistasis between these two genes can be explained by
their biochemical functions.38 The malaria-protective ef-
fect of HbAs comes from allele Hbs, which might increase
binding of hemichromes to the erythrocyte membrane,
leading to opsonization and accelerating the removal of
infected erythrocytes by phagocytosis. However, coexis-
tence of a�-thalassemia with Hbs reduces the concentra-
tion of Hbs, which in turn reduces the protective effect
of Hbs against malaria.
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Figure 7. Power of the test statistic as a function of allele frequency at the first locus under a two-locus disease model. A, DomTI

∪ Dom, under the assumptions that the number of individuals in both cases and controls are 500, penetrance parameter , allelef p 1
frequency at the second locus is 0.1, and significance level is 0.05. B, Dom ∪ Rec, under the assumptions that the number of individuals
in both cases and controls are 500, penetrance parameter , allele frequency at the second locus is 0.1, and significance level isf p 1
0.05. C, Rec ∪ Rec, under the assumptions that the number of individuals in both cases and controls are 500, penetrance parameter

, allele frequency at the second locus is 0.1, and significance level is 0.05.f p 1

Discussion

Understanding how genomic information underlies the
development of complex diseases is one of the greatest
challenges in the 21st century. In the past several decades,
genetic studies of human disease have focused on a “locus-
by-locus” paradigm.39 However, biological information is
processed in complex networks. The disease emerges as
the result of interactions between genes and between a
gene and environments. Studying one individual gene or
polymorphism at a time to explore the cause of the disease
and ignoring the interaction between loci (genes) are un-
likely to deeply unravel the mechanism of disease. With
the imminent completion of the International HapMap
Project, development of statistical methods for detecting
gene-gene interaction is of great importance. The purpose
of this article is to present a new statistic for identifying
interaction between two unlinked loci.

Association studies rely heavily on the LD pattern be-

tween pairs of loci. Knowledge about the difference in LD
between the disease and general populations is essential
for understanding the interaction between two loci and
their association with the disease. However, little is known
about how the multiple-locus disease models influence the
pattern of LD in the disease population and how the in-
teraction between two functional SNPs generates the LD
in a disease population. Therefore, before presenting the
new statistic for detection of the interaction between two
unlinked loci, we first developed the general theory to
study LD patterns in a disease population under two-locus
disease models. We introduced a new concept of haplo-
type penetrance and developed a measure of interaction
between two unlinked loci. Surprisingly, the formula for
calculating the interaction measure was very similar to
that for calculating the LD measure. The proposed mea-
sure of interaction characterizes the contribution of in-
teraction between two loci to the cause of disease. We also
investigated how two-locus disease models and popula-
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Table 3. Comparison of P Values for Testing Gene-Gene Interactions
(Example 1)

Interaction Pair

P Value Obtained by

Logistic
Regressiona

LD-Based
Statistic

XPD (Lys751Gln) and IL10 (G�1082A) .035 .00027
BARD1 (Pro24Ser) and XPD (Lys751Gln) .024 .00684
COMT (Met108/158Val) and CCND1 (Pro241Pro) .010 .00395
GSTP1 (Ile105Val) and COMT (Met108/158Val) .036 .0000115

a P values reported by Onay et al.33

tion parameters affect the measure of interaction between
two unlinked loci. Intuitively, interaction indicates the
joint action of two genes in the development of disease.
This implies that some haplotypes spanned by the inter-
acting loci occur more often in the disease population
than expected. In other words, the interaction between
two unlinked loci generates LD in the disease population
and the LD level generated by gene-gene interaction de-
pends on the magnitude of the interaction between two
unlinked loci. We have rigorously proved that the measure
of LD between two unlinked loci generated by their in-
teraction was proportional to the measure of the inter-
action, which provided us the motivation to propose a
statistic for testing interaction between two unlinked loci
by comparing the difference in LD between the disease
and general populations. Here, we should point out that,
after finishing this manuscript, we noticed that a similar
statistic was proposed to test association between a single
gene and disease.40 Zaykin et al.41 called it the “LD contrast
test.” However, this LD contrast test was originally de-
signed to test the association of SNPs by assuming a single
disease model. It has not been extended to testing gene-
gene interaction.

To use the proposed LD-based statistic to test gene-gene
interaction between two unlinked loci, we first examined
its distribution under the null hypothesis of no interac-
tion. Through extensive simulation studies (under the as-
sumption of large-sample theory), we showed that the null
distribution of the proposed LD-based statistic in both ho-
mogeneous and admixed populations was close to a cen-
tral distribution. We also calculated type I error rates2x(1)

of the LD-based statistic by simulation. Our results showed
that type I error rates were close to the nominal signifi-
cance levels. We also investigated the power of the new
statistic in detecting gene-gene interaction by analytic
methods. It shows that its power was a function of the
interaction measure, which implies that this new statistic,
indeed, can be used to test interaction between two un-
linked loci. However, power of the proposed statistic is a
complex function. For example, except for the measure
of interaction, it also depends on allele frequencies. More-
over, when the measure of interaction is beyond some
range, power is no longer an increasing function of the
interaction measure (data not shown). Power comparison
with logistic regression analysis demonstrated that this

LD-based test statistic has much higher power in detecting
interaction than does the logistic regression method.

The widely used strategies for tSNP selection are based
on a single-disease-gene model. The criteria for tSNP se-
lection is based on the LD levels between the tSNP and
disease-susceptibility locus, which ensures a certain power
to detect association of a single disease locus with the
disease. Our theoretical analysis and power studies dem-
onstrated that such selected tSNPs are highly unlikely to
ensure that the interactions between unlinked two loci
will be detected.

To further evaluate its performance for detection of in-
teraction between two loci, the proposed LD-based statis-
tic was applied to two published data sets. Our results
showed that, in general, P values of the test statistic TI

were much smaller than those of other approaches, in-
cluding logistic regression analysis.

Like all population-based methods for association stud-
ies, the proposed LD-based statistic for testing gene-gene
interaction between two unlinked loci also suffers from
the attribution-of-causality confound in situations of plei-
otropy or overlapping clinical conditions. The detected
interaction for a particular disease could actually relate to
other diseases that may share common etiological effects
with the disease of interest and are only indirectly asso-
ciated with the disease of interest. Similar to population
structure, epistatic selection will also create LD between
two unlinked loci. If epistatic selection between two un-
linked loci is irrelevant to the disease of interest, the level
of LD created by epistatic selection in both cases and con-
trols will be similar, and, in this case, the impact of epi-
static selection on the false-positive rate is limited. How-
ever, when epistatic selection underlies the phenotypes
that are indirectly associated with the disease of interest,
it will cause confounding.

Similar to most models for LD, the proposed test statistic
and measure of interaction between two unlinked loci re-
quire the assumption of HWE. Deviation from HWE will
affect the false-positive rates. The measure of interaction
in the presence of Hardy-Weinberg disequilibrium (HWD)
is a complicated function of penetrance, allele frequencies,
and the measure of HWD. A detailed analysis of the impact
of HWD on the test for interaction is needed.

In the past years, more and more detailed and compre-
hensive evidence showed that genetic and molecular in-
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Table 4. Comparison of P Values for Testing Gene-Gene Interaction between the Hb and a+-Thalassemia Genes
(Example 2)

Hemoglobin and
a�-Thalassemia
Alleles

Malaria Admission P Value Severe Malaria P Value

No. of
Cases

No. of
Controls

Wald
Testa

LD-Based
Test

No. of
Cases

No. of
Controls

Wald
Testa

LD-Based
Test

HbAA:
aa/aa 168 458 67 559
�a/aa 187 680 53 814
�a/�a 56 246 .026 .000014 17 285 .0012 .00056

HbAs:
aa/aa 6 107 0 113
�a/aa 9 141 2 148
�a/�a 10 36 5 41

a P values reported by Williams et al.38

teractions govern cell behaviors, including cell division,
differentiation, and death, and are primary factors for the
development of diseases. In many cases, single-locus anal-
ysis fails to unravel the mechanism of disease. A locus-by-
locus paradigm for genetic studies of complex diseases
should be shifted to a new paradigm incorporating gene-
gene interaction into genetic studies of complex diseases.

The results in this article are preliminary. Interaction
between two linked loci or high-order interactions among
multiple loci have not been studied. Gene-gene interac-
tion is an important but complex concept. There are sev-
eral ways to define gene-gene interaction. How the defi-
nition of gene-gene interaction on a population level
reflects the genes’ biochemical or physiological interac-
tion is still a mystery. We hope that this work provides
further motivation to conduct theoretical research in de-

ciphering genetic and physiological meaning of gene-gene
interactions and to develop more statistical methods for
testing gene-gene interaction. In the coming years, the
integration of gene-gene interaction into genomewide as-
sociation analysis will be a major task in genetic studies
of complex diseases.
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Appendix A
By definition, we have

AP p P(H FAffected)11 D D1 2

P(H ,Affected)D D1 2p
PA

P P hD D 111 2p .
PA

Similarly, we can obtain the remaining formulas in equation (1) in the text.
By definition, the measure of LD in the disease population is given by

A A A A Ad p P P � P P11 22 12 21

1 2 1 2P P h P P h P P h P P hD D 1 d d 2 D d 2 d D 11 2 1 2 1 2 1 2p # � #
P P P PA A A A

P P P P (h h � h h )D D d d 11 22 12 211 2 1 2p .2PA
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By definition, we have

P(D D ,Affected) � P(D d ,Affected)1 2 1 2h pD1 PD1

P P h � P P hD D 11 D d 121 2 1 2p
PD1

p P h � P h . (A1)D 11 d 122 2

Similarly, we obtain

h p P h � P h . (A2)D D 11 d 212 1 1

Multiplying equation (A1) by equation (A2) yields

2h h p P P (h ) � P P h h � P P h h � P P h hD D D D 11 D d 11 21 D d 11 12 d d 11 221 2 1 2 2 1 1 2 1 2

p h (P P h � P P h � P P h � P P h )11 D D 11 D d 21 D d 12 d d 221 2 2 1 1 2 1 2

p h P ,11 A

which implies that

h hD D1 2h p .11 PA

Appendix B
Assume that marker locus has two alleles, and , and the marker locus has two alleles, and . LetM M m M M m1 1 1 2 2 2

the frequencies of the haplotypes , , , and be , , , and , respectively. The frequenciesD M D m d M d m P P P P1 1 1 1 1 1 1 1 D M D m d M d m1 1 1 1 1 1 1 1

of the haplotypes , , , and can be similarly defined. Let the frequencies of the haplotypes ,D M D m d M d m M M2 2 2 2 2 2 2 2 1 2

, , and in the disease population be , , , and , respectively. Then, we haveA A A AM m m M m m q q q q1 2 1 2 1 2 11 12 21 22

Aq p P(M M FA)11 1 2

P(M M ,A)1 2p
PA

P P h � P P h � P P h � P P hD M D M 11 D M d M 12 d M D M 21 d M d M 221 1 2 2 1 1 1 2 1 1 2 2 1 1 2 2p .
PA

Similarly, we have

P P h � P P h � P P h � P P hD M D m 11 D M d m 12 d M D m 21 d M d m 22A 1 1 2 2 1 1 1 2 1 1 2 2 1 1 2 2q p ,12 PA

P P h � P P h � P P h � P P hD m D M 11 D m d M 12 d m D M 21 d m d M 22A 1 1 2 2 1 1 1 2 1 1 2 2 1 1 2 2q p ,21 PA

and

P P h � P P h � P P h � P P hD m D m 11 D m d m 12 d m D m 21 d m d m 22A 1 1 2 2 1 1 1 2 1 1 2 2 1 1 2 2q p .22 PA
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Thus, after some algebra, we can obtain the LD between two marker loci in the disease population:

A A A A Ad p q q � q qM 11 22 12 21

p (P P d h h � P P d h h � P P d h h � P P d h hD M D m 2 11 12 D M d m 2 11 22 D M D m 2 11 12 D M d m 2 12 211 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2�P P d h h � P P d h h � P P d h h � P P d h h )/Pd M D m 2 12 21 d M d m 2 21 22 d M D m 2 22 11 d M d m 2 22 21 A1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

d d h h � d d h h1 2 11 22 1 2 21 12p 2PA

d d (h h � h h )1 2 11 22 21 12p .2PA

Recall that the LD between two unlinked disease loci in the disease population is given by

P P P P (h h � h h )D d D d 11 22 21 12A 1 1 2 2d p .2PA

Therefore, the LD between two unlinked marker loci in the disease population can be rewritten as

d d1 2A Ad p d .M P P P PD d D d1 1 2 2

Appendix C
It is well known that the estimators of the haplotype frequencies , , and are asymptotically distributed asˆ ˆ ˆP P P11 12 21

a multivariate normal distribution , where and . LetT T AN[P,(1/2n )S] P p [P ,P ,P ] S p diag(P ,P ,P ) � PP P pG 11 12 21 11 12 21

. Similarly, is asymptotically distributed as , whereA A A T A A Aˆ[P ,P ,P ] P N[P ,(1/2n )S ]11 12 21 A

A A A A A A TS p diag(P ,P ,P ) � P (P ) .11 12 21

Since is a function of the haplotype frequencies , , and , the estimated measure of LD, , is asymptoticallyˆ ˆˆ ˆ ˆd P P P d11 12 21

distributed as shown by Serfling42:

1 TN(d, CSC ) ,
2nG

where

�d �d �d
C p , , .[ ]�P �P �P11 12 21

However, we can show that

1 TCSC p V . (C1)N2nG

First, we note that , , and . Let . After some algebra,T�h/�P p 1 � P � P �h/�P p �P �h/�P p �P V p CSCD D D D D d D d D D1 2 1 2 1 2 2 1 2 1

we have

2 2 2 2V p (1 � P � P ) P � P P � P P � [(1 � P � P )P � P P � P P ] .D D D D D D d D d D D D D D D D d D d D1 2 1 2 2 1 2 1 1 2 1 2 1 2 2 1 2 1 1 2

Since , we have(1 � P � P )P � P P � P P p d � P PD D D D D D d D d D D D1 2 1 2 2 1 2 1 1 2 1 2

2 2 2 2V p (1 � P � P ) P � P (P � P ) � P [�d � (1 � P )P ] � (d � P P )D D D D D D D D D D D D D1 2 1 2 2 1 1 2 1 1 2 1 2

2 2 2 2p (1 � P )(1 � P � 2P )P � P P [P � P (1 � P )] � P P � P d � 2P P d � d . (C2)D D D D D D D D D D D D D D D1 1 2 1 2 1 2 2 1 1 1 2 1 1 2
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Note that

2 2P P [P � P (1 � P )] � P P p P P (1 � P )(P � P ) . (C3)D D D D D D D D D D D D1 2 2 1 1 1 2 1 2 1 1 2

Substituting equation (C3) into equation (C2) yields

2 2V p (1 � P )(1 � P � 2P )(d � P P ) � P P (1 � P )(P � P ) � P d � 2P P d � d . (C4)D D D D D D D D D D D D D1 1 2 1 2 1 2 1 1 2 1 1 2

Collecting the coefficient of in the above equation (C4), we obtaind

2[(1 � P )(1 � P � 2P ) � P � 2P P ]d p (1 � 2P )(1 � 2P )d . (C5)D D D D D D D D1 1 2 1 1 2 1 2

Substituting equation (C5) into equation (C4), we have

2V p P (1 � P )(1 � P )P � (1 � 2P )(1 � 2P )d � d ,D D D D D D1 1 2 2 1 2

which proves equation (C1). Similarly, is asymptotically distributed as . Under the null hypothesis ofd̂ N[d ,(1/2n )V ]A A A A

no interaction between two unlinked loci, we have . Therefore, the statistic is asymptotically distributedd p d p 0 TA I

as a central distribution under the null hypothesis.2x(1)

Now, we show that, under some assumption, the statistic is still a valid test in the admixed population. ConsiderTI

an admixed population that is mixed from two subpopulations with proportions and ( ). It is known that thea 1 � a

measure of LD in the admixed population is given by

(1) (2) (1) (2) (1) (2)d p ad � (1 � a)d � a(1 � a)[P � P ][P � P ] ,D D D D2 2 1 1

where and are the frequency of the allele and the measure of LD between two loci in the kth subpopulation(k) (k)P d DD ii

( ), respectively. If we assume thatk p 1,2

A(1) A(2) (1) (2) A(1) A(2) (1) (2)P � P p P � P and P � P p P � P , (C6)D D D D D D D D2 2 2 2 1 1 1 1

where is the frequency of the allele in the kth disease subpopulation, then we haveA(k)P DD ii

Ad p d .

Therefore, under the assumption (C6), the statistic is also asymptotically distributed as a central distribution2T xI (1)

under the null hypothesis of no interaction between two unlinked loci in the admixed population.
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