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ABSTRACT

The identi®cation of conserved sequence tags
(CSTs) through comparative genome analysis may
reveal important regulatory elements involved in
shaping the spatio-temporal expression of genetic
information. It is well known that the most signi®-
cant fraction of CSTs observed in human±mouse
comparisons correspond to protein coding exons,
due to their strong evolutionary constraints. As we
still do not know the complete gene inventory of the
human and mouse genomes it is of the utmost
importance to establish if detected conserved
sequences are genes or not. We propose here a
simple algorithm that, based on the observation
of the speci®c evolutionary dynamics of coding
sequences, ef®ciently discriminates between coding
and non-coding CSTs. The application of this
method may help the validation of predicted genes,
the prediction of alternative splicing patterns in
known and unknown genes and the de®nition of a
dictionary of non-coding regulatory elements.

INTRODUCTION

A fundamental task in genome analysis is the annotation of the
various sequence features that constitute the genetic program
of each organism. In this respect the identi®cation of genes
and of the regulatory elements controlling level, location and
chronology of their expression represents a major challenge
for biologists in the genomic era.

It should be noted that we still have not established, with
any degree of con®dence, exactly the number of genes
encoded by any of the completed (at least at draft level)
prokaryotic and eukaryotic genomes. The problem is not
trivial even for prokaryotic genomes, where the typical high
gene density and the absence of introns makes the task of gene
detection and annotation somewhat more tractable. For
example, it can be dif®cult to accurately predict some of the
shortest genes that often lack identi®able homologs in other
species. The gene-®nding problem becomes even more

daunting in large eukaryotic genomes, where coding regions
are generally scattered in a vast sea of non-coding noise.

The simplest way to predict a coding region is the
observation of a statistically signi®cant similarity to a
known protein (for example by BlastX analysis). However,
in many cases no homolog can be identi®ed in the protein
databanks. Furthermore, given that most of the proteins
collected in public databases merely represent the conceptual
translation of predicted ORFs, the observation of a protein
match does not guarantee the identi®cation of a true gene and
the correct identi®cation of its exon/intron structure. For this
reason it is attractive to use several approaches, including
computational methods performing ab initio gene predictions,
concurrently. These methods function by integrating the
detection of speci®c signals (e.g. splice sites, start codon
context, etc.) with the observation of sequence statistical
features peculiar to protein coding regions (e.g. long ORFs,
asymmetric composition of the three codon positions, pres-
ence of upstream CpG islands, etc.). Gene ®nding tools
integrating both content and signal sensors perform particu-
larly well when adopting hidden Markov models (HMMs)
applying probabilistic models to interconnect the sequence
and boundary signals considered. Among the most popular
programs are Glimmer (1) and GeneMark (2) for bacterial
genomes and Genscan (3) and HMMgene (4) for eukaryotic
genes, with prediction accuracies >90% (5). However,
auxiliary experimental information, such as EST or cDNA
matches, are needed to con®rm a gene prediction.

The availability of both genome and high throughput
transcript collections for several model organisms, such as
human and mouse, opens new possibilities for the identi®ca-
tion of protein coding genes based on comparative analysis of
homologous sequences (6,7). Several methods have been
proposed that use a strategy taking into account similarity at
the nucleotide and amino acid levels as well as conservation of
splice sites, exon length and codon usage. Indeed, a compari-
son of the mRNA sequences of 1880 orthologous human and
mouse gene pairs (8) showed ~85% identity for coding exons,
in contrast to an average 35% identity for introns (close to the
expected level of identity for random sequences).

As it is known that sequences regulating gene expression
tend to be conserved between species (9), the problem of
discriminating between potentially coding and non-coding
conserved sequence tags (CSTs) arises. Only these latter may
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represent potential regulatory elements whose activity
deserves further investigation.

Here we present a new heuristic method based on pairwise
genome comparison which has been implemented in software
called CST®nder. Following the identi®cation of high scoring
segment pairs (HSPs) through a Blast-like sequence com-
parison, CST®nder assesses the potential coding capacity of
CSTs delimited by each HSP. The measure of coding capacity,
expressed by a coding potential score (CPS), is related to the
observation of a constrained evolutionary process speci®c to
coding regions (and not observable in non-coding regions) that
can be observed through cross-species comparisons. Firstly,
substitutions in homologous coding regions tend to be
strongly biased toward synonymous changes. Secondly, non-
synonymous substitutions (i.e. base changes involving amino
acid substitution) tend to be more conservative than those
randomly expected, favoring interconversions between struc-
turally similar amino acids. A similar strategy is adopted by
some gene ®nding algorithms (10,11) and in QRNA (12), a
program speci®cally designed for non-coding RNA gene
detection. However, this latter requires aligned sequences as
input.

The method proposed here has been speci®cally designed to
detect CSTs in large-scale genome comparisons, and also to
assess their coding capacity using a novel scoring formula. It
is extremely fast and accurate and has proven very valuable in
the recognition of known protein coding regions in genomic
and cDNA nucleotide sequences and in detecting novel
potentially coding exons in large unannotated homologous
genome regions.

MATERIALS AND METHODS

CST®nder algorithm

Given a CST of length L identi®ed by Blast search (13) for a
pair of sequences S1 and S2 the analysis is carried out for all
the three possible frames in the forward and reverse strand
orientation, i.e. f = +1, +2, +3, ±1, ±2 and ±3, respectively. For
each frame the pairs of Nf aligned trinucleotides (i.e.
hypothetical codons) are considered that show at least one
nucleotide substitution. The Nf triplet pairs considered for
frame f can be classi®ed as synonymous (S) or non-
synonymous (A) so that Nf = Sf + Af + G, where G is the
number of gapped or stop codon-containing triplet pairs. A
CPS is then calculated for the CST under investigation as:

CPS� f � � 100

L
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where Sf and Af are the number of triplet pairs where
synonymous and replacement changes are observed, respec-
tively, in frame f, and AA_simi is a measure of the structural
similarity between compared amino acids for the ith triplet
pair expressed in terms of a PAM or Blosum score. The PAM
or Blosum matrix is selected by the user (default Blosum80)
and assigns a penalty of ±9 for gap lengths not a multiple of
three and for stop codon-containing triplet pairs. L is the
nucleotide length of the relevant HSP. Given the dependence

between the CPS and the CST size, the CPS is normalized to a
®xed size of 100 codons.

Alternatively, CST®nder allows the CPS to be calculated
over triplet windows scanning the CST under investigation.
This approach can allow the approximate identi®cation of the
boundaries, if any, of the protein coding region within the
CST.

Parameters used in the Blast-like sequence similarity search
carried out by the CST®nder software included a word size of
10, a minimum CST length of 30 nt and a maximum E-value
of 10±5.

Data

The CDS dataset, including 1880 human and rodent nucle-
otide sequences coding for proteins (CDS), was obtained from
the collection of orthologous mRNA sequences analyzed by
Makalowski et al. (14). This set has been divided into ®ve
parts according to observed identities in encoded proteins:
cds1 (399 CDSs, 97±100%), cds2 (421 CDSs, 92±97%), cds3
(413 CDSs, 73±85%), cds4 (383 CDSs, 73±85%), cds5
(263 CDSs, 40±73%).

The GENE dataset (15) included 15 orthologous pairs of
single gene sequences from human and mouse collected in the
IMOG dataset.

The 5¢-UTR mRNA sequences of the human and rodent
division from UTRdb (16) were analyzed to reveal wrongly
annotated CDSs in the EMBL/GenBank entry.

The GENOME dataset included 199 orthologous paired
genome regions from human and mouse, accounting for a total
of ~140 Mb, extracted from the EnsEMBL database (17),
including at least one known gene and ¯anking 5¢ and 3¢
genomic regions containing other partial or complete genes
classi®ed as `novel', `EST' or `GenScan/Twinscan' predicted
genes.

RANDOM and SYNTENY datasets were also generated to
evaluate CST®nder performance. For the RANDOM dataset a
thousand pairs of nucleotide sequences were generated by
Monte Carlo simulation using the nucleotide composition of
sequences in the CDS dataset. To make simulated sequences
resembling natural sequences the simulation generated
sequences made of ®ve `exons' and four `introns', all 100 nt
long, with exon sequences diverging by 60±90% and intron
sequences made of a poly(A) in the ®rst and a poly(C) in the
second sequence. The SYNTENY dataset included eight
conserved syntenic regions for human chromosome 22 and the
mouse genome (EnsEMBL release 11.31), accounting for
~31 Mb for human and 28 Mb for mouse and a total of 2215
annotated human genes. We expect that in these syntenic
regions virtually all human coding exons have been
discovered and annotated (18).

CST®nder software and trial data are available from the
authors upon request.

RESULTS

To test the effectiveness of the algorithm we named
CST®nder, we analyzed a set of 1880 pairs of human and
mouse orthologous CDS sequences (14). Results are summar-
ized separately for ®ve groups of orthologous gene pairs
showing a decreasing level of protein identity in Table 1. As
anticipated, synonymous codons signi®cantly outnumbered
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non-synonymous codons at all levels of identity. The
percentage of synonymous codons was fairly homogeneous
among all ®ve classes as well as the AA_sim score (see
Materials and Methods), whereas the percentage of non-
synonymous codons was higher in more divergent
human±mouse pairs.

Virtually all CDSs in the ®ve groups of sequences showed a
CPS > 30 (100% positives in Table 1). The average CPS
ranged between 270.8 and 3318.7 for the ®ve groups. Only 14
of the total 1880 sequence pairs in the CDS dataset, all in the
40±73% similarity group, did not show CPS > 30. However, in
these cases no HSP was detected through the Blast search, thus
preventing CPS calculation.

The RANDOM dataset (see Materials and Methods) has
been used as a negative training set carrying out the analysis
on each detected HSP. Results shown in Table 1 show a clear-
cut discrimination between genuine coding and non-coding
highly conserved regions, with the latter showing non-
synonymous changes greatly outnumbering synonymous
changes and an average CPS of 13.0. Figure 1 shows the
distribution of the CPSs obtained in the analysis of the
RANDOM training set. Using a CPS threshold of 30 the rate
of false positives can be estimated at 17.8%. However, only

less than 5% of simulated gene pairs in the random dataset
showed two or more concurrent HSPs with CPS > 30 and in
only one case was a CPS > 500 observed.

To further assess the reliability of the algorithm in detecting
coding exons when comparing homologous genomic regions
we analyzed 15 pairs of human±mouse orthologous genes
contained in the GENE dataset (see Materials and Methods).
Results are summarized in Table 2. For all genes at least one
exon was detected with CPS > 500, with an overall rate of
66/73 exons and an average CPS of 864.5. The method
performed equally well at various degrees of conservation of
the corresponding protein products, although more clear-cut
signals were obtained from more conserved proteins.

The CST®nder algorithm was also used to compare 5¢-UTR
sequences of human and rodent mRNAs from the UTRdb
database (16) in order to detect potentially coding CSTs
(present in the database due to mis-annotation of the coding
region or to UTRs that are part of the coding portion in
alternatively spliced mRNAs). Table 3 shows the 10 highest
CPS matches for both 5¢- and 3¢-UTR analysis. In all cases the
hypothetical peptide encoded by the human sequence of the
detected CST is identical or highly similar to an already
annotated human protein. These results imply that mis-
annotation of CDS regions (or indeed known or undetected
alternative splicing patterns) have contributed to the presence
of a number of coding regions in UTRdb.

In order to provide a conservative estimate of the false
positive rate in real biological data we analyzed the
SYNTENY dataset. 1801 of 1845 CTSs with CPS > 500
(~98%) overlapped exons of EnsEMBL annotated genes, as
well as 4015 of 5755 CSTs with CPS > 30 (70%). This implies
a false positive rate of ~2% if a CPS threshold of 500 is
adopted, but also indicates that CSTs with CPS > 30 merit
further investigation. In contrast, only 414 of 1579 CSTs with
CPS < 30 (26%) corresponded to exons of EnsEMBL
annotated genes.

Finally, we carried out an extensive analysis on 199 pairs of
human and mouse gene loci accounting for a total of ~140 Mb.

Table 1. Result of the application of CST®nder to the CDS dataset (see
Materials and Methods)

Class N genes Positives
(%)

S A AA_sim CPS

97±100% 399/399 100 30.3 6.4 234.2 3318.7
92±97% 421/421 100 26.9 8.5 210.8 1117.2
85±92% 413/413 100 26.7 11.9 202.8 727.3
73±85% 383/383 100 24.7 17.1 188.4 389.6
40±73% 249/263 95 23.0 20.3 161.8 270.8
RANDOM set 2.8 7.3 0.3 13.0

The number of synonymous (S) and non-synonymous (A) substitutions, the
Blosum80 score (AA_sim) and the average CPS are shown for each group
of genes, all values normalized to 100 codons.

Figure 1. Distribution of CPSs from the CST®nder analysis of the RANDOM set.
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A total of 10 899 CSTs were identi®ed. We classi®ed these
CSTs on the basis of the detected overlap between CST
coordinates and genome feature coordinates annotated in
EnsEMBL as `known gene', `novel gene', `EST gene' or
`GenScan predicted gene'. Remaining CSTs were classi®ed as
`no match'. Results are summarized in Figure 2. Interestingly,
only 4.1% of CSTs overlapping with exons belonging to
`known genes' showed a CPS < 30, with a remarkable fraction
of ~40% with a CPS > 500 denoting a highly signi®cant
coding capacity. High CPSs have also been observed for CSTs
falling in `novel genes', `EST genes' and `GenScan predicted
genes', thus providing signi®cant con®rmation of a large
number of unknown genes. We have also investigated those
few cases were the CSTs overlapping known genes presented
low CPSs (< 30). We noted that in most cases the CSTs
covered not only a coding portion of the gene but comprised
conserved regions falling in introns or 5¢- or 3¢-UTRs. Some
examples are reported in Figure 3, where a graphic represent-
ation of CSTs mapping on known genes (Fig. 3A), novel genes
(Fig. 3B), EST genes (Fig. 3C) and GenScan (Fig. 3D) and
TwinScan (Fig. 3E) predicted genes is shown. It is evident that
CST®nder con®rms most known exons (see also data in
Table 1) and, more importantly, indicates novel coding exons
including those missing the experimental validation of a
matching transcript sequence and only computationally pre-
dicted by GenScan or TwinScan. In addition, most CSTs not
showing a signi®cantly high CPS fall outside the coding
portion of gene exons.

A large fraction of identi®ed CSTs (~50%, 4577 of 10 899),
designated as `no match', do not correspond to sequence
stretches with known function. Although some of these may
represent as yet unannotated exons it is likely that most of
them actually represent non-genic sequences endowed with
structural or regulatory activities. A comparable estimate of
the abundance of non-genic conserved sequences has been
made from an analysis of the syntenic region of human
chromosome 21 (19).

DISCUSSION

The completion of the draft genome sequence of human,
mouse, rat and Fugu, as well as the steady progression of other
vertebrate sequencing projects, has opened new avenues in the
genomic (or post-genomic) era that will give us the extra-
ordinary opportunity of investigating evolutionary changes
that have shaped genome structure and content during
evolution. The comparison of two or more genome sequences
revealing conservative and diverging patterns may highlight
common and species-speci®c molecular mechanisms that
control gene expression.

In particular, the comparative sequence analysis of genomes
of two or more species gives us the possibility of identifying
the entire inventory of conserved genomic elements playing a
role in the control of gene expression. It is increasingly clear
that to decrypt the genetic information encoded in the genome
it is necessary, but not suf®cient, to de®ne the structure of all
its genes. Indeed, most of the genome space (>95% in
mammals) is non-coding and thus potentially involved in the
concerted regulation of spatio-temporal expression of genes.
The identi®cation of CSTs may be critical in shedding light on
this `dark side' of the genome. However, given that we still do
not know the complete gene inventory of almost any of the
genomes sequenced to date, it is particularly important to
assign the genome CSTs identi®ed in cross-species compari-
sons to the coding or non-coding portion of the genome.
Indeed, most annotated coding exons correspond to conserved
regions in human±mouse comparisons (20). We have here
proposed a novel heuristic approach that can effectively
discriminate between coding and non-coding CSTs. It is based
on the simple idea that coding and non-coding portions of the
genome are subjected to remarkably different evolutionary
dynamics. In fact, speci®c constraints operate on coding

Table 3. Results of CST®nder application to the comparison of human and
mouse 5¢- and 3¢-UTRs collected in UTRdb (16)

Rod UTRdb ID Hsa UTRdb ID S A CPS Protein ID

5¢-UTR
5RNO000568 5HSA011649 26 1 826.8 NP_036234.2
5MMU013664 5HSA024541 13 1 497.3 NP_004796.1
5RNO000682 5HSA003514 12 1 437.2 AAC61479.1
5RNO000568 5HSA011649 18 1 416.3 NP_036234.2
5MMU012957 5HSA021834 13 1 402.7 AAG35479.1
5MMU012175 5HSA033873 18 1 391.8 AAH32597.1
5MMU014128 5HSA028662 53 3 339.1 BAB85047.1
5MMU013456 5HSA031624 20 3 259.0 AF381996.1
5MMU010706 5HSA029926 10 1 256.4 NP_079011.2
5RNO005888 5HSA011221 8 1 239.6 P39192
3¢-UTR
3MMU007952 3HSA031829 33 1 1020.6 NP_001010.2
3MMU007222 3HSA026992 37 2 879.4 NP_004455.1
3RNO000947 3HSA024970 46 2 762.7 AAB41498.1
3MMU013840 3HSA004501 21 1 565.8 NP_067642.1
3MMU010062 3HSA034129 13 1 495.2 XP_172586.1
3MMU008684 3HSA001895 15 1 367.1 AAC51213.1
3RNO006623 3HSA012556 21 2 296.0 BAC04618.1
3MMU010353 3HSA020623 9 1 278.6 NP_038267.1
3MMU005948 3HSA001570 10 1 269.7 NP_001558.2
3MMU008634 3HSA009559 9 1 246.2 P78536

The 10 highest scoring HSPs are shown for both 5¢- and 3¢-UTRs with the
accession number of the relevant matching protein.

Table 2. Result of the application of CST®nder to the GENE database
(see Materials and Methods)

Gene Hsa ID Rod ID ID (%)
(aa)

Average
CPS

Matching
exons

BAL M94579 M69157 75.8 640.6 9/11 (9/11)
COXD U66875 U34801 79.4 167.9 3/3 (3/3)
ENOB X56832 X61600 97.7 817.4 10/11 (8/11)
H1T M97755 L28753 53.2 975.1 1/1 (0/1)
H4 M16707 V00753 100.0 5414.1 1/1 (1/1)
HS71 M11717 M32218 87.3 590.3 1/1 (0/1)
KCRB X15334 M74149 96.6 686.8 7/7 (6/7)
MIF L19686 U20156 89.5 193.7 3/3 (3/3)
MT3 S72043 S72046 86.8 104.3 3/3 (2/3)
OSTP U20758 X51834 48.0 117.5 4/6 (2/6)
PAP1 L15533 D63360 69.1 294.8 4/5 (4/5)
PSPA M68519 S48768 71.0 321.5 3/4 (3/4)
ROM1 M96759 M96760 84.6 311.8 3/3 (3/3)
RS7 Z25749 AF043285 100.0 1768.4 6/6 (6/6)
SPEE M64231 Z67748 94.7 563.7 8/8 (6/8)

The last column reports the fraction of CSTs matching to exons correctly
classi®ed as coding (values in parentheses refer to a QRNA application with
the same BLAST parameters used in CST®nder).
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regions where synonymous outnumber non-synonymous
changes, and these latter more likely result in conservative
amino acid replacements.

Although a similar strategy underlies other methods
recently proposed, such as QRNA (12), these methods
generally require pairwise sequence alignments as input and
are computationally unfeasible for large-scale genome com-
parisons. Furthermore, CST®nder proved generally more
accurate in assessing CST coding capacity than QRNA (see
Table 2).

We have shown that the proposed CPS effectively dis-
criminates between these two different dynamics as >99% of
CSTs identi®ed in the comparison of human and mouse coding
sequences displayed a CPS above the cut-off value of 30, with
an average value much higher (see Table 1). Of the few genes
that CST®nder failed to detect, most did not show statistically
signi®cant CSTs and thus completely escaped the analysis.

The CST®nder algorithm may provide a signi®cant valid-
ation for novel genes not con®rmed by transcript information
or similarity to known proteins. Interestingly an application to
a limited set of human±mouse ortholog gene regions signi®-
cantly validated several genes, ®nding CSTs with high coding
potential (CPS > 500) in correspondence to almost all the
relevant coding exons (Table 2). More importantly, many of
the genes present in databases lack reliable transcript or
protein similarity information and have merely been compu-
tationally predicted by the GenScan (3) or TwinScan (6)
software programs. Conversely, as many of the proteins
collected in public repositories are hypothetical, being the
result of computational translation of predicted ORFs, the

validity of those not showing any potentially coding CST
should be questioned.

Additionally, CST®nder may help the identi®cation of
transcripts derived from alternative splicing in those cases
where some variant isoforms are not represented in the
sequence database. For example a high scoring CST found in
the 5¢-UTR of Rho guanine nucleotide exchange factor (GEF)
7 variant 1 mRNA (NM_003899) corresponds to a CDS
portion in variant 2 mRNA encoded by the same gene
(NM_145735).

If CSTs overlapping coding exons also cover non-coding
regions (e.g. 5¢-UTRs, 3¢-UTRs and splice juctions) they
usually show lower CPSs, sometimes below the cut-off
threshold. In this case the coding-like evolutionary signature
is obscured by the unconstrained evolutionary dynamics of the
non-coding part. For some selected CSTs a window-based
approach, also implemented in the CST®nder algorithm, can
be used to discriminate regions evolving under different
evolutionary dynamics.

We have tested the effectiveness of the method at various
evolutionary distances by sampling different groups of
human±mouse orthologous CDSs. This means that the
applicability of the method is not constrained by the
evolutionary distance between species compared but rather
by the sensitivity of identi®cation of local alignment by a
Blast-like similarity search. As species divergence increases,
the number of CSTs detected decreases. However, the
capacity of CST®nder to differentiate between coding and
non-coding regions within and among CSTs remains
essentially constant.

Figure 2. Results obtained from the CST®nder analysis of the GENOME set showing the percentage of CSTs falling in different gene annotation categories.
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The reliability of CST coding potential prediction is
obviously dependent on the CPS threshold chosen, even if a
large number of CTSs matching coding exons show a very

high CPS (see Fig. 2 and green boxes in Fig. 3). The analysis
carried out on the RANDOM dataset (see Materials and
Methods) clearly shows that a CPS threshold of 500 is highly
conservative, as only 1 out of the total of 6564 CSTs identi®ed
showed a CPS above this threshold. The analysis carried out
on the SYNTENY dataset con®rmed a low false positive rate
(~2%) if a CPS cut-off of 500 is chosen. However, some of
these false positives could actually be missed exons. Indeed,
11 of the 44/1845 CSTs with CPS > 500 non-overlapping
annotated genes showed signi®cant matches with human
ESTs, GenScan predicted exons or SwissProt entries. Our
analyses suggest that it is worth considering CSTs showing a
CPS > 30 for further analyses as many of these overlap coding
exons (70% in the SYNTENY dataset) but at the same time
also neighboring non-coding regions (see red box in Fig. 3B).

The application of CST®nder, in association with other
tools speci®cally designed for coding and non-coding gene
detection, may thus represent a very valuable approach for
large-scale detection of non-coding regulatory elements,
validation of gene predictions and discovery of novel genes.
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