TABLE 1.
n | τ = 48 cM | φ = −0.03 | μ = 2 | a = 0.2 | Power |
---|---|---|---|---|---|
Underdispersion | |||||
100 | 47.27 (14.19) | −0.0317 (0.0065) | 1.9966 (0.0425) | 0.2055 (0.0589) | 85 |
47.32 (15.16) | — | 2.0037 (0.0412) | 0.1918 (0.0517) | 81.3 | |
200 | 47.34 (8.29) | −0.0308 (0.0045) | 1.9978 (0.0289) | 0.2028 (0.0396) | 99 |
47.25 (8.58) | — | 2.0077 (0.0288) | 0.1851 (0.0399) | 94 | |
400 | 47.69 (5.145) | −0.0302 (0.003) | 1.9996 (0.0208) | 0.2004 (0.0279) | 100 |
46.59 (6.661) | — | 2.0089 (0.0218) | 0.1832 (0.0306) | 99.9 | |
n | τ = 48 cM | φ = 0 | μ = 2 | a = 0.3 | Power |
No dispersion | |||||
100 | 47.18 (13.323) | −0.0021 (0.0085) | 1.9963 (0.0545) | 0.3046 (0.0743) | 93.2 |
47.19 (13.389) | — | 1.9970 (0.0543) | 0.3033 (0.0739) | 93.5 | |
200 | 47.24 (6.893) | −0.0009 (0.0059) | 1.9972 (0.0377) | 0.3025 (0.0515) | 100 |
47.23 (6.885) | — | 1.9976 (0.0375) | 0.3018 (0.0510) | 99.9 | |
400 | 47.86 (4.116) | −0.0003 (0.0040) | 1.9995 (0.0272) | 0.3002 (0.0362) | 100 |
47.85 (4.117) | — | 1.9995 (0.0271) | 0.3001 (0.0360) | 100 | |
n | τ = 48 cM | φ = 0.015 | μ = 1.6 | a = 0.3 | Power |
Overdispersion | |||||
100 | 47.19 (15.754) | 0.0113 (0.0138) | 1.5912 (0.0740) | 0.3125 (0.1042) | 74.5 |
47.34 (17.327) | — | 1.5866 (0.0756) | 0.3207 (0.1078) | 71.2 | |
200 | 47.43 (10.596) | 0.0134 (0.0096) | 1.5943 (0.0496) | 0.3068 (0.0682) | 95.3 |
47.44 (10.874) | — | 1.5885 (0.0512) | 0.3171 (0.0714) | 93.5 | |
400 | 47.56 (6.405) | 0.0145 (0.0065) | 1.5988 (0.0358) | 0.3014 (0.0483) | 100 |
47.66 (6.518) | — | 1.5925 (0.0369) | 0.3125 (0.0507) | 99.9 |
Data are simulated using the GPR model. Power is calculated as the percentage of all simulations in which the significant QTL is detected. The first and second rows for a given sample size correspond to the results analyzed using the GPR and the PR approaches, respectively.