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Most organisms use glutathione to regulate intracellular

thiol redox balance and protect against oxidative stress;

protozoa, however, utilize trypanothione for this purpose.

Trypanothione biosynthesis requires ATP-dependent con-

jugation of glutathione (GSH) to the two terminal amino

groups of spermidine by glutathionylspermidine synthe-

tase (GspS) and trypanothione synthetase (TryS), which

are considered as drug targets. GspS catalyzes the penul-

timate step of the biosynthesis—amide bond formation

between spermidine and the glycine carboxylate of GSH.

We report herein five crystal structures of Escherichia coli

GspS in complex with substrate, product or inhibitor. The

C-terminal of GspS belongs to the ATP-grasp superfamily

with a similar fold to the human glutathione synthetase.

GSH is likely phosphorylated at one of two GSH-binding

sites to form an acylphosphate intermediate that then

translocates to the other site for subsequent nucleophilic

addition of spermidine. We also identify essential amino

acids involved in the catalysis. Our results constitute the

first structural information on the biochemical features of

parasite homologs (including TryS) that underlie their

broad specificity for polyamines.
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Introduction

Parasitic diseases, such as Chagas’ disease, African sleeping

sickness and several widespread illnesses known collectively

as leishmaniasis, cause millions of human deaths each year

worldwide. Lack of suitable drugs or vaccines is a major

concern. In contrast to bacterial or viral infections, develop-

ment of effective antiparasitic chemotherapy has been

hindered by the close similarities between parasite and host

metabolisms. Many of the existing drugs suffer from

poor efficacy, host toxicity or/and drug resistance. To aid

the development of new drugs, a special emphasis should be

placed on a metabolic pathway in parasites that differs from

or does not exist in the host (Fairlamb and Cerami, 1992;

Krauth-Siegel et al, 2003; Müller et al, 2003).

Spermidine (N-(3-aminopropyl)-1,4-diaminobutane) and

glutathione (GSH, gGlu-Cys-Gly) are present at high concen-

trations (0.1�10 mM) in most cells. Spermidine is a polyca-

tionic molecule that interacts with proteins, phospholipids

and nucleic acids (Marton and Pegg, 1995), affecting primar-

ily cell proliferation and differentiation (Tabor and Tabor,

1984; Pegg, 1986; Wang, 1995). GSH, a primary antioxidant,

is important in maintaining the redox balance as well as in

reductively scavenging reactive oxygen species (Meister and

Anderson, 1983). Notably, the enzyme glutathione reductase

keeps GSH in a reduced/activated form. In contrast, proto-

zoal parasites of the genera Trypanosoma and Leishmania

lack GSH reductase and GSH peroxidase activities (Boveris

et al, 1980; Fairlamb and Cerami, 1985; Penketh et al, 1987).

These pathogenic parasites instead employ trypanothione

(bis(glutathionyl)spermidine) to defend against oxidative

stress (Shames et al, 1986). The analogous enzymes trypa-

nothione reductase and trypanothione peroxidase exist

exclusively in the Kinetoplastida (Fairlamb and Cerami,

1992). Thus, trypanothione-related metabolism appears to

be an attractive target for therapeutic intervention.

There are two biosynthetic steps to produce trypanothione

from GSH and spermidine; the initial reaction requires

glutathionylspermidine synthetase (GspS) to catalyze the

coupling of GSH and spermidine to form glutathionylspermi-

dine (Gsp) (Henderson et al, 1990; Smith et al, 1992). Gsp is

then conjugated with another GSH to produce trypanothione

by trypanothione synthetase (TryS) (Oza et al, 2002a, b, 2003;

Comini et al, 2003). Each step involves an amide bond

formation that requires prior phosphorylation of the carboxy

(C) terminus of GSH by ATP. Escherichia coli produces

only the metabolic intermediate Gsp, but not trypanothione.

The corresponding enzyme, GspS, was identified more

than four decades ago (Dubin, 1959; Tabor and Tabor,

1975). Although the biological function of the E. coli GspS

remains obscure, previous work indicates that the enzyme

has a second activity to hydrolyze Gsp back to GSH

and spermidine (Bollinger et al, 1995). The two activity

domains are separate in this bifunctional protein: the amidase
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domain is located at the N terminus and the synthetase

domain is at the C terminus (Kwon et al, 1997).

Interdomain communication negatively regulates the ami-

dase activity in the E. coli enzyme (Lin et al, 1997b).

Some parasites, such as Trypanosoma cruzi and

Trypanosoma brucei, use one enzyme to synthesize Gsp and

trypanothione, but others (e.g., Crithidia fasciculata) utilize

two separate enzymes for this purpose (Oza et al, 2002a, b,

2003; Comini et al, 2003). The majority of these proteins are

bifunctional, having both amidase and synthetase activities,

which suggests the importance of regulating the physiological

concentrations of substrate and/or product. The scarcity of

homologous sequences and the lack of any structural infor-

mation have impeded our understanding of the Gsp- or

trypanothione-related enzymes.

Herein we report the determination of five X-ray crystal

structures of E. coli GspS, including the protein/substrate,

protein/product and protein/inhibitor complexes. In par-

ticular, during crystallization, the nanomolar phosphinate

inhibitor became phosphorylated to generate the phosphino-

phosphate intermediate at the active site despite its limited

stability (t1/2¼ 25 min) (Chen et al, 1997; Lin et al, 1997a).

These results clarify the mechanistic details of the synthetase

reaction and will contribute to our understanding of structur-

al and functional differences within the TryS enzyme family.

Results

Overall structure

We obtained five crystal structures: apo_GspS and the

GspS_AMPPNP, GspS_GSH_ADP, GspS_inhibitor and

GspS_ADP complexes. All these structures contain a dimeric

GspS in each asymmetric unit (Figure 1). Each of the final

refined structures includes 571–603 total residues per GspS

monomer, with some disordered regions at the N terminus

(1–10) and in some surface loop regions (536–542, 547–563

in apo_GspS, and 30–40, 455–457 in the GspS complexes).

The overall structure description is based on the information

from the GspS_GSH_ADP structure that has the highest

resolution (2.2 Å) and is more intact in the refined model.

The globular structure reveals a mixed a/b fold with a size

of 30� 35� 40 Å3 in the N-terminal amidase domain and an

equilateral triangle shape in the C-terminal synthetase

domain with the sides of the triangle of B60 Å and thickness

of 30 Å (Figure 2A). Residues 196–205 between the two

domains are defined as the linker region. The N-terminal

amidase domain has an open-sandwich topology comprising

two central a-helices (a2 and a3) surrounded by four (b1, b2,

b3 and b4) and eight (b5, b6, b7, b8, b9, b10, b11 and b12)

antiparallel twisted strands, as shown in Figure 2B. As we

will demonstrate, the C-terminal synthetase domain belongs

to the ATP-grasp superfamily (Murzin, 1996) and is structu-

rally similar to that of human glutathione synthetase (PDB

code: 2HGS) (Polekhina et al, 1999), despite no obvious

sequence homology. The synthetase domain is composed

of three main structural units, including (1) an antiparallel

b-sheet (strands b15, b16, b29, b30 and b31; green in

Figure 2B), together with a6 (green), a7, a8 (gray), a14 and

a15 (yellow) packing on one side of the sheet, a4, a5 (gray),

a9, a10 (blue), b13, b14 and b32 (gray) packing on the other

side; (2) a parallel b-sheet (b17, b18, b21 and b22; red in

Figure 2B) together with a11, a13 (red), a12, b19 and b20

(gray) and (3) a lid domain (orange in Figure 2B) composed

of an antiparallel sheet of b23, b24, b25, b26, b27 and a16.

The active site of the synthetase domain, clearly demar-

cated by the bound ligands in the complex structures, is

located at the central antiparallel b-sheet and is surrounded

by five loops (Figure 2C for stereo view); that is, P-loop

(residues 535–543, designated in orange), loop1 (441–444,

yellow), loop2 (332–338, cyan green), loop3 (601–609, red)

Figure 1 Overall structure of E. coli glutathionylspermidine synthetase/amidase. A ribbon diagram of the overall structure of E. coli GspS,
showing two monomers in the asymmetric unit, and a pseudo-two-fold axis between the two monomers. The amidase domain (N-terminal
1–195), synthetase domain (C-terminal residues 206–619) and linker region (Glu196 to Ala205) are labeled. Active sites of the synthetase
domain are revealed by the substrates represented as sticks (ADP and GSH) and spheres (Mg2þ ). Side chains of catalytic residues Cys59 and
His131 in the amidase domain are designated in the same way. The dash represents a portion of the undefined region (residue 30–40) in the
solved structure. The ribbon figures were drawn using PyMOL.
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and the D–E loop (387–392, green). As a part of the lid

domain, P-loop (536AGRCGS542) is disordered in the

apo_GspS structure, but forms a closed conformation when

bound with substrate, product or inhibitor. Figure 3A and 3B

show the surface charge potential of the synthetase active

site of the GspS_GSH_ADP and GspS_inhibitor complexes,

Figure 2 Structure analysis of the two activity domains in E. coli GspS. (A) Folding of the amidase domain (left, residues 1–195) and
synthetase domain (right, residues 206–619). The amidase domain contains two central a-helices (red) that are surrounded by four and eight
antiparallel twisted strands (yellow and blue, respectively). The synthetase domain mainly consists of antiparallel b-sheets (green), parallel
b-sheets (red) and a lid domain (orange). Please see Results for the detailed description. (B) A topology diagram corresponding to each activity
domain. The color codes for the secondary structural elements are identical to those in (A). (C) A stereo view of the catalytic region of the
synthetase domain. The substrates ADP and GSH are shown as ball-and-stick structures and Mg-O as spheres (green–red).
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respectively. As shown in Figure 4A, P-loop, loop2 and

loop3 have different conformations due to the binding of

ATP and GSH.

The amidase domain is a member of the cysteine, histidine-

dependent amidohydrolases/peptidases (CHAP) superfamily

(Bateman and Rawlings, 2003). It is a cysteine protease with

Cys59 and His131 as the catalytic dyad, and these two amino

acids are invariant among all GspS and TryS enzymes.

Dimerization

GspS exists as a dimer in solution, as supported by analytical

ultracentrifugation (see supporting information). The sedi-

mentation velocity of E. coli GspS estimates the molecular

mass to be 138 kDa. Because the GspS polypeptide has a

mass of 70 kDa, this result suggests that GspS should exist

as a dimer in solution. Thus, the dimeric GspS structure in

the asymmetric unit is considered as a functional dimer. The

intersubunit contacts have a total buried surface area of

3400 Å2. The intersubunit interactions are between the ami-

dase domain from one monomer and the synthetase domain

from another monomer (Figure 1). Hydrophobic interactions

between the two monomers are Leu15 with Ala424, Pro20

with Ala461, Ala114 with Ala460 and Leu303 with Val94. A

salt-bridge interaction exists between Arg307 in one monomer

and Asp49 in another monomer with a distance of 2.85 Å.

Additionally, hydrogen bonds are observed in the dimeric

interface, such as Tyr18 with Arg481, and Gln160 with Thr466.

ATP-binding site

ADP was located at the antiparallel b-sheet of GspS in a

manner analogous to that observed in other ATP-grasp pro-

teins (Fan et al, 1994, 1995; Polekhina et al, 1999; Thoden

et al, 2000, Figure 2C for stereo view). The adenine ring is

buried in a hydrophobic pocket that is shaped by Tyr329,

Ala531, Leu570, Leu603, Val604 and Leu515. The exocyclic

6-amino group of the adenine base is hydrogen bonded with

the main-chain oxygen of Gln569 and the N1 with the amide

hydrogen of Trp571 (Figure 4B). The O20 atom of the ribose

forms hydrogen bonds with the main-chain oxygen of Leu603

and amide of Ile605, and the O30 atom with Ne2 of Gln582. The

negative charges on the a- and b-phosphates are compensated

by two conserved residues, Lys498 and Lys533. Both e-amino

groups of Lys residues form salt bridges with Od� of ADP. The

position of the g-phosphate of ATP is deduced from the

GspS_AMPPNP structure where NZ of Arg316 is close to the

g-phosphate within the hydrogen-bonding distance. The main-

chain nitrogen of Gly540 and Cys539 in the P-loop interact

with the b- and g-phosphates, respectively.

Magnesium binding

Figure 4C and 4D shows the location of two magnesium ions

in the complex structures. They are both bound in an octa-

hedral geometry. Mg1 (left green ball in Figure 4C) is ligated by

an a-phosphate oxygen and a b-phosphate oxygen atom of

ADP, Od1 of Asp318, a carboxylate oxygen of Glu330 and two

water molecules. The metal-ligand distances vary from 1.97 to

2.15 Å. The g-carboxylate group of Glu330 also interacts with

Mg2 (right green ball in Figure 4C) using both oxygen atoms

(Mg–O distances are 2.19 and 1.97 Å). The other four ligands

of Mg2 include a b-phosphate oxygen atom of ADP, Od of

Asn332 and two water molecules, with the distances ranging

from 1.96 to 2.04 Å. Glu330, a highly conserved residue in all

ATP-grasp proteins, seems to play a vital role in enzyme

catalysis, because it bridges between the two metal sites.

The transferred phosphate during phosphorylation

of the inhibitor

In our previous report (Chen et al 1997; Lin et al, 1997a), the

phosphinate analog of Gsp was found to exhibit an ATP-

dependent, slow-binding inhibition against E. coli Gsp

synthetase. The mixture of GspS, ATP and the phosphinate

inhibitor was co-crystallized for structural analysis. In the

final refined structure, ATP was found to be hydrolyzed

to ADP. In addition, an extra phosphate was attached to the

phosphinate oxygen, indicating that phosphorylation of the

inhibitor was driven by ATP hydrolysis to give the tetrahedral

phosphinophosphate that is bound at the active site. The

intermediate mimics the tetrahedral adduct formed by

the nucleophilic addition of spermidine to the acylphosphate

(see Supplementary data).

The g-phosphate in AMPPNP or transferred phosphate

in phosphinophosphate interacts with both Mg2þ ions, the

main-chain amide of Cys539 in the P-loop, and NZ of Arg316.

Arg316 is an important residue that plays a role in the transfer

of g-phosphate from ATP and the stabilization of the anionic

tetrahedral intermediate. Arg316 hydrogen bonds to the

g-phosphate of AMPPNP (Figure 5A) as well as the phosphinyl

oxygens of the inhibitor (Figure 5B). The main-chain amide

of Cys539 contacts the g-phosphate in the GspS_AMPPNP

structure and the transferred phosphate in the GspS_inhibitor

Figure 3 Substrate GSH (left) and inhibitor (right) binding in the Gsp synthetase domain and its electrostatic surface. Electrostatic surface
representations of the GspS_GSH_ADP (A) and GspS_inhibitor (B) complexes. The colors red, white and blue indicate negative, neutral and
positive charges, respectively.
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structure. The interaction stabilizes the pentavalent phos-

phate intermediate in the phosphorylation step (Figure 5A

and B). Bridging between the transferred phosphate and ADP,

the two Mg2þ ions serve as Lewis acids to assist the

phosphate transfer and compensate the resulting negative

charges during catalysis.

Furthermore, the Gsps_inhibitor structure was found

similar to the complex structure of E. coli GSH synthetase

with a phosphinyl peptide (Hiratake et al 1994; Hiratake,

2005). The peptide was phosphorylated, and ADP and the

resulting phosphorylated phosphinate were located at the

enzyme active site, as shown by the X-ray crystal structure

analysis. Despite no obvious homology between this enzyme

and E. coli GspS, both enzymes utilized the same residues to

interact with the phosphinate and phosphates, including

Arg316, D318 and E330 of GspS (corresponding to R210,

D273 and E 281 of GSH synthetase, respectively).

Two GSH-binding sites

The first GSH-binding site (S2) is observed in the structure of

GspS_GSH_ADP (Figure 5C). Surprisingly, the substrate is

bound in the active site by forming a disulfide bond between

its own Sg atom and the Cys338 Sg atom. The Gly portion of

GSH also forms an isopeptide bond with Nz of Lys607 (see

Supplementary data).The orientation of the GSH binding in

this structure is considered to be opposite to what it should

adopt in the catalysis because the C-terminal carboxylate of

Gly, serving as a nucleophile during the phosphate transfer, is

located far from the ADP-binding site (S1). The formation of

this isopeptide bond may be an accidental trap for nonpro-

ductive reactions in the absence of spermidine. GSH forms

many hydrogen bonds with Arg316, Ser335, Ser337, Arg538,

Arg598 and water molecules.

Formation of the mixed disulfide and the isopeptide,

considered as a nonproductive mode, was observed only

when the enzyme was incubated with ATP and GSH. In

contrast, we never saw such formation in additional presence

of spermidine (data not shown). The proteins were crystal-

lized at pH 8.5 that is very different from the optimum pH

(7.0). The basic condition gives 20% of the optimum activity

at pH 7.0 and also favors the disulfide bonding formation.

The second GSH-binding site (S3) is revealed by the

GspS_inhibitor structure (Figure 5D). The phosphinate

inhibitor contains a tripeptide moiety of g-Glu-Ala-Gly that

Figure 4 Details of the interactions of GspS with substrate/product or inhibitor in the synthetase domain. (A) Interaction of substrate with
loops. Three loops are shown, including the P-loop (residues 536–542), loop2 (332–338) and loop3 (601–609). The loops are represented by
ribbons, and side chains of the residues interacting with GSH are shown as thicker lines. GSH is shown as ball-and-stick structures. The figure
shows the comparison of positions of the three loops and the corresponding side chains between the structures apo_GspS (olive-green) and
GspS_GSH_ADP (magenta). Hydrogen bonds between GspS and GSH are depicted as black dotted lines. The disulfide bond between Cys338
and the Cys of GSH is shown in yellow. (B) ADP-binding site. ADP is represented as a ball-and-stick structure, and the interacting residues are
shown by their side chains as thicker lines in cyan. The P-loop, including Arg538 and Gly540, is in red. Magnesium ions are shown as green
spheres. (C) Magnesium-binding site. Mg2þ ions are shown as light green and water molecules as red. The side chains of the coordinating
residues are presented as ball-and-stick structures. Coordination of Mg2þ ions is depicted by dashed lines, and the distances are listed. The
2Fo�Fc electron density map of Mg-ADP contoured at 1s level is shown. (D) Details of the interactions between the phosphinate inhibitor and
GspS. Five loops are presented here in different colors, including the P-loop in orange, loop1 in yellow, loop2 in forest green, loop3 in red and
D–E loop in green. Residues making hydrogen bonds with the inhibitor are shown by thicker lines.
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is analogous to GSH (Figure 6). The tripeptide moiety inter-

acts with several amino acids from the enzyme, including

Ser335, Asp387, Glu392, Ala443 and Thr446 (Figure 4D).

Spermidine binding

The possible spermidine-binding site is illustrated in the

GspS_inhibitor structure, because the inhibitor is a Gsp

analog containing GSH and spermidine. The interactions

include hydrogen bonding between the terminal NH3
þ

group of inhibitor and Od1 of Asp610, as well as bidentate

H-bonding of Glu391 Oe with the middle nitrogen of the

spermidine moiety. The middle nitrogen is also within hydro-

gen-bonding distance with the main-chain oxygen of Lys607

(Figure 4D). The D–E loop was found to have different

conformations between the GspS_GSH_ADP (Figure 5C)

and GspS_inhibitor structures (Figure 5D). The four nega-

tively charged residues Asp387, Asp389, Glu391 and Glu392

are closer to the S2 and S3 sites in the GspS_inhibitor

structure in comparison with the GspS_GSH_ADP structure.

(see Supplementary data). Notably, the side chain of Glu391

is positioned very differently in the two structures, revealing

its key role in spermidine binding. The hydroxyl group of

Ser337 is at a distance of 3.2 Å from the first carbon of the

spermidine moiety of the inhibitor, indicating that the residue

may facilitate the nucleophilic attack during catalysis by

interacting with spermidine. Ser337 and Glu391 Oe2 form a

hydrogen bond and are involved in the deprotonation of

spermidine (Figure 6).

Discussion

Comparison of GspS with other ATP-grasp enzymes

Although GspS lacks any significant sequence identity or

homology with other members of the ATP-grasp superfamily,

our GspS crystal structures suggest that the enzyme indeed

belongs to the superfamily. Based on published structures

and structural comparisons among members, our consensus

structure is related to human glutathione synthetase (hGS,

Figure 5 Two different binding sites of GSH indicated by comparing the complex structures. (A, B) A special emphasis is placed on the
positions of the g-phosphate and transferred phosphate. Ligands are drawn as ball-and-stick structures and Mg2þ as spheres. (A) The stereo
view of the AMPPNP-binding site in the GspS_AMPPNP structure. The P-loop and the interacting residues are green. (B) The stereo view of the
ADP and inhibitor-binding site in the GspS_inhibitor structure. The P-loop and the interacting residues are in magenta. (C, D) Comparison of
the GspS_GSH_ADP and GspS_inhibitor structures with a special focus on the substrate-binding sites. Boxes show the substrate and the
inhibitor-binding sites in the complex structures.
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Figure 7A and B), because the two structures can be super-

imposed to define the conserved structural units, including

the parallel b-sheet, antiparallel b-sheet and lid domain

(Figure 7C). Figure 7D shows structure-based alignment of

E. coli GspS and hGS, revealing that a number of important

residues and loops are conserved in the two proteins. The

structure of E. coli GspS can be superimposed on hGS with an

rms deviation of 320 Ca atoms of 3.8 Å. The most structurally

similar units between the two structures are the parallel

b-sheets (Figure 7C). hGS has two relatively long a-helices

in the lid domain, in contrast to one short helix of E. coli

GspS. The antiparallel b-sheet of hGS is more compact with

extra and larger helices. As this domain facilitates substrate

binding in both enzymes, the loose arrangement in GspS

either accommodates larger substrates (or products) or un-

dergoes significant conformational changes during catalysis.

Two rare non-proline, cis-peptide bonds in the helical

connection were found in our structure, including

K56�W57 and F487�E488. K56�W57 is located in the

N-terminal amidase domain. Interestingly, E488 corresponds

to P295 in hGS, N114 in E. coli glutathione synthetase, G104

in biotin carboxylase and G85 in D-Ala-D-Ala ligase.

Moreover, there is a great extent of variation in the residues

forming the ATP-binding pocket; only a few residues are

strictly conserved, such as Arg316, Lys498 and Lys533,

which interact with the phosphates, E330 with Mg2þ , and

D318 and N332. The contributions of these comparative

aspects to the GspS catalytic mechanism are discussed below.

The catalytic mechanism

The conjugation reaction of GSH with spermidine proceeds

in two steps, which is analogous to other ATP-dependent

ligases. It has been proposed that the C terminus of GSH is

initially phosphorylated by g-phosphate of ATP to form

an acylphosphate, followed by the nucleophilic attack of

N1-spermidine to the acylphosphate (Figure 6) (Chen et al,

1997; Chen and Coward, 1998). The resulting tetrahedral

adduct then collapses to form an amide bond and breaks

the C–O bond of the phosphate, leading to the formation of

Gsp and release of inorganic phosphate, with ADP also being

released after catalysis.

The five X-ray structures reported here are fully consistent

with the proposed reaction mechanism. Among the struc-

tures, GspS_AMPPNP and GspS_GSH_ADP helped to deline-

ate how GspS initially binds with the substrates ATP and

GSH to catalyze the formation of acylphosphate, whereas

the GspS_ADP structure provided the information on the

enzyme/product complex. Each of these structures is neces-

sary to obtain the full picture of the reaction mechanism.

For example, without the information obtained from the

Figure 6 Proposed reaction mechanism of GspS in comparison with phosphorylation of the phosphinate inhibitor.
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GspS_inhibitor structure, it would be unclear how the reac-

tion advances from the acylphosphate to form an amide

bond. The phosphinate inhibitor (Figure 6, compound 2)

was previously shown to be a remarkably potent inhibitor

(Ki¼ 3.2 mM and Ki*¼ 7.8 nM, Lin et al 1997a), suggesting

formation of phosphinophosphate (3), which dissociates

from the enzyme GspS so slowly that it causes time-depen-

dent inactivation (Chen et al 1997; Lin et al 1997a).

Consistent with the inhibition study, the GspS_inhibitor

structure reveals that the inhibitor reacts with ATP to produce

ADP and the tight-binding phosphorylated intermediate. The

resulting glimpse of the formation of the tetrahedral inter-

mediate shows the nucleophilic attack of spermidine on the

acylphosphate and subsequent amide-bond formation.

The comparison between these structures offers valuable

information for determining the binding sites of the three

substrates and demonstrates the progression of catalysis.

ADP is stacked between two antiparallel b-sheets (S1 in

Figure 5C and D). The cavity is covered by the disordered

P-loop (not seen in apo_GspS). As discussed above, the main

chains of C539 and G540 in the P-loop make contacts with the

g- and b-phosphates, respectively. Apparently, the loop serves

to bind the nucleotide and prevents the intrusive hydrolysis

of the acylphosphate intermediate by the surrounding solvent

Figure 7 Comparison of hGspS and E. coli GspS domain. (A) Ribbon diagrams of hGS (PDB: 2HGS) and (B) E. coli GspS synthetase domain.
(C) The comparisons of the lid domain, antiparallel b-sheet and parallel b-sheet units between the human glutathione synthetase and E. coli
GspS synthetase domain. (D) Structure-based sequence alignment of E. coli GspS and hGS. The secondary structure and some residue
numbering of E. coli GspS are shown above the alignment. All residues numbering of the two proteins are shown on both sides of each line.
Catalytically related and conserved residues are shown in sky-blue; identical or similar residues are pink, and the P-loop defined in the E. coli
GspS structure is indicated. The figure was produced using ALSCRIPT (Barton, 1993).
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molecules. Examination of the GspS_GSH_ADP and

GspS_inhibitor structures indicates that there are two possi-

ble binding sites for glutathione (S2 and S3 in Figure 5C and

D), respectively. We propose that S2 is the initial GSH-binding

site, and a subsequent conformational change triggered by

ATP hydrolysis is likely involved in the translocation of the

activated GSH to S3. The translocation has to occur to

accommodate the other substrate, spermidine, at S2 for the

next step of nucleophilic addition.

Our current data cannot exclude the possibility that sper-

midine and GSH may directly bind to S2 and S3, respectively,

without the translocation. However, several pieces of sup-

porting evidence favor the translocation mechanism. Firstly,

Cys338 is located in S2 and is close to N6 (related to the

spermidine moiety) in the GspS_inhibitor structure (see the

inhibitor numbering in Figure 6). The Km values of C338A

increase about 10-fold for GSH and four-fold for spermidine

(Table I), suggesting that the residue is more involved in

binding GSH. Secondly, consistent with the GspS_GSH_ADP

structure, GSH was always found to reside at S2 in several

attempts to co-crystallize GspS with GSH, even though the

tripeptide was disordered and only a part of this molecule

could be recognized in the electron density (data not shown).

Thirdly, both E. coli GspS and parasite homologs (including

TryS) show substrate inhibition with GSH, a phenomenon

that can be explained by the translocation mechanism. High

concentration (i.e., 42 mM) of GSH possibly leads to its

simultaneous occupancy at both S2 and S3, which interferes

with catalytic activity. Moreover, a significant movement of

the D–E loop was found in connection with the translocation

(Figure 5C and D and S2). The loop repositions to form

multiple interactions with the inhibitor, including E391 with

N6 (related to the spermidine moiety, see Figure 6), and E392

and D387 with N21 (related to the GSH moiety). In the GspS/

substrate and GspS/product structures, the D–E loop adopts a

different conformation from that in the GspS_inhibitor struc-

ture and is far from the S2- and S3-binding sites. As a result,

after putative translocation of the acylphosphate from S2 to

S3, the binding of spermidine to S2 likely induces the move-

ment of the negatively charged loop to reposition the acti-

vated GSH and spermidine. The induced fit facilitates further

catalytic steps (e.g., nucleophilic addition of spermidine to

produce the tetrahedral intermediate).

A comparison of the GspS_inhibitor structure with the

GspS_GSH_ADP structure reveals different conformations

for the side chain of R538. In one conformation, R538

interacts with the g-carboxylate of GSH (Figures 4A and

5C), whereas in the other conformation it faces the peptide

part of the inhibitor (Figures 4D and 5B). The g-carboxylate

of GSH in the GspS_GSH_ADP structure occupies the

same position as the phosphinate group of the inhibitor in

the GspS_inhibitor structure. Because GSH reacts with ATP

to form an acylphosphate intermediate at the initial step of

the enzyme reaction, it is reasonable that the C-terminal

carboxylate of GSH likely interacts with R538 and the

resulting acyl phosphate interacts with the same residue

during translocation.

In the complex structures, two Mg2þ cations bridge

between ADP and inhibitor (or GSH). The phosphinate P–O

bonds (P11–O) form a bidentate interaction with the guani-

dine group of R316. Because the inhibitor, 3, mimics the

tetrahedral intermediate, we anticipate that 1 (Figure 6)

would be oriented in an analogous manner during the

catalytic cycle. Moreover, the proximity of the S337 hydroxyl

group to the methylene group (C10, 3.2 Å) of 3 indicates a

probable interaction with N1 of spermidine. The bifurcated

hydrogen bond interactions of R316 with the carboxylic

acid of GSH anchor and polarize a C-O bond to set up

the other carboxylate oxygen atom to attack the

g-phosphate of ATP. The phosphate transfer step is assisted

by the Mg2þ cations observed in the complex structures and

yields the activated acylphosphate. Spermidine is oriented

properly by multiple interactions, including D610 with N8,

E391 and the main chain oxygen of K607 with N4, and S337

with N1 (see the spermidine numbering in Figure 6). It is not

clear how the deprotonation of the N1 amino group of

spermidine occurs, but the step is facilitated by the hydrogen

bonding between S337 and E391. The deprotonation is essen-

tial to generate the nucleophilic NH2 form to attack the

electrophilic carbonyl carbon of the acylphosphate. The

reaction forms intermediate 1, in which the guanidine

group of R316 stabilizes this high-energy species, similar to

the observed interaction with 3. Intermediate 1 then decom-

poses to give the product Gsp with loss of phosphate.

A disulfide bond was found between GSH and C338 in the

structure of GspS_GSH_ADP. The linkage likely contributes to

the catalytic efficiency, but it is not necessarily required for

the catalysis. The mutant C338A has a kcat of 4.28/s, very

close to that of the wild type (4.35/s) (Table I). Likewise,

GspS can accept the analogous substrates gGlu-Ala-Gly

and gGlu-Ser-Gly with similar turnover numbers, but the

Km values are 4- and 12-fold higher than that of GSH,

respectively (data not shown). As a consequence, in the

case where disulfide bond formation does not occur (i.e.,

GspS interacts with gGlu-Ala-Gly, or the mutant protein

C338A interacts with GSH), the reaction still produces Gsp

or its analog, but requires a higher substrate concentration to

operate with similar efficiency.

Table I lists steady-state parameters for the activities of

GspS and its mutants. The results support the claims made in

the previous discussion. For example, the mutant R316E is

completely inactive because the residue is essential in the

formation and stabilization of the acylphosphate intermedi-

ate. Because E391 and E392 of the D–E loop are essential to

participate in the binding interactions occurring at S2 and S3

Table I Steady-state kinetic parameters for the activities of Gsps
and its mutants

GspS/mutant Km, GSH (mM) Km, spermidine (mM) kcat/s

Wild type 218712 7671 4.3570.30
C338A 20987152 406738 4.2870.35
S335A 794771 126715 3.3170.17
S337A 22473 7673 2.4970.21
R538A 1324734 182737 1.0170.19
T441A 6917100 16107137 0.2570.05
K607A 251729 153714 4.5570.19
E392A 72987701 1008792 0.7570.05
E391A 407742 45227107 0.4370.01
R598A 22.470.52 665776 0.2970.02
R316E —a —a —a

Values were determined by a previously reported spectrometric
assay (see Materials and methods), which involved titration of a
variable substrate in the presence of saturating concentrations of
the other two substrates.
aNot detected.
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sites, respectively, the Km values of their alanine mutants are

much higher than the wild type, and both mutant proteins

have low activity, as reflected by their turnover numbers.

Therefore, these mutations result in tremendous loss in

kcat/Km compared with the wild-type protein. T441 hydrogen

bonds with the side chain of E392 (Figure 4D), and residues

S335, C338 and R538 primarily affect substrate binding

and/or translocation.

Comini et al (2005) studied the mutation of C. fasciculate

TryS (Cf-TryS) at Arg553 (corresponding to R538 in E. coli

GspS) and Arg613 (R598 in E. coli GspS), indicating that

mutating each position resulted in marked reduction or

abrogation of activity. The observation is consistent with

our result. Arg553 of Cf-TryS, but not Arg613, was shown

to be essential to the delayed proteolysis protected by the

presence of substrates. The difference can be realized based

on the structural information of E. coli GspS. R538 of E. coli

GspS plays an indispensable role in the translocation as

mentioned above. R598 of the same enzyme resides in the

periphery of the S2 site and its role still remains unclear.

Although the residue is located at the glycine-rich region that

has been proposed previously to be a typical ATP-binding

motif, R598 is not involved in the binding with ATP according

to the resolved X-ray structures.

Examination of related parasite enzymes

In T. cruzi, only a single distinct enzyme (TryS) is involved in

trypanothione biosynthesis (Oza et al, 2002b), that is, TryS

catalyzes the consecutive conjugation of spermidine with two

molecules of GSH to produce trypanothione. Unlike E. coli

GspS, the T. cruzi enzyme has wide substrate specificity for

polyamines, which has been attributed to selective pressures

from the host under different environments (Oza et al,

2002b). To explain the wide substrate specificity of parasite

TryS and the use of one enzyme instead of two (GspS

and TryS), Oza et al (2003) hypothesized that an ancestral

gsps gene, whose encoded protein exhibited narrow sub-

strate specificity, may have undergone duplication and then

diverged into two independent genes (gsps and trys). The

subsequent loss of the gsps copy from the Trypanosoma

genome thus led to the preservation of only trys (Oza et al,

2005). Owing to the significant sequence homology among

E. coli GspS and parasite enzymes (e.g., there is 32% identity

and 51.5% similarity between E. coli GspS and T. cruzi TryS

by using Similarity Matrix PAM250), these intriguing evolu-

tionary issues may be verified by the X-ray structures. Our

results indicate that spermidine is oriented by the interaction

of the three amino groups N1, N4 and N8 with the side chains

of S337, E391 and D610 (Figure 6), respectively. In accor-

dance with the homology alignment, the first two residues

are strictly conserved; D610, however, is only conserved

in prokaryotic GspS and not in the eukaryotic enzymes. In

addition, TryS must have a larger binding site to accommo-

date Gsp, in comparison with GspS to hold spermidine.

A homology model of T. cruzi TryS based on our GspS

structures reveals an apparent difference. T. cruzi TryS may

have an extra binding site that is located on the protein

surface and near N1 of the phosphinate inhibitor (see the

numbering in Figure 6). This site is thus considered as the

extension of the S2 site and likely interacts with the GSH

moiety of Gsp. Several residues of T. cruzi TryS are involved

in the interactions, such as P613 (corresponding to D610 of

E. coli GspS) and E611 (E608 of E. coli GspS). In contrast, this

site is relatively shallow in E. coli GspS.

Furthermore, Comini and coworkers (2005) suggested

three mechanistic possibilities to explain the dual activity of

TryS, including a second reaction center in the enzyme,

reorientation of initially formed Gsp to facilitate further

conjugation with GSH at the same reaction center, and a

flexible site to generate the activated GSH to ligate the

tripeptide to either site of Gsp (or spermidine). Because our

structural information supports only one ATP-binding site,

the synthesis of trypanothione catalyzed by a dual functional

TryS involves a conformational change of the lid domain to

release the side product ADP, after formation of the inter-

mediate Gsp. We thus favor the aforementioned second

possibility, that is, to synthesize trypanothione directly from

spermidine and GSH, the enzyme controls the open and

closed conformation of the lid domain to load ATP twice

and applies the same translocation to position GSH acyl-

phosphate (see Supplementary data). To become further

glutathionylated at the same reaction center that had glu-

tathionylated spermidine, Gsp probably either flips within the

active site or changes its position.

Design of simple but effective inhibitors

In accordance with the previous development of inhibitors

against GspS, only phosphinate analogs of Gsp were found to

react with ATP to produce a phosphinophosphate intermedi-

ate that is associated with a typical E . I#E . I* slow-binding

isomerization. Compound 2 (Figure 6) gave a 410-fold gain in

inhibitory potency from the initial Ki of 3.2 mM to the final Ki*

of 7.8 nM. On the other hand, the phosphonate analog (4) did

not undergo phosphorylation, and the affinity for GspS

(Ki¼ 6.0 mM) was B770-fold less than that of 2 (Chen et al,

1997). Furthermore, the phosphorylation step requires the

presence of spermidine, as indicated by the poor inhibition of

another simplified phosphinate (that contains a methyl group

to replace the spermidine moiety), but it is not known if the

entire spermidine group is involved in the binding. These

observations support the idea that potent inhibition requires

the consideration of the transferred g-phosphate from ATP.

It is thus necessary to incorporate an additional phosphate

(or equivalent negative charge(s)) into designed molecules.

As spermidine is at high concentration (0.1–10 mM) in most

cells, compounds such as 5, which represent a simplified

version of inhibitor 2, may be sufficient to inhibit the reaction

in the presence of spermidine. Compound 6 will help to

determine the importance of spermidine. Additionally,

our structural information is also helpful to design potent

inhibitors against parasite homologs (including GspS and

TryS) because they and E. coli GspS share 450% sequence

similarity.

Materials and methods

Protein preparation
The plasmid containing E. coli gene GspS was obtained from
Professor Christopher T Walsh at Harvard Medical School. The
recombinant plasmid was then transformed into E. coli BL21 (DE-3)
(Novagen) for expression. The resulting protein was purified by
following the reported procedure (Bollinger et al, 1995; Kwon et al,
1997). The protein was purified to give 495% homogeneity on the
basis of SDS–PAGE and further confirmed by mass spectrometry.
Se-Met GspS was prepared according to the method described

Structure and mechanism of GspS
C-H Pai et al

&2006 European Molecular Biology Organization The EMBO Journal VOL 25 | NO 24 | 2006 5979



Table II Data collection and refinement statisticsa

Apo_GspS Se-Met-GspS GspS_AMPPNP GspS_ADP GspS_ GSH _ADP GspS_inhibitor

Space group C2 I23 P1 P1 P1 P1
Unit cell parameters (Å) a¼ 149.27 a¼ b¼ c¼ 248.11 a¼ 60.01 a¼ 60.20 a¼ 59.91 a¼ 60.03

b¼ 92.96 b¼ 75.54 b¼ 75.61 b¼ 75.48 b¼ 75.29
c¼ 108.30 c¼ 84.06 c¼ 84.44 c¼ 84.01 c¼ 84.66
b¼ 109.371 a¼ 70.671 a¼ 70.171 a¼ 70.441 a¼ 70.091

b¼ 74.361 b¼ 73.921 b¼ 74.171 b¼ 74.061
g¼ 78.221 g¼ 77.771 g¼ 78.061 g¼ 77.551

Wavelength (Å) 1.000 0.9797 (peak) 0.9799 (edge) 0.9537 (high remote) 1.000 1.000 1.000 1.000
Resolution (Å) 50–2.2 (2.28–2.2) 30–3.1 (3.21–3.1) 50–3.06 (3.17–3.06) 30–2.98 (3.09–2.98) 30–2.7 (2.7–2.8) 30–2.08 (2.08–2.15) 30–2.2 (2.28–2.2) 30–2.7 (2.7–2.8)
Total no. of reflections 297079 403 843 236 279 252 629 86 668 287 870 217017 111088
No. of unique reflections 70 953 45 503 47 722 51 551 34 912 75 954 64 297 35 215
Completeness (%) 99.7 (99.9) 99.7 (98.8) 100 (99.5) 99.9 (99.5) 96.4 (95.2) 96 (92.6) 95.7 (90.6) 96.6 (96.8)
Redundancy 4.1 (4.2) 8.9 (8.8) 5.0 (4.7) 4.9 (4.6) 2.5 (2.5) 3.8 (3.3) 3.3 (3.1) 3.2 (3.2)
I/sigma 18.8 (3) 18.7 (6) 22 (4.5) 21.4 (3.9) 11.1 (3) 14.8 (3.4) 26 (3) 20.7 (6.4)
Rmerge

b 7.6 (48.6) 11.4 (43.1) 10.1 (47.7) 10 (53.5) 10.5 (44.3) 9.5 (34.8) 7.5 (35.7) 8.4 (33.9)
Refinement statistics

No. of reflections 67 294 (5770)c 29 772 (1929)e 63 960 (4204)e 61 422 (5085)c 29 543 (2342)e

Resolution (Å)d 50–2.2 (2.2–2.28) 30–2.7 (2.7–2.8) 30–2.1 (2.10–2.18) 30–2.2 (2.2–2.28) 30–2.8 (2.8–2.9)
Rworking 17.55 (26.09) 19.75 (32.72) 17.35 (19.50) 16.79 (25.98) 17.30 (21.16)
Rfree

c 23.60 (32.65)f 25.96 (39.56)f 23.63 (25.54)g 23.18 (34.81)f 24.25 (30.85)g

No. of solvent molecules 1224 462 911 1228 497
R.m.s.d. bond length (Å) 0.0197 0.0125 0.0117 0.0118 0.0081
R.m.s.d. angles 1.929 1.611 1.613 1.372 1.445
Ramachandran plot (%)
Most favored/allowed regions 88.2/100 84.2/ 99.9 87.5/100 88.2/100 85.8/99.9
Average B factor (Å2)
Total 39.63 18.11 31.41 32.58 29.70
Substrate/product 10.29 19.83 22.61 16.71
Inhibitor 35.73

aAll crystal forms have two molecules per asymmetric unit.
bRmerge¼ SUM (ABS (I�/IS))/SUM (I).
cAll positive reflections are used in the refinements.
dValues in parentheses are for the highest-resolution shell.
eReflections, I42s.
fRfree¼R factor calculated using 5% of the reflection data chosen randomly and omitted from the start of refinement.
gRfree¼R factor calculated using 10% of the reflection data chosen randomly and omitted from the start of refinement.

S
tructure

and
m

echanism
of

G
spS

C
-H

P
ai

et
al

T
h
e

E
M

B
O

J
o
u
rn

a
l

V
O

L
2
5

|
N

O
2
4

|
2
0
0
6

&
2
0
0
6

E
u
ro

p
e
a
n

M
o
le

c
u
la

r
B

io
lo

g
y

O
rg

a
n
iza

tio
n

5
9

8
0



previously (Guerrero et al, 2001) and purified as was the
recombinant GspS.

Crystallization and data collection
GspS and the Se-Met GspS were dissolved (10 mg/ml) in 20 mM
HEPES (pH 7.4) containing 1 mM EDTA and 5 mM DTT. The
hanging-drop vapor diffusion method was applied for crystal-
lization with a protein-to-reservoir ratio of 1:1. Using Hampton
Research Crystallization kits, the initial screening generated the
crystals of GspS in 0.1 M Tris–HCl (pH 8.5) containing 12% (v/v)
PEG3350 and 0.5 M MgCl2, as well as the crystals of Se-Met GspS in
0.1 M trisodium citrate dihydrate (pH 5.6) containing 12% (v/v)
PEG3350 and 0.6 M NaCl. The reservoir volume was 500ml. High
quality crystals were observed after 5 days at room temperature.
Crystals were soaked in a cryoprotectant containing 20% (v/v)
glycerol in the reservoir. The crystals of GspS in complex with
substrate, product or inhibitor (2; the molecule was synthesize as
previously described (Chen and Coward, 1998)) were obtained
under conditions similar to that used for apo_GspS with slight
modification.

The selenium multi-wavelength anomalous diffraction (MAD)
data for GspS was collected at Taiwan beamline BL12B2 in SPring-8,
Japan, with the wavelengths of peak (0.9797 Å), edge (0.9799 Å)
and high remote (0.9537 Å). The ADSC Quantum 4R charge-coupled
device and Oxford Cryostream cooler were used for data collection.
Data for GspS_ADP and GspS_inhibitor were collected at SPXF
(Synchrotron Protein Crystallography Facility)_BL13B in the Na-
tional Synchrotron Radiation Research Center (at Hsinchu, Taiwan)
using the ADSC Q315 CCD detector. GspS_GSH_ADP data were
collected at Academia Sinica using a Rigaku MicroMax002 X-ray
generator equipped with an R-Axis IVþ þ image plate detector.
Details of the data collection statistics are shown in Table II.

Model building and crystallographic refinement
Data were processed using the HKL software package (Otwinowski
and Minor, 1997). Heavy atoms in the Se-substituted GspS crystals
were located using the program SOLVE (Terwilliger and Berendzen,
1999), which was also used to calculate the phase angles. The MAD
map at 3.3 Å was subjected to maximum-likelihood density
modification followed by autotracing using RESOLVE (Terwilliger,
2000). An initial model was built using RESOLVE and XtalView
(McRee, 1999). The model was improved by manual rebuilding
using XtalView and O (Jones et al, 1991). The GspS protein model
was finally refined to 2.2 Å using the native GspS data set. The
structures of the enzyme/substrate, enzyme/product and enzyme/
inhibitor complexes were determined by molecular replacement
using the program CNS (Brünger et al, 1998) with the phase angle
calculated from the refined model of apo_GspS. The model
coordinates, topology and parameter files for ADP, AMPPNP
and GSH (for CNS structure calculation) were taken from the

HIC-UP www server (Kleywegt and Jones, 1998). The computa-
tional refinements, each started with simulated annealing protocol,
were carried out using CNS. The refinement statistics are listed in
Table II. All atoms are assumed to have full occupancies, and indeed
the B factors of the ligands are all close to the values of the
surrounding side chains. The criteria used in identifying water
molecules are based on the well-defined 2Fo�Fc electron density
map contoured at 1ó and the positions are generally near the
protein atoms (within 6 Å).

Site-directed mutagenesis and activity assay
To produce GspS and corresponding mutant proteins more
efficiently, the E. coli GspS gene was subcloned into the vector
of pET28a (Novagen) that encodes an N-terminal His6 tag.
The mutants were prepared using the QuickChange site-directed
mutagenesis kit (Stratagene Co.). Each mutation was confirmed
by DNA sequencing. The correct constructs were subsequently
transformed to E. coli BL21 (DE3) for protein expression. All the
His6-tagged proteins were purified by nickel affinity chromato-
graphy with the His Excellose Spin Kit (Yeastern Biotech). The
procedures for cell culturing and lysis were similar to those used in
previous reports (Bollinger et al, 1995; Kwon et al, 1997). Protein
concentration was determined in accordance with the Bradford
method (Bio-Rad Protein Assay kit) with bovine serum albumin as
standard.

Activity measurements of Gsp synthetase and mutants were
carried out using a continuous spectrometric assay. Formation of
the product ADP (resulting from ATP hydrolysis) is coupled to
oxidation of NADH through the activities of pyruvate kinase and
lactate dehydrogenase (Oza et al, 2002a). The detailed procedures
are based on a previously described method (Bollinger et al, 1995).

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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