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ABSTRACT

The modest correlation between mRNA expression and protein abundance in large-scale data sets is
explained in part by experimental challenges, such as technological limitations, and in part by fundamental
biological factors in the transcription and translation processes. Among various factors affecting the
mRNA–protein correlation, the roles of biological factors related to translation are poorly understood. In
this study, using experimental mRNA expression and protein abundance data collected from Desulfovibrio
vulgaris by DNA microarray and liquid chromatography coupled with tandem mass spectrometry (LC–MS/
MS) proteomic analysis, we quantitatively examined the effects of several translational-efficiency-related
sequence features on mRNA–protein correlation. Three classes of sequence features were investigated
according to different translational stages: (i) initiation, Shine–Dalgarno sequences, start codon identity,
and start codon context; (ii) elongation, codon usage and amino acid usage; and (iii) termination, stop
codon identity and stop codon context. Surprisingly, although it is widely accepted that translation
initiation is the rate-limiting step for translation, our results showed that the mRNA–protein correlation was
affected the most by the features at elongation stages, i.e., codon usage and amino acid composition (5.3–
15.7% and 5.8–11.9% of the total variation of mRNA–protein correlation, respectively), followed by stop
codon context and the Shine–Dalgarno sequence (3.7–5.1% and 1.9–3.8%, respectively). Taken together,
all sequence features contributed to 15.2–26.2% of the total variation of mRNA–protein correlation. This
study provides the first comprehensive quantitative analysis of the mRNA–protein correlation in bacterial
D. vulgaris and adds new insights into the relative importance of various sequence features in prokaryotic
protein translation.

HIGH-THROUGHPUT postgenomic technologies
such as microarray and proteomics analyses have

provided powerful methodologies to study patterns of
gene expression and regulation at the genome scale
(Horak and Snyder 2002; Smith et al. 2002). Given the
fact that no single approach can fully unravel the fun-
damental biology that is typically quite complex, an
integrative approach of multiple levels of information is
necessary and valuable to fully elucidate the complex
biological system being studied. In several recent stud-
ies, integrative analyses of transcriptomic and translato-
mic data have helped researchers better understand the
global regulatory processes and complex metabolic net-
works in living organisms (Gygi et al. 1999; Greenbaum

et al. 2002, 2003; Hegde 2003; Mootha et al. 2003a,b;
Alter and Golub 2004).

Early large-scale analyses of mRNA expression and
protein abundance data showed that the correlation
between mRNA and protein abundance was typically
weak (Futcher et al. 1999; Gygi et al. 1999; Ideker et al.
2001; Greenbaum et al. 2003; Washburn et al. 2003). It
has been proposed that three potential reasons for the
lack of a strong correlation between mRNA and protein
expression levels are: (i) translational regulation, (ii)
differences in protein in vivo half-lives, and (iii) the
significant amount of experimental error, including
differences with respect to the experimental conditions
(Greenbaum et al. 2003; Beyer et al. 2004). We recently
performed a quantitative analysis of the contributions of
various biochemical and physical sources to the corre-
lation of mRNA and protein abundance in Desulfovibrio
vulgaris. The results showed that analytic variations in
mRNA expression and protein abundance contributed
to 34–44% of the total variation of mRNA–protein
correlation, and protein and mRNA stabilities con-
tributed to 5 and 2% of the total variation of mRNA–
protein correlation, respectively (Nie et al. 2006a).
However, since more than half of the variation remains

1These authors contributed equally to this article.
2Corresponding author: Microbiology Department, Pacific Northwest

National Laboratory, P.O. Box 999, Mail Stop P7-50, Richland, WA
99352. E-mail: weiwen.zhang@pnl.gov

Genetics 174: 2229–2243 (December 2006)



unexplained, quantitative investigation of other factors,
such as sequence features related to regulation at the
translational level, will be important for further un-
derstanding of the mRNA–protein correlation.

Efficiency of protein biosynthesis depends on many
factors. First, initial anchoring of ribosomes onto the
mRNA depends on complementary binding of the
Shine–Dalgarno (SD) sequence �10 bases upstream
of the start codon (Shine and Dalgarno 1974) and a
sequence close to the 39 end of the 16S rRNA in the 30S
ribosomal subunit (McCarthy and Brimacombe 1994;
Stenstrom et al. 2001). In this process, the short SD
sequence motif serves as the ribosomal binding site
(RBS). The ribosomal binding to this purine-rich SD
region is of prime importance to locate the ribosome at
the proper initiation codon (Stenstrom et al. 2001).
The strength of this interaction has been used to
estimate the efficiency of translation initiation (Schurr

et al. 1993; Osada et al. 1999) or to predict the actual
start sites (Suzek et al. 2001). Second, nonrandom use of
synonymous codons in the coding region of highly
expressed Escherichia coli genes indicates that sequences
further downstream of the start codon could be of im-
portance for translation efficiency (Faxen et al. 1991;
McCarthy and Brimacombe 1994; Collins et al.
1995). A difference in translation rate in the order of
6-fold was found when infrequent and common codons
were compared (Sorensen et al. 1989). The 12 codons
could impose a 15-fold difference in gene expression
in studies using a lacZ-based fusion system preceded by
a canonical Shine–Dalgarno sequence (Looman et al.
1987; Stenstrom et al. 2001). Third, translation effi-
ciency also depends on the availability of various amino
acids. Among 20 amino acids, costs of synthesis vary
from 12 to 74 high-energy phosphate bonds per mole-
cule (Akashi and Gojobori 2002). The selective ad-
vantage of using a cost-efficient amino acid in a highly
expressed protein can be great. The evidence of natural
selection of amino acid usage to enhance metabolic
efficiency has been found in the proteomes of E. coli and
Bacillus subtilis (Akashi and Gojobori 2002). Fourth,
translation termination depends upon the attachment
of a release factor (RF) in the place of a tRNA in the
ribosomal complex (Rocha et al. 1999; Kisselev et al.
2003). While release factors might exhibit different
recognition efficiency to different stop codons, the pat-
tern of stop codon usage changes more considerably
than the start among prokaryotes (Poole et al. 1995;
Rocha et al. 1999; Ozawa et al. 2002). In addition, the
use of the stop codon was found to be correlated sig-
nificantly with the G 1 C content of the genome, e.g.,
negatively for TAA and positively for TGA in B. subtilis
(Rocha et al. 1999). Moreover, cases have been reported
in which the trinucleotides (stop codons) are not suf-
ficient to terminate translation effectively (Tate et al.
1995, 1996). Studies showed that nucleotide distribu-
tion around the stop codons, especially the base

following the stop codon, is significantly biased and is
related to translation termination efficiency (Brown

et al. 1990; Cavener and Ray 1991; Poole et al. 1995,
1997; Tate et al. 1996).

D. vulgaris belongs to a group of obligate anaerobic
microorganisms, sulfate-reducing bacteria (SRB)
(Voordouw 1996). Research interest in the SRB has
been due to their corrosion of pipes and their ability to
precipitate heavy metals (e.g., Cr61, Fe31, and U61) and
radionuclides (e.g., U61) from solution via bacterial
metal reduction (Heidelberg et al. 2004). The genome
of D. vulgaris was recently finished (Heidelberg et al.
2004). Our group has been using a whole-genome
microarray and liquid chromatography coupled with
tandem mass spectrometry (LC–MS/MS) to investi-
gate gene expression and protein abundance in D.
vulgaris under various growth conditions (Zhang et al.
2006a,b,c,d). Taking advantage of these experimental
data, we attempted to determine the relative effects of
various sequence features related to translational effi-
ciency on mRNA–protein correlation in D. vulgaris in a
single unified framework with a multiple-regression
approach. Sequence features considered in this study
can be categorized into three classes with regard to the
three stages of protein translation: (1) translation initia-
tion, Shine–Dalgarno sequences, start codon identity,
and start codon context; (2) translation elongation, co-
don usage and amino acid usage; and (3) translation ter-
mination, stop codon identity and stop codon context.
The results provided the first systematic quantitative
analysis of the effects of translational efficiency-related
sequence features on the mRNA–protein correlation and
will help improve the understanding of mRNA–protein
correlation, as well as regulation of gene expression at
the translational level.

METHODS

Data sets: Three transcriptomic and translatomic
data sets used for model construction and verification
were collected from D. vulgaris DSM 644 grown on
lactate- or formate-based chemically defined media. To
minimize experimental variations between microarray
and proteomic measurements, for each growth condi-
tion, identical cell samples were used as starting
materials to isolate RNA and proteins for analyses. The
complete description of experimental design and culti-
vation conditions can be found in our previous study
(Zhang et al. 2006a).

1. Microarray data: An oligonucleotide microarray was
used to obtain gene expression data (Zhang et al.
2006a). To minimize variations between microarray
measurements, for each growth condition, at least two
replicate cell samples were used as starting materials to
isolate RNA for analyses. In addition, each replicate
sample used for RNA profiling was a pool of three
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individual biological replicates. Microarrays contain-
ing 3548 ORFs of D. vulgaris were designed by
NimbleGen System (Madison, WI), using its maskless
array synthesizer (MAS) technology (Nuwaysir et al.
2002; Heidelberg et al. 2004). Arrays were designed
with JazzSuite software and the MAS units were used to
manufacture the custom arrays. For each ORF, 13
unique 24-mer oligonucleotides from throughout
the ORF were printed onto glass microscope slides
(Nuwaysir et al. 2002). The complete description of
data acquisition and analysis can be found in our
previous study (Zhang et al. 2006a).

2. Proteomics data: The D. vulgaris samples were analyzed
by LC–MS/MS on a Finnigan model LTQ ion trap
mass spectrometer (ThermoQuest, San Jose, CA).
Mass spectrometry (MS) analysis was performed
using a Finnigan model LTQ ion trap (Thermo-
Quest) with electrospray ionization (ESI) (Zhang

et al. 2006c). Peptide identification was performed
using SEQUEST Version 2.7 (ThermoQuest) (Eng

et al. 1994; Yates et al. 1995) to search the D. vulgaris
protein sequence database (Heidelberg et al. 2004).
The relative protein abundance was estimated on the
basis of the number of peptide hits (Gao et al 2003;
Qian et al 2005). The peptide hits for a given protein
were the average of three LC–MS/MS measure-
ments. The complete description of proteomic data
acquisition and analysis can be found in our previous
study (Zhang et al. 2006c,d). In this study, to further
remove the possible systematic errors caused by gene
length and amino acid composition, we normalized
the peptide hit by dividing it with a correction factor:
‘‘effective number of peptides.’’ The effective num-
ber of peptides is derived as follows: (i) First, we used
the ‘‘PeptideCutter’’ program (http://ca.expasy.org/
tools/peptidecutter/) to analyze every protein in the
D. vulgaris genome and determined the possible
cleavage sites by trypsin; (ii) second, we wrote a perl
script to determine the number of peptides of all
sizes after trypsin cleavage (the perl script is available
upon request); and (iii) finally, we added up the
number of peptides of length 7–25 amino acids as
the effective number of peptides because the mass
(m/z) detection range can pick up peptides only of
this size range (Zhang et al. 2006c,d). The normal-
ized peptide hits were then used as the protein
abundance for all statistical analyses performed in
this study.

In addition, to exclude the possibility that sequence
features are surrogate measures of mRNA levels when
there was a correlation between sequence features and
measurement errors of mRNA, a regression model was
trained to predict the mRNA abundance in one repli-
cate with that in other replicates plus sequence features.
We gradually lowered the threshold (fold of change)
in the training sets of replicates until sequence features

no longer contributed to the prediction. Thus the se-
quence features were completely independent of mRNA
abundance of genes used in the following statistical
analysis. The threshold values were determined as 3.5,
4.2, and 4.3 (fold change among replicates) for lactate-
exponential (LE), formate-exponential (FE), and lac-
tate-stationary (LS) conditions, respectively. Using this
method, 349, 395, and 357 genes/proteins that satisfy the
quality control criteria for LE, FE, and LS conditions, re-
spectively, were used in the following multiple-regression
analyses.

Quality of microarray and proteomic data and their
correlation: The quality of the microarray data was eval-
uated with the Pearson correlation coefficient analysis
among multiple measurements. Pearson correlation co-
efficients of the microarray experiments are from 0.97
to 0.99 among replicate samples (Nie et al. 2006a), and
Pearson correlation coefficients of LC–MS/MS mea-
surements normalized by amino acid composition are
.0.86–0.92 among replicates, indicating good repro-
ducibility. Correlation of mRNA expression and nor-
malized protein abundance of cells grown was modest,
of �0.54–0.63 (P-value ,0.001) by Pearson correlation
coefficient for all conditions. The correlation levels
were close to that previously reported for yeast (Ideker

et al. 2001).
Cellular functional category: The cellular functional

categories of all genes in the D. vulgaris genome are
downloaded from the comprehensive microbial resource
(CMR) of TIGR (http://cmr.tigr.org) (Heidelberg

et al. 2004). On the basis of the original annotation, the
genes/proteins are classified into 19 cellular functional
categories.

Identification and analysis of Shine–Dalgarno se-
quences: Two different methods were used to identify
the SD sequences in D. vulgaris genes:

1. Free energy-based method (Schurr et al. 1993; Osada

et al. 1999): This method aligned the 39 end of 16S
rRNA and 59-UTR of an mRNA and then used a
dynamic programming algorithm to find the mini-
mum free energy of a window of specific size (Osada

et al. 1999). Initially, we performed an analysis similar
to what was described by Osada et al. (1999), where
the base-pairing potentials between the 39 tail of 16S
rRNA and 59-UTR of all genes were calculated and
averaged by positions to view the overall trend in the
whole genome. Sequences cctgcggctggatcacctccttt
and cctgcggttggatcacctcctta from the 39 end of 16S
rRNA were used in D. vulgaris (NC_002937 and
NC_005863) (Heidelberg et al. 2004) and E. coli
(U00096) to calculate the free energy values in these
two species, respectively. The C programs used to
perform the calculation were kindly provided by
Y. Osada of the Institute for Advanced Biosciences
of Keio University. To determine the effects of SD
sequence during protein translation, we calculated
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the free energy for base pairing of 16S rRNA with SD
sequence for each gene. To do this, we extracted the
25-base and 50-base nucleotide sequence immedi-
ately upstream of the start codon of each gene. Each
extracted sequence was aligned with the 39 tail of 16S
rRNA to compute the minimal free energy (MFE)
with the Java Applet at http://www.mag.keio.ac.jp/
%7Ersaito/Research/BasePAP/BasePAP.html (im-
plemented by Y. Osada. A modified JAVA code to
batch calculate MFE is available upon request). Since
it is possible that various lengths of 16S rRNA tails
used in the calculation might affect the accuracy of
the MFE values, three lengths (13, 20, and 23) were
used, which corresponded to sequences gatcacct
ccttt, gcggctggatcacctccttt, and cctgcggctggatcacctc
cttt, respectively.

2. Probabilistic method (Suzek et al. 2001): This method
used a ‘‘seed’’ sequence to train a probabilistic model
of SD sequences, which was then used to find the SD
sequences in regions upstream of start codons of all
genes. A good seed sequence is the 39 end of the 16S
rRNA (Suzek et al. 2001). Five copies of 16S rRNA
genes have an identical 39 tail in D. vulgaris (notably
the annotated sequences were incomplete and miss-
ing the sequence ctggatcacctccttt at the 39 end; how-
ever, this sequence does exist in all five copies of
D. vulgaris 16S rRNA genes). Interestingly, although
D. vulgaris is a GC-rich species, the sequence of the
16S rRNA 39 tail is highly similar to that of most other
prokaryotes (compared with other species described
by Ma et al. 2002) and it contains the typical anti-SD
sequence ctcct, which complements with the default
seed sequence aggag used in the RBSFinder program
(downloaded at ftp://ftp.tigr.org/pub/software/
RBSfinder/). Two window sizes, 25 and 50, were used
to search for SD sequences. The RBSFinder code was
slightly modified to output the maximal RBS score
(the modified perl code is available upon request).

Start codon, stop codon, and their contexts: The
identity of each start codon and stop codon was treated
as a categorical variable during multiple-regression
analysis. The start codon context was defined as the
upstream 30 bases and downstream 9 codons of the start
codon. Therefore, each sequence of start codon context
is 60 bases long, including the start codon. To evaluate
the potential of each start codon context to form a
stable mRNA secondary structure, the minimum free
energy of this region was computed with the Vienna
package RNAfold (Hofacker 2003; Hofacker and
Stadler 2006). The stop codon and the base immedi-
ately downstream of the stop codon were regarded as
the stop codon context. Each combination was treated
as a categorical variable in multiple-regression analysis
described below.

Analyses of the overall codon usage and amino acid
usage: The major trends in codon usage and amino acid

usage were revealed with a correspondence analysis.
The relative synonymous codon usage (RSCU) was used
in the correspondence analysis to remove the effects of
amino acid usage. For amino acid usage, the raw codon
counts were added up for each amino acid and used as
input in the correspondence analysis. The CodonW
software (http://codonw.sourceforge.net) was used for
the correspondence analysis, generating four major
axes accounting for most of the variations in codon
usage or amino acid usage of D. vulgaris genes or pro-
teins, respectively (Wu et al. 2006).

Analyses of the preferences in codons and amino
acids: D. vulgaris is a GC-rich species (GC, 64%; GC3,
77%) (Heidelberg et al. 2004). Therefore, the unequal
usage of amino acids or synonymous codons can be
simply a result of mutational bias (Knight et al. 2001).
To examine the preferences for certain codons or
amino acids, we used the ‘‘percentage of differences’’
(POD) to indicate the preferences (positive values) and
avoidance (negative values), which takes the mutational
bias into account. The POD is defined as

POD ¼ 100 3 ðobserved count

� expected countÞ=expected count; ð1Þ

where observed count is the actual number of each
codon or amino acid in a set of genes, and expected
count is the expected number of that codon or amino
acid when codon usage and amino acid usage are solely
results of base composition due to mutational bias. The
base composition was estimated with the frequency of
each base at the third codon position with the whole-
genome data because this position is the most neutral
(Sueoka 1988). The absolute expected frequency of each
codon is calculated as the product of the mutational bias
of each base that composes the codon. The relative
expected frequency of each codon equals the absolute
expected frequency of this codon divided by the sum of
absolute expected frequencies of all codons in the same
codon family, which contains all synonymous codons
coding for the same amino acid. As a result, the relative
expected frequency of codon ATG is 1 because there is
only one codon coding for methionine. The same thing
happens to codon TTG. Finally, the expected number
of a codon equals the product of its relative expected
frequency and the observed total number of codons of
its codon family.

Preferences in amino acid usage were measured in a
similar way. For a particular amino acid, the observed
number is the sum of the number of codons coding for
it. Its absolute expected frequency is the sum of the
absolute expected frequency of its coding codons. Its
relative expected frequency equals its absolute expected
frequency divided by the sum of absolute expected
frequencies of all amino acids (essentially 61 codons,
because 3 termination codons were excluded). Finally,
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the expected count of this amino acid is the product of
its relative expected frequency and the total number of
amino acids observed in a set of genes.

The significance of the POD was evaluated with the
following method: The observed count for a particular
codon was assumed to follow a binomial distribution
Bðn; qÞ, in which n is the total number of codons in its
codon family, and q is the relative expected frequency of
the codon within its synonymous codon family. The
significance is based on testing whether the observed
relative frequency equals the expected relative frequency
of this codon in its synonymous codon family. Since the
number n is a large number here, a normal approxima-
tion has been used to approximate the binomial distri-
bution (Ott and Longnecker 2001; Devore and
Farnum 2005). Because multiple tests were involved, a
Bonferroni procedure has been implemented to adjust
the P-values obtained from multiple tests (Ott and
Longnecker 2001). For an amino acid, P-values were
computed in a similar way to test whether an amino acid
count follows the distribution Bðn; qÞ, where n is the total
number of amino acids and q equals the relative expected
frequency of this amino acid.

Correlation and regression: Correlation coefficients,
such as Pearson’s correlation coefficient and Spearman’s
rank correlation coefficient, were computed (Devore

and Farnum 2005). Furthermore, single-regression and
multiple-regression analyses were performed to mea-
sure the correlation pattern between mRNA and pro-
tein abundance as described before (Ott and
Longnecker 2001; Nie et al. 2006a). To obtain a reliable
correlation between mRNA and protein abundance,
only proteins with variations among measurement
replicates less than threefold were included. Fold
change in original scale is equivalent to the arithmetic
difference in the log scale, also called range of samples
(Montgomery 2001). For instance, max(y1; y2; y3)/
min(y1; y2; y3) ¼ 3 is equivalent to log[max(y1; y2; y3)]
� log[min(y1; y2; y3)] ¼ log(3). Previously, we reported
the proteomic–mRNA correlation through R2

mRNA from
a simple regression,

yi ¼ a 1 mRNAi 3 b; ð2Þ

where mRNAi is the log of mRNA expression level for
the ith gene (Nie et al. 2006a). In this study, we included
the quantitatively measured sequence features into a
multiple regression,

yi ¼ a 1 mRNAi 3 b 1
Xk

j¼1

bj xij ; ð3Þ

where xij refers to the jth covariate (measuring a
sequence feature such as codon usage, k is the num-
ber of covariates of a particular sequence feature) of
the ith gene, and bj represents the slope for the jth
covariate (Nie et al. 2006a). Particularly, we reported the
ðR2

mRNA;sequences � R2
mRNAÞ=ð1� R2

mRNAÞ as the adjusted
R2 for the mRNA–protein correlation. For each covar-

iate, we used the standard F-test to examine whether
they were significant (P-value of the F-test reported)
(Ott and Longnecker 2001). Finally, since the contri-
bution from each of these effects may not be additive,
we investigated their joint effects on the mRNA–protein
correlation in a single multiple-regression analysis by
using the equation

yi ¼ a 1 mRNAi 3 b 1
Xm

j¼1

bj xij ; ð4Þ

where all sequence features were included as covariates
(m is the total number of all covariates). P-values as-
sociated with each covariate were measured.

RESULTS

Sequence features related to translation initiation:
Shine–Dalgarno sequences: To determine the effects of SD
sequences, we need to be certain that the same mech-
anism of translation initiation also exists in D. vulgaris.
To confirm this, we systematically calculated the average
free energy of the potential base pairing of 16S rRNA
39 tail and upstream of D. vulgaris genes with the free-
energy-based method (Osada et al. 1999). A sharp drop
of the free energy was observed in the region of�25–�
�5 in all genes in the D. vulgaris chromosome and
megaplasmid (Figure 1). This trend is highly similar to
what has been observed in E. coli (Osada et al. 1999),
suggesting that Osada’s method works very well in
D. vulgaris as well. It also indicates that the same mech-
anism of translation initiation is employed in D. vulgaris
as in most prokaryotes. Interestingly, the average free
energy by position is lower in D. vulgaris than in E. coli
(Figure 1), which could be due to the high GC com-
position of the D. vulgaris genome.

Figure 1.—Sharp decreases in free energy around posi-
tions �25 and �5 (relative to the start codon) are observed
in D. vulgaris (DVU) and the metaplasmid of D. vulgaris
(DVUA) and in E. coli (ECOLI). The free energy of all genes
on each chromosome was averaged by position.
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Using the same free-energy-based method (Osada

et al. 1999), we calculated the MFE of 16S rRNA–SD base
pairing for all D. vulgaris genes. As one might expect, the
length of the 16S sRNA 39 tail and upstream sequences
might affect the free energy value calculated. To test this
effect, we chose three lengths (13, 20, and 23) of 16S
rRNA 39 tail and two lengths (25 and 50) of mRNA up-
stream sequences and calculated the MFE for various
combinations. In addition to the free-energy-based
method, we also employed a probabilistic method to
quantify the strength of RBS (Suzek et al. 2001). The
putative SD sequence was found with a RBS score higher
than the threshold value (Suzek et al. 2001). The result
showed that the contribution varied considerably
among various methods of SD MFE calculations, with
MFE20_50 (20 refers to the length of 16S rRNA 39 tail
and 50 refers to the length of the upstream sequence of
genes) explaining the highest variations in mRNA–
protein correlation (up to 1.9–3.8% among various data
sets, P-value ,0.001; Table 1, supplemental Table 1 at
http://www.genetics.org/supplemental/). This result
also showed that the SD effect calculated by the
probabilistic method does not seem to explain much
of the variation in mRNA–protein correlation (mostly
�1.0%, supplemental Table 1). In addition, only a weak
correlation between RBS score and MFE20_50 was
observed (r ¼ �0.27, P , 0.0001), suggesting that these
two methods may be different in evaluating SD sequen-
ces. In this study hereafter, MFE20_50 was used in all
analyses involved.

A recent study of E. coli showed that the SD MFE values
in highly expressed genes (defined as genes whose
protein product can be detected on 2D gels) were lower
than in other genes (Lithwick and Margalit 2003).
We previously found that the D. vulgaris proteins de-
tected by LC–MS/MS represented the highly expressed
genes (supplemental Figure 1 at http://www.genetics.
org/supplemental/; Zhang et al. 2006c). When the
MFE20_50 value of the detected proteins was compared
with that of all proteins in the D. vulgaris genome, a sim-
ilar frequency distribution pattern was found (Figure
2), suggesting that overall there was no strong evidence
for lower MFE in proteins identified in LC–MS/MS.

We previously found that mRNA–protein correlation
may be different among various functional categories
(Nie et al. 2006a). Given the fact that MFE values may be
related to mRNA expression and protein abundance,
one immediate question is whether MFE values also
varied among functional categories of a given gene/
protein. The results showed that while most of the
functional categories shared similar levels of MFE
values, genes from several functional categories, such
as amino acid biosynthesis, central intermediary metab-
olism, energy metabolism, protein fate, and protein
synthesis, had lower MFE values (Figure 3, category I).
This pattern appears to be consistent when we used
corresponding genes of the proteins identified under

the three growth conditions examined in this study
(Figure 3, categories II, III, and IV).

Start codons: In the D. vulgaris genome, the start codon
ATG is the most frequent start codon, consistent with
the early conclusion that ATG is a preferred start codon,
independent of the G 1 C content (Rocha et al. 1999).
Approximately 82% of the D. vulgaris genes start with
this codon, while the less frequently used TTG and GTG
codons are found in 5.4 and 13% of the genes (Figure
4A). This strong bias in start codons was also observed
in the proteins detected in various growth conditions
(Figure 4A). This observation confirms that the canon-
ical start codon ATG is more translationally optimal
than noncanonical start codons. However, overall, the
start codon identity explained only 0.1–0.7% of the
total variation in mRNA–protein relationship under
the three growth conditions as indicated by regression
analyses (Table 1).

Start codon context: Studies showed that stem–loop
structures formed at the start site can affect the
accessibility of the SD sequence or start codon for
ribosomal binding (de Smit and Van Duin 1990,
1994; Rocha et al. 1999). To determine the potential
effects of these mRNA secondary structures on protein
translation, we computed the minimum free energy for
the 60-base sequences spanning the start codon with
RNAfold (Hofacker 2003; Hofacker and Stadler

2006). We found that proteins detected in our study
tend to have relative high MFE values compared with all
proteins in the D. vulgaris genome (Figure 4B), suggest-
ing that avoidance of mRNA secondary structure might
be a strategy for genes to achieve a high translation rate.
Overall, the start codon context explains 0.3–2.5% of
the variation in mRNA–protein correlation under the
three growth conditions (Table 1), which is larger than
that by start codons alone.

Sequence features related to translation elongation:
Codon usage pattern: The codon usage in the G 1 C-rich
D. vulgaris genome has not been fully investigated
before (Heidelberg et al. 2004). In this study, two
approaches have been employed to investigate the
unequal codon usage in D. vulgaris. The first approach
is to compare the extent of codon usage deviated from
the expected frequency between detected proteins and
all proteins to determine which codon is associated with
protein translation. Due to the high GC composition of
the D. vulgaris genome, the observed unequal frequency
of synonymous codons can be simply a result of biased
base composition due to mutational bias (Knight et al.
2001). Therefore, we used POD to measure how much
the observed codon frequency deviated from the
expected frequency determined on the basis of the base
composition alone. Briefly, a positive POD value sug-
gests an overrepresentation of the codon, whereas a
negative POD indicates an underrepresentation. If the
codon usage is associated with gene expression level,
we would expect to see significantly different POD
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TABLE 1

Contribution of various features to the total variation of mRNA–protein correlation

Variables
Partial R 2

(lactate-log)
Partial R 2

(formate-log)
Partial R 2

(lactate-stationary)

mRNA expression 0.384 (P , 0.0001) 0.278 (P , 0.0001) 0.394 (P , 0.0001)

SD sequence
MFE20_50 0.038 (P ¼ 0.0003) 0.031 (P ¼ 0.0005) 0.019 (P ¼ 0.0095)

Start codon
ATG 0.002 0.000 0.003
TTG 0.002 0.001 0.003
GTG 0.002 0.000 0.001
Sum of start codona 0.006 (P ¼ 0.5660) 0.001 (P ¼ 0.9175) 0.007 (P ¼ 0.4733)

Start codon context 0.018 (P ¼ 0.0131) 0.026 (P ¼ 0.0014) 0.003 (P ¼ 0.3016)

Codon usage
CR1 0.001 0.003 0.001
CR2 0.003 0.029 0.011
CR3 0.000 0.002 0.000
CR4 0.049 0.123 0.056
Sum of codon usagea 0.053 (P ¼ 0.0011) 0.157 (P ¼ 0.0000) 0.067 (P ¼ 0.0001)

Amino acid usage
AA1 0.030 0.021 0.011
AA2 0.017 0.000 0.017
AA3 0.023 0.063 0.026
AA4 0.003 0.035 0.005
Sum of amino acid usagea 0.073 (P ¼ 0.0000) 0.119 (P ¼ 0.0000) 0.058 (P ¼ 0.0003)

Stop codon
TGA 0.020 0.020 0.008
TAG 0.001 0.003 0.001
TAA 0.003 0.000 0.004
Sum of stop codona 0.023 (P ¼ 0.0422) 0.023 (P ¼ 0.0292) 0.013 (P ¼ 0.2095)

Stop codon context
TAAA 0.004 0.000 0.005
TAAT 0.000 0.005 0.001
TAAC 0.000 0.000 0.000
TAAG 0.002 0.000 0.002
TAGA 0.000 0.000 0.009
TAGT 0.000 0.008 0.000
TAGC 0.001 0.004 0.000
TAGG 0.001 0.004 0.001
TGAA 0.005 0.001 0.012
TGAT 0.001 0.000 0.001
TGAC 0.016 0.018 0.017
TGAG 0.007 0.000 0.002
Sum of stop codon context a 0.037 (P ¼ 0.3669) 0.041 (P ¼ 0.1916) 0.051 (P ¼ 0.1079)

Sum of all features aboveb 0.249 0.398 0.218

Totalc 0.169 (P , 0.00001) 0.262 (P , 0.00001) 0.152 (P , 0.00001)

All scores are partial scores after mRNA, i.e., explanation of protein variations after taking away mRNA effects.
The ‘‘sums’’ listed for each group are sums of ‘‘partial R2’s’’ that have removed the overlapping effect among
various variables.

a P-value measurements are from the standard F-test.
b Not including mRNA expression.
c The results are from multiple-regression analyses that include all features.
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values between detected proteins and all proteins.
Indeed, we found that except for Glu and Val codon
families, the POD values of at least 1 codon within all the
other 16 sense codon families (Met and Trp are
excluded because they have only 1 codon) were signif-
icantly different (P-values ,0.0001) between detected
proteins and all proteins (Figure 5, A and B). In most
cases, the absolute values of POD are greater in detected
proteins than in all proteins, suggesting a stronger bias
for these codons in detected proteins. This observa-
tion is consistent with previous findings in E. coli and
Saccharomyces cerevisiae (Ikemura 1981, 1982, 1985).
Taken together, it is obvious that codon usage in D.
vulgaris is strongly associated with protein expression.

The second approach is a correspondence analysis of
the RSCU. The first four major trends in codon usage
(CR1 to -4) determined by correspondence analysis
accounted for 17.1, 4.4, 3.9, and 3.7% of the total

variations in RSCU of all D. vulgaris genes (Wu et al.
2006). We included the first four major axes in codon
usage of the D. vulgaris genome in a multiple-regression
analysis. The result showed that codon usage alone
contributed to 5.3–15.7% of the total variation in
mRNA–protein correlation under the three conditions
(P-value ,0.001) (Table 1).

Amino acid usage: It was observed that the usage of
some amino acids was correlated with gene expression
(Akashi 2003; Chanda et al. 2005; Schaber et al. 2005).
To determine whether it is the same case for amino acid
usage in D. vulgaris, we applied a similar approach to the
one used for codon usage, as described in the previous
section. The only difference was that this time the
frequencies of all synonymous codons were summed.
Therefore, if the usage of an amino acid is associated
with protein expression, we expect the POD value of this
amino acid in detected proteins to be different from

Figure 2.—Frequency distribution of SD–
rRNA interaction minimum free energy for all
D. vulgaris proteins and proteins identified in
three growth conditions. LL, lactate-log phase;
FL, formate-log phase; LS, lactate-stationary
phase.

Figure 3.—Minimum free energy of SD–rRNA
interaction of genes belonging to various func-
tional categories: (I) all genes, (II) lactate-log con-
dition, (III) formate-log condition, and (IV)
lactate-stationary condition. The cellular func-
tional categories are: A, amino acid biosynthesis;
B, biosynthesis of cofactors and carriers; C, cell en-
velope; D, cellular processes; E, central intermedi-
ary metabolism; F, DNA metabolism; G, disrupted
reading frame; H, energy metabolism; I, fatty acid
and phospholipid metabolism; J, hypothetical
proteins; K, other categories; L, protein fate; M,
protein synthesis; N, biosynthesis of purines and
pyrimidines; O, regulatory functions; P, signal
transduction; Q, transcription; R, transport and
binding proteins; and S, unknown function. The
functional categories without any proteins de-
tected are left blank in II, III, and IV. The central,
top, and bottom horizontal lines in the plots
represent the mean, plus and minus the standard
deviation for each function category.
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that in all proteins. As expected, the POD values of
amino acids Asn, Asp, Glu, Ile, Tyr, and Lys in detected
proteins are significantly higher than those in all
proteins (P-values ,0.0001 for all these amino acids)
(Figure 6), suggesting that these amino acids are
preferred in more abundant proteins.

Given the fact that amino acid usage in D. vulgaris
does associate with protein expression, we employed a
multiple-regression analysis to determine its relative
contribution to mRNA–protein correlation. A corre-
spondence analysis of the deduced protein sequences of
3522 genes in D. vulgaris was performed to reveal the
major trends. The first four trends (AA1 to -4) identified
by correspondence analysis explain 18.6, 11.5, 9.7, and
7.0% of the variability in D. vulgaris amino acid usage,
respectively (Wu et al. 2006). When we included the
first four major axes in amino acid usage of the D.
vulgaris genome in a multiple-regression analysis, the
result showed that amino acid usage alone contributed
to 5.8–11.9% of the total variation in mRNA–protein
correlation under the three growth conditions (P-value
,0.001) (Table 1).

Sequence features related to translation termination:
Stop codons: In D. vulgaris, three types of stop codons are
all commonly used, with �45, 41, and 14% among
all genes for TGA, TAG, and TAA, respectively (Figure
7A). However, among the proteins detected under our
three growth conditions, TAG seems to be the most
preferred stop codon: �56–59% of protein-encoding
genes use TAG as a stop codon (Figure 7A). Regression
analysis showed that stop codon identity was an im-
portant feature affecting mRNA–protein correlation.
It alone explained 1.3–2.3% of total variation in
mRNA–protein correlation under the three growth
conditions (Table 1).

Stop codon context: The base immediately downstream
of the stop codon was also investigated for its role in
translation termination. In D. vulgaris, ‘‘C’’ appears to be
preferred after all three stop codons (Figure 7B). The
most frequent stop signal is TAGC, which is even higher

in proteins identified under the three conditions,
suggesting that it might be the optimal stop signal.
Simple regression analysis confirmed that stop codon
context was an important feature affecting mRNA–
protein correlation. It alone contributed 3.7–5.1% of
total variation in mRNA–protein correlation under the
three growth conditions (Table 1).

Multiple-regression analysis: To quantitatively deter-
mine the relative contribution of each translation
efficiency-related feature on mRNA–protein correla-
tion, all sequence features studied above were inte-
grated into a multiple-regression analysis. The results
showed that these features together accounted for
�15.2–26.2% of the total variation in mRNA–protein
correlation (Table 1). The P-values of this regression
model, for all three conditions, are all ,0.00001, which
indicates that contribution of these features to the
mRNA–protein variation is significant. In addition, the
result is very consistent under all three growth
conditions.

To further evaluate the multiple-regression model
itself, and to verify the sincerity of the contribution
resulting from this multiple regression, we ran two
bootstrap tests by keeping sequence features un-
changed for all genes, while randomly permuting their
proteomic abundance among the genes so that the
proteomic abundance of a given gene is randomly
assigned to a different gene. The bootstrap tests were
run by randomly selecting 1000 permutations for each
test. For each permutation, a multiple regression was
fitted and R2 was reported as we did for the real data.
The bootstrap P-value is reported as the probability
that the simulated R2 is larger than the R2 associated
with the real data. A smaller P-value suggests that the R2

obtained for the real model is statistically more sig-
nificant. The two null models for the bootstrap tests
were that (1) the contribution by mRNA levels and all
sequence features is not larger than the mRNA level
alone and (2) the contribution by mRNA levels and
all sequence features is no larger than that by mRNA

Figure 4.—(A) Frequency distribution of start codon usage in all D. vulgaris proteins and proteins identified from three growth
conditions. (B) Frequency distribution of minimum free energy of predicted mRNA secondary structure at start codon context of
all D. vulgaris proteins and proteins identified from three growth conditions.
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levels and initiation-related sequence features (ex-
cluding elongation- and termination-related sequence
features), respectively. The results showed that the
P-values from the first bootstrap analysis are 0 for the
contributions computed under all three growth con-
ditions, and the P-value for the second null hypoth-
esis is ,0.0001 for all three conditions. The results
demonstrated that correlation of mRNA expression
and protein abundance was affected at a fairly signifi-
cant level by multiple sequence features related to
translational efficiency in D. vulgaris. Among them, the
amino acid usage and codon usage are the top two

factors, followed by stop codon context and SD se-
quences (Table 1).

DISCUSSION

It is widely accepted that gene regulation in prokary-
otes occurs mainly at the transcription level and
secondarily at the level of translation (Lange and
Hengge-Aronis 1994; Chhabra et al. 2006). Neverthe-
less, so far no systematic quantitative analysis has been
performed on the effects of various translation-related

Figure 5.—Comparison
of the preferences of syn-
onymous codon usage
between all D. vulgaris pro-
teins and proteins identified
from three growth condi-
tions. (A) Twofold codon
families. (B) Multifold co-
don families.
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sequence features on mRNA–protein correlation, and
it remains unclear how strong the translation control is.
In this study, we exploited the whole-genome mRNA
expression and LC–MS/MS proteome abundance data
from D. vulgaris grown under three conditions to gain
insights into how the mRNA–protein correlation may
be affected by various sequence features related to
translation efficiency (Zhang et al. 2006a,c). The major
sequence features in each translational stage were
quantified and their effects on mRNA–protein correla-
tion were investigated. Multiple-regression analyses of
all sequence features showed that they together con-
tributed up to 15.2–26.2% of the total variation of
mRNA–protein correlation, suggesting that regulation
at the translational level is indeed involved in determin-
ing mRNA–protein correlation in D. vulgaris. The result
provides a valuable estimate of the contribution of
translation-related sequence features to protein synthe-
sis. It may be worth noting that although several pre-
vious studies have been performed to determine the
contribution of some of these sequence features to
mRNA or protein abundance (Poole et al. 1995; Rocha

et al. 1999; Lithwick and Margalit 2003), these se-
quence features were not examined in a unified frame-
work. To our knowledge, our analysis represents the first
attempt to address the relative contribution of these
sequence features to the mRNA–protein correlation
with a single statistical model.

This investigation also benefited from the expression
data sets we used. First, mRNA expression and protein
abundance were determined for a pair of samples
prepared in parallel to minimize the variations across
experiments; second, the data set is relatively large
(.400 proteins and their corresponding genes); and
third, three individual data sets were collected inde-
pendently for three growth conditions (Zhang et al.
2006a,c,d). All of these have substantially contributed
to the reliability of our analyses; therefore, the results
from our analyses may represent a general phenome-
non in D. vulgaris.

The traditional view on the contribution of SD
sequences to mRNA–protein correlation was that the
competition between the ribosome–RBS interaction
and the mRNA structure results in nearly ‘‘all-or-none’’

Figure 7.—(A) Frequency distribution of stop codon usage in all D. vulgaris proteins and proteins identified from three growth
conditions. (B) Frequency distribution of tetranucleotide termination signals in all D. vulgaris proteins and proteins identified
from three growth conditions.

Figure 6.—Comparison of the preferences
of amino acid usage between all D. vulgaris pro-
teins and proteins identified from three growth
conditions.
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expression, leaving almost no room for regulation at the
translation level (De Smit and Van Duin 1994; Rocha

et al. 1999). Therefore, all moderately or highly ex-
pressed genes should have a good combination of a
good RBS and an efficient start codon. In contrast, some
other findings suggested that the SD sequence has little
influence on protein expression, as the binding of the
16S ribosomal subunit has been found not to be
essential for translation initiation (Calogero et al.
1988). In fact, there exist mRNAs without SD sequences
(Boni et al. 2001). In a recent study with E. coli and
Haemophilus influenzae genomes, it was also proposed
that the base-pairing potential of the mRNA SD se-
quence and the rRNA seemed to have a negligible effect
on protein expression (Lithwick and Margalit 2003).
However, our study with D. vulgaris indicates that
differential MFE values for SD sequences were present
among genes/proteins of different abundance levels.
Moreover, regression analysis showed that SD sequences
contributed to 1.9–3.8% of the total variation of mRNA–
protein correlation, suggesting that SD sequences do
play a role in translational control.

It has been suggested that translation initiation is a rate-
limiting step when compared with the elongation and ter-
mination stages of protein biosynthesis (Vellanoweth

and Rabinowitz 1992; De Smit and Van Duin 1994;
Rocha et al. 1999; Romby and Springer 2003). However,
our study showed that features related to translation
initiation (start codon and start codon context) play only
a minor role in determining mRNA–protein correlation
in D. vulgaris. To the contrary, the sequence features in-
volved in translation elongation, such as codon usage and
amino acid usage, may be more important in determining
mRNA–protein correlation in D. vulgaris. This result is con-
sistent with the conclusion by Lithwick and Margalit

(2003), who found that codon bias had the greatest in-
fluence on protein expression levels, and also consistent
with a recent study that estimated that codon bias ac-
celerates translation in E. coli by no more than 60% in
comparison to microbes with very little codon bias
(Dethlefsen and Schmidt 2005).

Translation elongation can be retarded or stalled
by the use of rare codons and the availability of various
amino acids as building blocks (Varenne et al. 1989;
Rocha et al. 1999; Akashi and Gojobori 2002). The
second major sequence feature that influences the
mRNA–protein correlation was identified as the amino
acid usage of the proteins in D. vulgaris. Metabolic cost
of amino acids has been previously proposed to
explain the preferences in amino acid usage (Akashi

and Gojobori 2002); abundant proteins tend to use
more cost-efficient amino acids. However, no obvious
correlation was found between amino acid prefer-
ences and metabolic cost in our study. For instance,
amino acids (Asn, Asp, Glu, Ile, Tyr, and Lys) preferred
in detected proteins are not of low metabolic cost
(Akashi and Gojobori 2002). Instead, we observed a

strong correlation between protein hydrophobicity
and AA2 (Pearson correlation coefficient 0.78), sug-
gesting that selection for protein structure remains
as the major determinant of amino acid usage in
D. vulgaris.

It has been shown that the identity of the stop codon
and stop codon context influence the rate of translation
termination (Poole et al. 1995). Several recent studies
showed that the average gene expression level among
the three stop codon groups in the five model organ-
isms and humans does not differ significantly (P . 0.05)
(Sun et al. 2005), and the association of stop codons
with high expression as reflected by the F-coefficient
was found to be weak (Lithwick and Margalit 2003).
Our analysis indicated that, while the contribution by
stop codons wasnot dramatic (1.3–2.3%to the total varia-
tion of mRNA–protein correlation), the contribution by
stop codon context was found to be the third greatest
sequence feature affecting mRNA–protein correlation,
contributing 3.7–5.1% of the total variation. Therefore,
the stop codon context may be more important in af-
fecting the translation efficiency than previously
suggested.

It might be noteworthy that while our previous study
addressed the effects of experimental challenges and
various physical properties of mRNA or proteins, such as
analytic variation, stability of mRNAs and proteins, and
the cellular functional category of genes/proteins, etc.
(Nie et al. 2006a), this article focuses on the impact of
the sequences to the proteomic and mRNA correlation
pattern. An attempt has also been made to integrate all
the features tested in this work and our previous article
into one multiple-regression model. Consequently we
found that .71% of mRNA–protein correlation varia-
tion can be accountable (L. Nie, G. Wu and W. Zhang,
unpublished data), suggesting that we have identified
most of the factors that can potentially affect mRNA–
protein correlation. In addition, through an F-test the
results showed that the contributions by translation-
level factors are significantly independent of the con-
tributions by errors and protein stability with a P-value
,0.0001 (Ott and Longnecker 2001; L. Nie, G. Wu

and W. Zhang, unpublished data). Although the model
could be further improved if other related features,
such as mRNA and protein degradation rate, can be
included or larger proteomic data sets and their corre-
sponding gene expression data become available, the
results obtained here have greatly enhanced our un-
derstanding of correlation between mRNA expression
and protein abundance. The results also lay down an
important foundation for developing statistical tools in
integrating microarray and proteomic data (Nie et al.
2006b). In addition, the study extended the concept of
integrated genomics by including experimental ge-
nomics data and other quantitative properties that are
sequence dependent. Without much modification,
the methodology described in this article can also be
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applied to the analysis of other model organisms such as
E. coli and S. cerevisiae.

As a complicated biological process, many details of
translation still need further investigation; for example,
highly expressed proteins may not necessarily require a
high abundance of mRNA if they have a translation rate
higher than average. In this study, we made the initial
attempt to use postgenomic data to analyze a translation
process in a simplified framework; it will be more in-
formative to include other experimental parameters,
such as RNA decay and protein degradation, into the
model once they become available in the future. We
point out that the conclusions reached were also subject
to the limitations of the data sets (e.g., quality of data and
size of data set). For example, the lack of a significant
contribution of start codons to variations in the mRNA–
protein correlation may be due to the fact that most
proteins used in this analysis already have a good start
codon. In addition, this study was also subject to the
limitations of our methods to quantify sequence fea-
tures, such as minimal free energy or SD computation.
Because of all these reasons, caution needs to be taken
in further interpreting these conclusions as general
rules in all prokaryotic cells. Nevertheless, our study
provides the first comprehensive quantitative analysis
of various sources of contribution to the variation in
mRNA–protein correlation and sheds some light on the
translation process in bacterial D. vulgaris.
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