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Selectins mediate the initial adhesion of leukocytes to
endothelial cells in many contexts of inflammation-
dependent leukocyte recruitment. The glycans that
contribute to P- and E-selectin counterreceptor activ-
ity arise through glycosylation reactions in which the
terminal steps are catalyzed by �(1,3) fucosyltrans-
ferases (FTs). We examined how selectin ligand activ-
ities are controlled in eosinophils by characterizing
FT expression profiles and regulatory mechanisms in
eosinophils isolated from human blood. We found
that FT-IV and FT-VII mRNAs were up-regulated by
transforming growth factor-�1, but the FT-IV tran-
script consistently predominated in eosinophils. To
further define the physiological role of FT-IV and FT-
VII in expression of eosinophil selectin ligand, we
characterized models of dermal eosinophilia in FT-IV-
and/or FT-VII-deficient mice in vivo. FT-IV deficiency
yielded a significant decrease in eosinophil recruit-
ment to the skin. Likewise, deficiency of FT-VII also
yielded a decrease in eosinophil recruitment. Eosino-
phil recruitment that remained in the absence of FT-
VII was further inhibited by blocking P- or E-selectin
and was essentially absent in mice deficient in both
enzymes. These observations indicate that FT-IV and
FT-VII are both important contributors to selectin-
dependent eosinophil recruitment to the skin and
may represent therapeutic targets for treating dis-
eases in which eosinophil recruitment contributes to
pathophysiology. (Am J Pathol 2005, 167:787–796)

P- and E-selectins expressed by endothelial cells interact
with leukocyte counterreceptors and mediate initial ad-
hesion of leukocytes and their subsequent rolling along
endothelial surfaces. One of the major ligands for leuko-
cyte P-selectin is P-selectin glycoprotein-1 (PSGL-1). To
become functional, PSGL-1 requires posttranslational
modifications such as the sulfation of at least one tyrosine
residue in its NH2-terminal tyrosine sulfation motif, modi-
fications of O-linked glycans by core 2 �1, 6-N-acetyl-
glucosaminyl transferase (C2GnT)2, the addition of
�2,3-linked sialic acid, and the addition of fucose in an
�1,3-linkage to generate sialyl-Lewis x (sLex)-related
structures.1 E-selectin also interacts with leukocytes
through surface sLex-related structures.2 In general, the
lineage-specific expression of the �(1,3) fucosyltrans-
ferases (FTs) responsible for fucose addition to the �1,3-
linkage is critically involved in the expression of selectin
counterreceptor activities.

Of six known FTs, FT-IV and FT-VII are expressed in
leukocytes. These two enzymes have distinct substrate
specificities in Lex and sLex synthesis. FT-IV primarily
fucosylates nonsialylated N-acetyllactosamine (LN),
which results in Lex. FT-IV also utilizes �2,3-sialylated LN
units, but synthesizes only a small amount of sLex under
most circumstances.3,4 On the one hand, FT-VII has re-
duced activity with nonsialylated LN units,3,4 but signifi-
cant activity in fucosylation of the �2,3-sialylated LN units
to generate the HECA452, 2H5, and CSLEX1 epitopes.
The HECA-452-reactive epitope also enables PSGL-1 to
bind to E-selectin.5

The critical participation of FT-VII in the construction of
selectin ligands has been demonstrated by severely im-
paired P- and E-selectin-dependent leukocyte adhesion/
rolling in FT-VII(�/�) mice.6 On the other hand, the im-
portance of FT-IV in selectin ligand synthesis has been
less certain. Whereas CHO cells transfected with PSGL1,
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C2GnT, and FT-IV bind P-selectin,1 constitutive or trans-
fection-enhanced levels of FT-IV do not generate active
P-selectin ligand in MOLT-4 cells.7 However, recent anal-
yses of mice deficient in the FT-IV gene have demon-
strated that FT-IV involvement is subtle when FT-VII is
expressed, providing a significant contribution to selec-
tin-dependent neutrophil and lymphocyte recruitment in
vivo only when the FT-VII gene is disrupted.6,8

Eosinophils are thought to contribute to the inflam-
mation associated with several diseases including
bronchial asthma, allergic rhinitis, and hypereosino-
philic syndrome. Blood and tissue eosinophilia are also
characteristic of atopic dermatitis, bullous pemphi-
goid, drug-induced skin eruptions, eosinophilic cellu-
litis, and eosinophilic pustular folliculitis, and eosino-
phil accumulation is oftentimes associated with certain
parasitic infestations. Previous reports have indicated
that eosinophils exhibit a marked avidity for P-selec-
tin.9 –13 In mice, P-selectin deficiency resulted in re-
duced eosinophil rolling and tissue eosinophilia in rag-
weed-induced peritonitis.12,13 Although an inhibitor of
selectin-mediated eosinophil-endothelial interaction
might have immense potential for treating diseases in
which eosinophils contribute to tissue damage and
pathogenesis, little is known about the glycosylation
requirement for eosinophil selectin counterreceptor ac-
tivity. Our previous work disclosed that eosinophils
from human blood express nonsialylated Lex and sia-
lyl-dimeric Lex (FH6 epitope), but not other sLex-re-
lated structures, such as HECA-452 epitope.14,15 Con-
sidering the substrate specificities of FT-IV and FT-VII
in Lex and sLex synthesis, these findings suggested
that FT-IV rather than FT-VII may be a major regulatory
enzyme in the synthesis of Lex-related structures and
selectin ligands in eosinophils, because FT-IV alone
can generate some FH6 epitope.16

To begin to understand how FT-IV and FT-VII are reg-
ulated in eosinophils, we have examined the expression
regulation of FT-IV and FT-VII mRNA in human eosino-
phils. We find that FT-IV is the predominant transcript in
eosinophils, even in patients with atopic dermatitis, and
observe that transforming growth factor (TGF)-�1 up-
regulates FT-IV mRNA. By contrast, steady state accu-
mulation of FT-VII mRNA is relatively less than FT-IV
mRNA, although TGF-�1 increases FT-VII mRNA accu-
mulation to some extent. To further define the roles of
FT-IV and FT-VII in selectin ligand activities, we assessed
selectin binding and recruitment to the skin of eosinophils
from mice deficient in FT-IV and/or FT-VII. We observe
that FT-IV deficiency significantly reduces eosinophil re-
cruitment to the dermis even in the presence of FT-VII.
We also observe a modest degree of eosinophil recruit-
ment in the absence of FT-VII, which is reflective of FT-
IV-dependent selectin ligand expression because such
recruitment is suppressed by blocking E- or P-selectin,
and is essentially absent in mice deficient in both FT-IV
and FT-VII. These observations assign an important role
to FT-IV in the synthesis of selectin ligand activities in
eosinophils that enable the recruitment of these cells into
the skin.

Materials and Methods

Cell Preparation

We isolated granulocytes by 6% dextran sedimentation
from peripheral blood anti-coagulated with ethylenedia-
mine tetraacetic acid obtained from healthy donors and
from patients with atopic dermatitis. Eosinophils were
prepared by separating granulocytes on Percoll (density
1.087 g/ml) and by hypotonic lysis of contaminating
erythrocytes. Eosinophils were then purified from neutro-
phils by negative selection in the presence of magnetic
beads conjugated to a monoclonal antibody to CD16
(Miltenyi Biotechnology, Sunnyvale, CA). Neutrophils
were purified by Ficoll-Paque (Amersham Pharmacia Bio-
tech, Uppsala, Sweden) density gradient centrifugation.
Purity determined by Diff-Quick staining (International
Reagents Corp., Kobe, Japan) was �99.9% for eosino-
phils and �96% for neutrophils.

Mice

The generation of FT-IV(�/�) mice, FT-VII(�/�) mice,
and FT-IV(�/�)/VII(�/�) mice has been described in
detail.6,17 The mice had been backcrossed nine or more
generations to the C57BL/6J strain, bred, and housed
under strict specified pathogen-free conditions. All ex-
periments were conducted according to protocols ap-
proved by the animal care and use committee at the
Tokyo Medical and Dental University.

Induction of Blood Eosinophilia in Mice

Blood eosinophilia was induced as described18 by inject-
ing mice subcutaneously with cyclophosphamide (150
mg/kg) (Shionogi Co., Osaka, Japan) on day 2. On day 0,
mice were immunized subcutaneously with keyhole lim-
pet hemocyanin (150 �g/mice) (Wako Pure Chemical
Industries Ltd., Osaka, Japan) in complete Freund’s ad-
juvant (Chemicon Int., Temecula, CA). On day 12, periph-
eral blood was collected from the retro-orbital plexus.

IgE-Mediated Late-Phase Reaction (LPR)

The dorsal site of the mouse ear lobe was injected sub-
cutaneously with 1.25 �g of anti-dinitrophenyl-specific
IgE (MP Biomedicals, Inc., Aurora, OH) and challenged
24 hours later with 20 �l of 0.2% 2,4-dinitrofluorobenzene
(Nacalai Tesque, Kyoto, Japan) in acetone:olive oil (4:1).
Ear swelling responses were measured 24 hours there-
after. Ear thickness measured using a dial thickness
gauge (Peacock, Tokyo, Japan) before and after chal-
lenge is expressed as mean increments in thickness
greater than the basal control value.

Induction of Irritation Dermatitis with
Eosinophilia

Tissue eosinophilia can be enhanced by the systemic
administration of interleukin (IL)-5.19 Mice ear lobes were
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painted with 20 �l of 1% croton oil (Nacalai Tesque) in
acetone, and then 10 pmol/kg of IL-5 (Techne Corp.,
Minneapolis, MN) was administered subcutaneously into
the nape of the neck 16 hours later. Ear swelling re-
sponses were measured after 24 hours. The dose and the
time of IL-5 administration were optimized in a preliminary
experiment.

Histological Assessment

Excised specimens of skin tissue were fixed in 10% for-
malin and embedded in paraffin. Each specimen was
stained with Giemsa or carbolchromotrope solution.

Binding Assay of Soluble Form of Selectin by
Whole-Blood Flow Cytometry

Eosinophil surface selectin ligands were analyzed by
indirect immunofluorescence using whole-blood flow cy-
tometry as described14,20–22 with some modification.
Platelet-rich plasma was removed from mouse peripheral
blood anti-coagulated with ethylenediamine tetraacetic
acid, then the blood cells were washed with phosphate-
buffered saline (PBS) (�). The cells were suspended in
PBS containing 0.1% NaN3, 3% fetal calf serum, 1
mmol/L Ca2�, and 1 mmol/L Mg2�, then incubated with
murine P-, E-selectin human IgG Fc chimera (Techne
Corp.) or with control human IgG (10 �g/ml) (ICN Phar-
maceuticals, Inc., Aurora, OH) for 30 minutes on ice. The
cells were washed and incubated with phycoerythrin-
conjugated F(ab�)2 goat anti-human IgG Fc antibody
(Rockland, Gilbertsville, PA) for 30 minutes on ice. After
an additional wash, red blood cells were hemolyzed with
1.5 ml of FACS lysing solution (Becton Dickinson, San
Jose, CA), then fixed with 0.4% parabenzoquinone
(Wako Pure Chemical Industries). Cells were examined
by flow cytometry using a FACScalibur (Becton Dickin-
son, Mountain View, CA) and analyzed using Cell Quest
software (Becton Dickinson). Fixation with parabenzoqui-
none permitted gating of eosinophils without prior puri-
fication as determined by CD49d/VLA-4 (Southern
Biotechnology Associates, Inc., Birmingham, AL) and
anti-mouse neutrophil antibody (7/4 clone; Cedarlane,
Ontario, Canada).23

Measurement of Eosinophil Peroxidase (EPO) in
Skin

The dorsal skin including epidermis and entire dermis or
whole ear lobe (8 mm in diameter) was excised and
frozen at �70°C. EPO activity was measured as de-
scribed24,25 with some modification. Briefly, frozen skin
specimens were homogenized with 1 ml of PBS contain-
ing 0.5% hexadecyltrimethylammonium bromide (Wako
Pure Chemical Industries Ltd.) and sonicated for 20 sec-
onds. Serially diluted supernatants were placed in wells
(50 �l per well) in 96-well flat-bottomed microtiter plates
and then 100 �l of substrate (1 mmol/L O-phenylenedi-
amine dihydrochloride and 0.5 mmol/L hydrogen perox-

ide in 50 mmol/L Tris-HCl, pH 8.0) was added. After 30
minutes at room temperature, the reaction was stopped
by adding 50 �l of 2 N sulfuric acid and the absorbance
was read at 492 nm. Interference by myeloperoxidase
released from contaminated neutrophils to the reaction
was monitored by adding 2 mmol/L 3-amino-1,2,4 triazole
(Sigma-Aldrich Japan KK, Tokyo, Japan).26

Eotaxin-Induced Dermal Eosinophilia

Dermal eosinophilia was induced by the protocol re-
ported previously.27 Briefly, 10 pmol/site recombinant
mouse eotaxin (Techne Corp.) was intradermally injected
into the dorsal skin. After 4 hours, 8 mm (diameter) sec-
tions of the skin were excised and processed for EPO
measurements.

Reverse Transcriptase-Polymerase Chain
Reaction (RT-PCR) to Detect �(1,3)-
Fucosyltransferase (FT)-IV and -VII and Core 2
�1,6-N-Acetylglucosaminyl Transferase
(C2GnT)

Total cellular RNA isolated using RNAzol B (Tel-Test Inc.,
Friendswood, TX) was digested with DNase I (Takara
Biomedicals, Tokyo, Japan). Twenty �l of RT mix con-
sisted of 8 �l of 5� buffer (250 mmol/L Tris-HCl, pH 8.3,
375 mmol/L KCl, 50 mmol/L dithiothreitol, 15 mmol/L
MgCl2), 4 �l of hexanucleotide mixture (62.5 A260 U/ml;
Boehringer Mannheim, Mannheim, Germany), 2 �l of
dNTP (2.5 mmol/L each), 4 �l of 20 U/�l of human pla-
centa ribonuclease inhibitor (Takara Biomedicals), and 2
�l of 200 U/�l reverse transcriptase (Moloney murine
leukemia virus, Takara Biomedicals). The RT mixture was
dispensed at 20 �l/tube with 20 �l of 40 ng/�l total RNA,
vortex-mixed, and then incubated at 37°C for 60 minutes.
Reverse transcriptase was inactivated at 70°C for 10
minutes, then the samples were stored at �70°C.

The PCR mixture contained 5 �l of reverse-transcribed
RNA (100 ng total RNA), 5 �l of 10� buffer (100 mmol/L
Tris-HCl, pH 8.3, 500 mmol/L KCl, 15 mmol/L MgCl2), 4 �l
of dNTP (2.5 mmol/L each), 2.5 �l of 20 �mol/L sense
primer, 2.5 �l of 20 �mol/L anti-sense-primer, 0.5 �l of 1
U/�l Perfect Match (Stratagene, La Jolla, CA), 0.4 �l of 5
U/�l TaqDNA polymerase (Takara Biomedicals), and
30.1 �l of water. The tubes were transferred to a thermal
cycler (DNA amplifier PC-700; Astec, Fukuoka, Japan).
The reaction was started at 94°C for 3 minutes, followed
by repeated 1-minute cycles of 94°C, 60°C, and 72°C.

The primers were: �-actin mRNA, 5�-CGCGAGAAGAT-
GACCCAGATC-3� and 5�-ATCACGATGCCAGTGGTAC-
GG-3�;28 FucT-IV, 5�-CGGGTGTGCCAGGCTGTA CA-
GAGG-3� and 5�-TCGGGAACAGTTGTGTATGAGATT-3�;29

for FucT-VII, 5�-CC CACCGTGGCCCAGTACCGCTTCT-3�
and 5�-CTGACCTCTGTGCCCAGCCTCCC GT-3�;29 for
C2GnT, 5�-TTTTCTGGCAGTGCCTACTTCGTGGTC-3� and
5�-ATGCTCATCCAAACACTGGATGGCAAA-3�.30 Aliquots
from each sample were resolved by electrophoresis on
3.3% agarose in glycine buffer and stained with ethidium
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bromide. The reactions were stopped after various numbers
of cycles to assess the region of linear response. Experi-
ments were repeated three times.

Real-Time Quantitative PCR

Quantitative RT-PCR was performed by monitoring in real
time the increase in fluorescence of the SYBR Green dye
(Brilliant SYBR Green QPCR Master Mix) (Stratagene)
with the Mx3000P real-time PCR system (Stratagene).
The primers for C2GnT, FT-IV, and FT-VII were pur-
chased from Takara Biomedicals.

Statistical Analyses

Student’s t-test determined statistical differences be-
tween means. Bonferroni’s multiple comparison test was
performed for analysis of more than two groups. A P
value of �0.05 was taken as the criteria for statistical
significance.

Results

Profiles of FT-IV and FT-VII mRNA Levels in
Eosinophils from Human Blood

We previously reported that eosinophils from human
blood express the FH6 epitope (sialyl-dimeric Lex), but
not other sLex-related structures.14 Sialyl-dimeric sLex
may be a major E-selectin ligand on the surface of eo-
sinophils.30 Conversely, sLex-structures are primarily ex-
pressed in neutrophils, but the FH6 epitope is represen-
tative of only a minor proportion of these.14,30 These
observations implied that the nature and/or expression
levels of FTs in eosinophils (or their bone marrow precur-
sors) may differ from the FTs in neutrophils (and neutro-
phil precursors in the bone marrow). Indeed, the level of
FT-VII mRNA was low in eosinophils (Figure 1A). On the
other hand, the high levels of FT-IV mRNA are in striking
contrast to neutrophils, where large amounts of both
FT-IV and FT-VII mRNA are expressed. FT-VII mRNA
expression was consistently low in eosinophils even from
patients with atopic dermatitis (Figure 1B). These data
confirmed that FT-IV is the predominant transcript in hu-
man blood eosinophils compared with FT-VII.14

Regulation of FT-IV, FT-VII, and C2GnT mRNA
in Human Blood Eosinophils

The regulatory mechanisms of FTs and C2GnT mRNA
expression in CD4� T cells have been analyzed in de-
tail,31–35 but little is understood about these processes in
granulocytes. To assess regulation of these genes in
mature blood eosinophils, we quantified mRNA levels for
FT-IV, FT-VII, and C2GnT in eosinophils subjected to an
18-hour incubation with several different human recom-
binant cytokines known to regulate these genes in lym-
phocytes. Cytokines included IL-4 (10 ng/ml) (Techne
Corp.), IL-5 (10 ng/ml) (Techne Corp.), IL-12 (10 ng/ml)

(Wako Pure Chemical Industries Ltd.), and TGF-�1 (5
ng/ml) (PeproTech EC, Ltd., UK). We determined the
concentration of cytokines, which induced maximal re-
sponses, in preliminary experiments. Incubating the cul-
tures for more than 24 hours caused cell viability to
significantly decrease (data not shown). IL-12 signifi-
cantly enhanced the steady state accumulation of C2GnT
mRNA, but did not appreciably alter FT-IV or FT-VII
mRNA levels (Figure 2A). On the other hand, the mRNA
levels of FT-IV and FT-VII were enhanced by TGF-�1
(Figure 2B). These were further confirmed by real-time
PCR analysis (Figure 2C). The level of FT-VII mRNA ex-
pression enhanced by TGF-�1, however, was weaker
than that in neutrophils (Figure 1A), and FT-IV was still
predominant in eosinophils. Neither IL-5 nor IL-4 affected
FT and C2GnT mRNA expression (data not shown).

Contribution of FTs to Selectin Ligand
Generation in Eosinophils

Evidence indicates that soluble P-selectin binds to eosin-
ophils although these cells express extremely low levels
of FT-VII.14 Thus, FT-IV but not FT-VII might be a key
contributor to the control of P-selectin ligand activity in

Figure 1. Profiles of mRNA levels of FT-IV, FT-VII, and C2GnT in human
eosinophils and neutrophils. mRNA from isolated eosinophils and neutro-
phils was analyzed by RT-PCR as described in Materials and Methods.
Amplification was continued for up to 36 cycles for FT-VII and FT-IV, 30
cycles for C2GnT, and 23 cycles for �-actin. A: Whereas FT-IV is the pre-
dominant transcript in eosinophils (Eo), neutrophils (N) expressed a large
amount of FT-VII as well as FT-IV mRNA. Expression of C2GnT did not
significantly differ between eosinophils and neutrophils. Results are repre-
sentative of two healthy donors and two patients with atopic dermatitis.
Eosinophils and neutrophils were isolated from the same donor. B: In
eosinophils, FT-VII mRNA level was consistently low or below detection
limits at 36 cycles. H, healthy donor; AD, atopic dermatitis.
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eosinophils. To determine the role of FT-IV and FT-VII in
eosinophil selectin ligand synthesis, we used whole-
blood flow cytometry to examine the in vitro binding ac-
tivity of soluble selectin-human IgG chimeras to blood
eosinophils isolated from mice deficient in FT-IV and/or
FT-VII. Initially, however, it was difficult to analyze periph-
eral blood from untreated mice because blood eosino-
phils were less than 1 � 104 cells/ml as determined by
the staining with Discombe’s solution.36 When mice were
treated with cyclophosphamide/KLH, eosinophil counts
from wild-type (WT), FT-IV(�/�), FT-VII(�/�), and FT-
IV(�/�)/VII(�/�) mice were elevated to �2.5 � 0.45,
3.3 � 0.67, 7.5 � 2.12, and 8.9 � 1.25 � 105cells/ml,
respectively. These procedures enabled us to analyze
whole populations of circulating eosinophils regardless of
cell density without the risk of missing subpopulations
such as light density eosinophils. P-selectin bound equiv-
alently to wild-type (WT) and FT-IV(�/�) eosinophils (Fig-
ure 3), but did not bind to FT-VII(�/�) eosinophils. Solu-
ble E-selectin also bound to wild-type murine eosinophils.
We observed a small, but significant decrease in E-se-
lectin binding to FT-IV-deficient eosinophils and no bind-
ing to eosinophils from FT-VII(�/�) mice. Neither P- nor

E-selectin bound eosinophils from FT-IV(�/�)/VII(�/�)
mice.

FT-IV Contributes to Eosinophil Recruitment and
Skin Inflammation in Vivo

Binding assays with soluble selectins by flow cytometry
do not necessarily allow an accurate prediction of selec-
tin ligand activity in vivo.6,37 To further investigate the
physiological participation of FTs in selectin ligands gen-
erated by eosinophils, we subjected wild-type and FT-
deficient mice to a model of allergic skin inflammation as
follows. Mice were passively sensitized with dinitrophe-
nyl-specific IgE and challenged with 2,4-dinitrofluoroben-
zene. This model does not require an afferent limb, which
may be impaired in FT-deficient mice.8 In the immediate-
type reaction detected at 3 hours after challenge, the ear
swelling response of FT-IV(�/�) and FT-VII(�/�) mice

Figure 2. Effect of IL-12 and TGF-�1 on FT-IV, FT-VII, and C2GnT mRNA in
eosinophils. Isolated human eosinophils were stimulated with IL-12 (10
ng/ml) or TGF-�1 (5 ng/ml) for 18 hours. A and B: Gel electrophoresis for
PCR products at various PCR cycles. C: Real-time PCR analysis. Relative
quantity indicates the relative amount of mRNA of target genes compared
with that of �-actin mRNA (n 	 3). Relative quantity of genes in unstimulated
cells (medium alone) was regarded as 1.0. IL-12 enhances C2GnT mRNA
expression in eosinophils, whereas FT-IV and FT-VII mRNA levels were
up-regulated by TGF-�1. C2GnT mRNA was weakly enhanced by TGF-�1,
but this was not statistically significant. *P � 0.05 compared with correspond-
ing sample incubated in medium alone.

Figure 3. Soluble selectin binding to blood eosinophils from FT-IV- or
FT-VII-deficient mice. Binding of mouse selectin-human IgG chimera to
eosinophils was assessed by whole-blood flow cytometry. Whereas P-selec-
tin bound identically to eosinophils from FT-IV(�/�) and WT mice, E-
selectin binding was partially reduced in FT-IV-deficient eosinophils. Binding
of P- and E-selectin to eosinophils from FT-VII(�/�) mice was entirely
abolished. Results are from a single representative of three separate
experiments.
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was comparable to WT mice, and the response of FT-
IV(�/�)/VII(�/�) was minimally decreased compared
with that of WT mice, although this did not achieve sta-
tistical significance (data not shown). The ear swelling
responses of both FT-VII(�/�) and FT-IV(�/�) mice were
also weakly reduced in late-phase reactions (LPRs) at 24
hours (Figure 4A). In addition, these responses were
remarkably reduced in mice deficient in both enzymes.
Corresponding histological analyses disclose a decrease
in the amount of inflammatory cells that infiltrated the skin
in all three strains of FT-deficient mice (Figure 5). To
define the contribution of FTs to eosinophil recruitment,
we measured EPO activity in challenged skin. Deficiency
of either FT-IV or FT-VII yielded a partial yet significant
reduction of EPO activity, whereas EPO activity was al-
most totally abrogated in the doubly-deficient mice (Fig-
ure 4B). Similar results were obtained by counting dermal
eosinophils in tissue specimens stained with carbolchro-
motrope solution under light microscopy (data not
shown).

The reduced eosinophil recruitment in the skin of FT-
deficient mice might have been due to the impaired
extravasation of other effector cells such as lymphocytes
that can prime and chemoattract eosinophils.38 To re-
solve this issue, we assessed skin responses in a model
of irritant dermatitis39 induced by croton oil (P- and E-, but

not L-selectin-dependent) (Figure 4C). Ear swelling re-
sponses were weakly reduced in FT-IV(�/�) and FT-
VII(�/�) mice. The decrease in ear swelling responses
was more obvious in mice with a double versus a single
deficiency. However, the swelling was suppressed by
only 47%, in contrast to that of IgE-mediated LPR, which

Figure 4. Allergic and irritant dermatitis in FT-deficient mice. Allergic mouse models of dermatitis (LPR) were induced by sensitization with dinitrophenyl-specific
IgE and challenge with 2,4-dinitrofluorobenzene. Croton oil was painted on ear lobes to create irritant dermatitis, and then IL-5 was administered 16 hours later
to enhance local eosinophil accumulation (see Materials and Methods). Ear swelling responses were evaluated 24 hours later and excised ear specimens were
processed for EPO measurements. Ear swelling responses of mice deficient in FT-VII were reduced (A and C). Whereas ear swelling responses were remarkably
suppressed in LPR of doubly-deficient mice, inhibition in croton oil-induced dermatitis was moderate. Activities of EPO in skin of FT-IV- and FT-VII-deficient mice
were significantly reduced (B and D). In addition, inhibition was almost complete when both FT-IV and FT-VII genes were knocked out. Each group consisted
of at least four mice. Error bars indicate SD. The assay samples for B and D were diluted 8� and undiluted, respectively. *P � 0.05.

Figure 5. Histopathological features of IgE-mediated LPR in FT-deficient
mice. Giemsa stain. Original magnifications: �40; �200 (arrowhead,
eosinophils).
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was 80%. Histologically, dermal edema was still obvious
in doubly-deficient mice, although inflammatory cell infil-
trates were scarce (Figure 6). The EPO activity in the skin
was obviously reduced in FT-IV-deficient mice (Figure
4D), which was in striking contrast to the previous finding
that neutrophil recruitment as assessed by MPO (myelo-
peroxidase activity) was not reduced in FT-IV-deficient
mice with dermatitis induced by croton oil.6

FT-IV-Dependent Eosinophil Accumulation in
Response to Eotaxin

Eotaxin when injected intradermally induces selectin-de-
pendent eosinophil accumulation.27 To further assess the
direct effect of a FT deficiency on selectin-dependent
eosinophil recruitment, we intradermally injected eotaxin
into the dorsal skin of mice. After 4 hours, the skin was
excised and processed for EPO activity assays. Eosino-
phil recruitment in FT-IV- or FT-VII-deficient mice was
reduced to equivalent degrees (Figure 7). Eosinophils in
the dermis were abolished in doubly-deficient mice.
These findings showed that FT-IV plays an important role
in eosinophil recruitment in vivo.

FT-IV Directs Expression of E- and P-Selectin
Ligand Activities in Eosinophils

An FT-IV deficiency reduced eosinophil binding to solu-
ble E-, but not to P-selectin in vitro (Figure 3). We there-

fore postulated that eosinophil accumulation in FT-
IV(�/�) mice in vivo was due to the remaining P-selectin
ligand activities. FT-VII(�/�) mice, in which eosinophil
recruitment is entirely FT-IV-dependent, were injected
intravenously with anti-P-selectin antibody (RB40.34; BD
Biosciences, San Jose, CA) or anti-E-selectin antibody
(10E9.6, BD Biosciences) to determine the relative con-
tributions of P- or E-selectin-mediated, FT-IV-dependent
eosinophil accumulation in response to intradermal
eotaxin. Anti-P-selectin yielded a substantial but partial
suppression of eosinophil recruitment to the skin (Figure
8A). E-selectin antibody alone did not affect EPO activity
(data not shown). However, the partial suppression of
eosinophil recruitment induced by blocking P-selectin
was further inhibited by concomitantly blocking E-selec-
tin (Figure 8B). These observations imply that FT-IV ap-
parently contributes to the synthesis of ligands that
mediate both P-selectin-dependent and E-selectin-de-
pendent eosinophil recruitment.

Discussion

The �(1,3) fucosyltransferases (FTs) can regulate the
construction of sialylated, fucosylated molecules that can

Figure 6. Histopathological features of croton oil dermatitis in FT-deficient
mice. Giemsa stain. Original magnifications, �40.

Figure 7. Effect of FT deficiency on eotaxin-induced eosinophil accumula-
tion in skin. Eotaxin (10 pmol/kg) was injected intradermally to dorsal skin
and EPO activity in skin was measured 4 hours later. Activities of EPO in
FT-IV- and FT-VII-deficient mice were similarly reduced. Eosinophil recruit-
ment was virtually absent in doubly-deficient mice. Results are from a single
representative of three separate experiments. Each group consisted of at least
four mice. Error bars indicate SD. *P � 0.05.

Figure 8. Effect of E- and/or P-selectin blocking antibodies on in vivo
eosinophil recruitment. Mice were administered intravenously with anti-P-
and/or anti-E-selectin antibodies (100 �g/mouse) 2 hours before eotaxin
dermal injection. A: P-selectin blocking significantly inhibited eosinophil
accumulation. B: Although E-selectin blocking alone did not exhibit an
inhibitory effect (data not shown), combined E- and P-selectin blocking
remarkably suppressed eosinophil recruitment compared with P-selectin
blocking alone. EPO activity in doubly-deficient mice was barely detectable
and blocking of P- and/or E-selectins failed to exhibit any effect. EPO activity
of normal skin from WT, FT-IV(�/�), FT-VII(�/�), and FT-IV(�/�)/
VII(�/�) mice was 0.04 � 0.003, 0.03 � 0.003, 0.03 � 0.004, and 0.02 �
0.008, respectively. Results are from a single representative of three separate
experiments. Each group consisted of at least three mice. Error bars indicate
SD. *P � 0.05.
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contribute to the activities of P- and E-selectin ligands.
Recent findings indicate that C2GnT glycosylation can
also increase tether bond strength to P-selectin.40 The
regulatory mechanisms of these modifying enzymes in
granulocytes remain poorly defined. We demonstrated
here that IL-12 enhanced C2GnT mRNA expression in
eosinophils (Figure 2A). In CD4� T cells, the IL-12/STAT4
signaling pathway is required to induce C2GnT, but not
FT-VII mRNA.33 The levels of FT-VII mRNA in eosinophils
were up-regulated by TGF-�1 (Figure 2B). This is consis-
tent with the induction of TGF-�1-dependent FT-VII
through p38 mitogen-activated protein kinase in acti-
vated CD4� T cells.35 However, the level of FT-VII mRNA
up-regulated by TGF-�1 in eosinophils was still consid-
erably lower than that in neutrophils. On the other hand,
FT-IV mRNA was also up-regulated by TGF-�1 (Figure
2B). In eosinophils, unlike neutrophils and T cells, FT-IV
seemed consistently predominant compared with FT-VII.
The absence of HECA-452-reactive epitope, a FT-VII-
dependent sLex structure,41 also implies that FT-VII ac-
tivity is low in TGF-�1-stimulated eosinophils (data not
shown). Eosinophils even from the blood of atopic pa-
tients express extremely low levels of FT-VII mRNA (Fig-
ure 1B) and do not express the HECA-452-reactive
epitope.14 Thus, an unknown mechanism may be respon-
sible for switching FT-VII mRNA off in eosinophils where
FT-IV transcripts are relatively abundant.

We used FT-IV- and/or FT-VII-deficient mice to exam-
ine the roles of FT-IV and FT-VII in the generation of
eosinophil selectin ligands. In three different in vivo
mouse models with either a FT-IV and/or a FT-VII defi-
ciency, we demonstrated that both FT-IV and FT-VII are
required for effective and optimal eosinophil recruitment
to the skin. The single deficiency caused only a partial
reduction in eosinophil recruitment, whereas the double
deficiency abrogated eosinophil accumulation. These
findings indicated that FT-IV plays a FT-VII-independent
role in eosinophil recruitment. In FT-VII-deficient mice in
which leukocyte tethering/rolling was entirely dependent
on FT-IV, P-selectin blocking remarkably inhibited eosin-
ophil recruitment. This indicated that FT-IV is involved in
generating functional P-selectin ligand in murine eosino-
phils, although the molecules responsible for P-selectin
ligand activities retained in FT-VII-deficient mice have not
been clarified. These data from FT-IV- and/or FT-VII-de-
ficient mice suggest that the large amount of FT-IV pre-
dominantly expressed in human eosinophils can collab-
orate with or compensate for limited levels of FT-VII in the
synthesis of P-selectin ligand. This supposition was fur-
ther supported by observations of polymorphonuclear
leukocytes from humans carrying a missense mutation of
the FT-VII gene.37 Leukocytes from individuals deficient
in FT-VII activity bound to and rolled on P-selectin to a
similar degree to cells from those without the mutation.
Individuals carrying the mutation have elevated levels of
FT-IV activity that may compensate for the FT-VII defi-
ciency to generate P-selectin ligands.

Flow cytometric analysis did not reveal an essential or
even substantive role for FT-IV in P-selectin binding in the
context of wild-type FT-VII genotype because the de-
grees of WT and FT-IV-deficient eosinophil binding to

P-selectin were identical (Figure 3). P-selectin binding
was not retained in the absence of FT-VII. The discrep-
ancy in the flow cytometric data concerning FT involve-
ment in selectin binding in vitro and in models of eosino-
philia in vivo probably reflects the fact that FACS-based
analyses do not accurately assess the flow-dependent
adhesion that characterizes interactions between selec-
tin ligands and the selectins in vivo, as unveiled by the
binding assays under flow conditions at a specific selec-
tin density.6,37

Soluble E-selectin binding to murine eosinophils (Fig-
ure 3) was observed, although surface expression of
HECA-452, CSLEX-1, or FH6 was not detected (data not
shown). Previous evidence also revealed possible ex-
pression of a counter receptor for E-selectin on murine
eosinophils in eotaxin-induced eosinophil accumulation
and active cutaneous anaphylaxis in vivo.27 Murine eo-
sinophils might contain extremely low levels of FT-IV and
FT-VII, but even the very limited fucosylation of specific
glycans may be sufficient to confer binding of P- and
E-selectin as has been reported in other murine leuko-
cytes.42 Conversely, somewhat conflicting data has been
reported for the binding capacity of human eosinophils to
E-selectin. Whereas human eosinophils have been re-
ported to bind E-selectin in static adhesion assays,30,43

E-selectin did not support eosinophil rolling under condi-
tions of physiological shear stress.9,44 We have also dem-
onstrated that soluble E-selectin did not bind to human
eosinophils even from patients with atopic dermatitis.14

Although an explanation for this discrepancy is unclear,
the adhesive interaction between human eosinophils
and endothelial E-selectin may not be physiologically
significant.

A FT-IV deficiency partially but significantly reduced
binding to E-selectin, possibly because of the abolished
activity of ESL-1, as FT-IV preferentially but not exclu-
sively directs ESL-1 more than PSGL-1, compared with
FT-VII.45 In our study, administration of E-selectin anti-
body (clone 10E9.6) alone did not inhibit eosinophil ac-
cumulation in response to intradermal eotaxin. Similarly,
in LTB4-, eotaxin-, and MIP-1�-induced eosinophil accu-
mulation in the skin, blocking with only anti-E-selectin
(10E6) antibody did not exhibit an inhibitory effect.27

However, co-administration of 10E6 antibody with anti-P-
selectin antibody (5H1) resulted in further inhibition of
eosinophil recruitment compared with P-selectin blocking
alone,27 as was observed in our experiments (Figure 8B).
The actual role of E-selectin in murine eosinophils may
exert its function effectively where P-selectin is acting.

The blocking activity of anti-E-selectin antibody (clone
10E9.6) used in our study in C57BL/6 mice is controver-
sial. Whereas 10E9.6 antibody has been demonstrated to
be ineffective in C57BL/6 mice, but effective in BALB/c
mice,46 concomitant administration of anti-P-selectin and
anti-E-selectin antibodies (RB40.34 antibody and 10E9.6
antibody, respectively) unveiled blocking activity of
10E9.6 antibody.47 It is clear from our experiments that
10E9.6 antibody definitely exhibited an inhibitory effect
when co-administered with anti-P-selectin antibody
(RB40.34) (Figure 8B).
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FT-VII plays predominant roles for neutrophil recruit-
ment in irritant cutaneous inflammation and thioglycol-
late-induced peritonitis.6 The enzyme also provides a
major and critical contribution to the control of selectin
ligand activities for optimal lymphocyte recruitment in
contact sensitivity.8 The contributions of FT-IV in neutro-
phils and in T cells are subtle when FT-VII expression is
normal and appear only in the absence of FT-VII. On the
other hand, this study discovered that in eosinophils, a
FT-IV deficiency caused significant reduction in dermal
infiltration even when FT-VII was normal. Based on these
findings together with the fact that FT-IV expression is
consistently predominant in human eosinophils, we con-
clude that the dependence of eosinophils on FT-IV in
P-selectin ligand synthesis is more prominent than that of
other leukocytes. FT-IV can be a potent therapeutic target
for yielding the selective inhibition of eosinophil recruit-
ment in allergic diseases.
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