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Microtubule arrays direct intracellular organization and

define cellular polarity. Here, we show a novel function

of glycogen synthase kinase-3b (GSK-3b) in the organiza-

tion of microtubule arrays through the interaction with

Bicaudal-D (BICD). BICD is known to form a complex with

dynein–dynactin and to function in the intracellular vesi-

cle trafficking. Our data revealed that GSK-3b is required

for the binding of BICD to dynein but not to dynactin.

Knockdown of GSK-3b or BICD reduced centrosomally

focused microtubules and induced the mislocaliza-

tion of centrosomal proteins. The unfocused microtubules

in GSK-3b knockdown cells were rescued by the expres-

sion of the dynein intermediate chain-BICD fusion protein.

Microtubule regrowth assays showed that GSK-3b and

BICD are required for the anchoring of microtubules

to the centrosome. These results imply that GSK-3b
may function in transporting centrosomal proteins to the

centrosome by stabilizing the BICD1 and dynein complex,

resulting in the regulation of a focused microtubule

organization.
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Introduction

Microtubules are essential for various cellular functions,

including vesicle transport and cell motility, polarity, and

division. The precise microtubule patterns deployed in cells

are important for these microtubule-dependent cellular pro-

cesses. In most vertebrate cells, microtubules radiate from

a centrally located centrosomal nucleating center (Doxsey,

2001). Centrosome-dependent organization of microtubules

involves distinct processes, such as nucleation, anchoring,

and release of microtubules. Microtubules are nucleated by

g-tubulin ring complexes (g-TuRC) within the pericentriolar

materials. g-Tubulin initiates nucleation by forming rings that

act as templates for new microtubule growth (Meads and

Schroer, 1995). After nucleation, microtubules grow out with

their plus ends leading into the cytoplasm. The minus ends

of microtubules are usually anchored in the pericentriolar

material (Dammermann et al, 2003). Several proteins, includ-

ing ninein, PCM-1, and centrin 3, are required for the

formation and maintenance of a radial microtubule array

anchored at the centrosome in interphase (Mogensen et al,

2000; Dammermann and Merdes, 2002). Ninein is specifically

associated with microtubule minus ends in various cell lines

and participates in microtubule anchoring at the centrosome

(Mogensen et al, 2000). In addition, the dynein–dynactin

complex has been shown to be involved in the anchoring of

microtubules (Quintyne et al, 1999). However, how these

proteins are functionally integrated to regulate the micro-

tubule anchoring to the centrosome is unclear.

The serine/threonine kinase glycogen synthase kinase-3

(GSK-3) was first described in a glycogen metabolic pathway

(Plyte et al, 1992). GSK-3 is highly conserved through evolu-

tion and plays a fundamental role in cellular responses. There

are two GSK-3 isoforms, GSK-3a and GSK-3b, in mammalian

cells and both GSK-3 proteins regulate several physiological

responses by phosphorylating many substrates, including

protein synthesis, gene expression, subcellular localization

of proteins, and protein degradation (Cohen and Frame, 2001;

Jope and Johnson, 2004).

Evidence has been accumulated to show that GSK-3 reg-

ulates microtubule dynamics (Cohen and Frame, 2001; Jope

and Johnson, 2004). Two microtubule-associating proteins

(MAPs), Tau and MAP1B, are phosphorylated by GSK-3, and

the phosphorylation of MAPs regulates their binding to

microtubules, thereby modulating microtubule stability.

GSK-3, which is inactivated on the plus ends of microtubules,

mediates Par6-protein kinase C z-dependent promotion of

polarization and cell protrusion through microtubules

(Etienne-Manneville and Hall, 2003). The binding of adeno-

matous polyposis coli (APC) gene product to microtubules

increases the stability of microtubules, and the interaction of

APC and microtubules is decreased by the phosphorylation of

APC by GSK-3b (Zumbrunn et al, 2001). However, the roles

of GSK-3 at the microtubule minus ends are largely unknown.

Here, we show that the interaction of GSK-3b with Bicaudal-D

(BICD) is required for the maintenance of microtubule an-

choring to the centrosome probably through the centrosomal

localization of centrosomal proteins.

Results

Involvement of GSK-3b in the anchoring of microtubules

When cells were stained with anti-GSK-3b antibody

(Figure 1A, mouse monoclonal antibody; Supplementary

Figure 1A, rabbit polyclonal antibody), large amounts of

endogenous GSK-3b were mainly diffusely distributed

throughout the cytoplasm, but a subpopulation of GSK-3b
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was located at the centrosome and it was colocalized with

centrosomal proteins, including g-tubulin, PCM-1, and nine-

in. Exogenously expressed HA-GSK-3b, which was recognized

with anti-HA antibody, was also present with g-tubulin

(Supplementary Figure 1B). The similar findings with three

different antibodies for GSK-3b strongly indicate the centro-

somal localization of GSK-3b, and suggest the centrosomal

function of GSK-3b.

To examine the roles of GSK-3 in the regulation of the

minus end of microtubules, we performed knockdown of

GSK-3a and GSK-3b by RNA interference (RNAi) in HeLa

S3 cells (Figure 1B). In control cells, microtubules formed

a radial array emerging from the centrosome and extending

toward the cell periphery (Figure 1C). A large population of

HeLa S3 cells showed this microtubule morphology

(Figure 1D). To quantitate the cells where microtubules are

attached to the centrosome, the integrated intensity of micro-

tubules around the centrosome was divided by the intensity

at the cell periphery. When the ratio was more than 1.5-fold,

the cells were counted as ‘cells with focused microtubules’.
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Figure 1 Involvement of GSK-3b in the organization of microtubules. (A) HeLa S3 cells were stained with the indicated antibodies. Arrows
indicate centrosomal GSK-3b. (B) The lysates of HeLa S3 cells transfected with the indicated siRNA were probed with the indicated antibodies.
Clathrin and DIC were used as loading controls. Ab, antibody. (C) HeLa S3 cells transfected with control, GSK-3a, or GSK-3b siRNA were
stained with anti-b-tubulin (red) and anti-g-tubulin (green) antibodies. (D) Cells with the radial array or the nonradial array microtubules were
counted and the results shown are means7s.d. of three independent experiments. (E) HA-GSK-3b, HA-GSK-3bK85R, or HA-GSK-3a was
expressed in GSK-3b knockdown cells. The lysates were probed with anti-GSK-3 antibody. GSK-3 Ab is an antibody that recognizes both GSK-3a
and GSK-3b. As loading controls, the lysates were probed with anti-clathrin and anti-DIC antibodies. (F) HA-GSK-3b, HA-GSK-3bK85R, or HA-
GSK-3a was expressed in GSK-3b knockdown cells and the cells were stained with anti-b-tubulin and anti-HA antibodies. The insert in the
upper right corner shows the magnified image of boxed area. Arrowhead indicates the centrosomal GSK-3b. Cell with focused microtubules
were counted and the results shown are means7s.d. of three independent experiments. Scale bar, 10 mm.
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Microtubules no longer appeared to radiate from the peri-

nuclear focus in GSK-3b knockdown cells, although reduction

of GSK-3a had little effect on the appearance of microtubules

(Figure 1C and D). The phenotype in GSK-3b knockdown

cells was restored by the expression of wild-type GSK-3b but

not by a kinase-negative form of GSK-3b (GSK-3bK85R) (Figure

1E and F). In these GSK-3b constructs, small interfering RNA

(siRNA) target sites were silently mutated. Expression of

GSK-3a caused little, if any, restoration of the focusing of

microtubules to the centrosome. Loss of focused microtubule

array was also observed in the cells treated with SB216763,

a GSK-3 inhibitor (Supplementary Figure 1C).

We also examined the effect of knockdown of GSK-3 on the

microtubule organization in U2OS cell, a well-characterized

cell line that exhibits the clearly focused microtubules. GSK-

3b knockdown U2OS cells showed the unfocused micro-

tubule phenotype and the round-up shape by the GSK-3

depletion (data not shown). Therefore, the unfocused micro-

tubule phenotype observed by the GSK-3b depletion was not

specific for HeLa S3 cells.

Radial array formation of microtubules consists of at least

two steps; the nucleation in and the anchoring to the centro-

some. To dissect at which step(s) GSK-3b is involved in radial

array formation of microtubules, microtubule regrowth ex-

periments were performed. Microtubules were depolymer-

ized by nocodazole, followed by washing out to allow

regrowth of microtubules. In the initial phase of microtubule

regrowth (Figure 2A, 2 and 6 min), short microtubules started

to nucleate from the centrosome and create typical aster in

both control and GSK-3b knockdown cells (Figure 2B). These

results suggest that GSK-3b is not involved in the initial

microtubule nucleation at the centrosome. Although micro-

tubules were further elongated from the centrosome and

organized into a radial array as time passed in control cells,

GSK-3b knockdown cells decreased the centrosome-bound

microtubules and the microtubule array resulted in the non-

radial pattern (Figure 2A, 8 and 10 min, and B). Knockdown

of GSK-3a did not affect the nucleation and anchoring of the

microtubules (Figure 2B). Taken together, these results sug-

gest that GSK-3b has a role in the anchoring but not in the

nucleation of microtubules at the centrosome.

We also found that control cells contain more cytoplasmic

microtubules than GSK-3b knockdown cells in the initial phase

of microtubule regrowth. There are at least two possible

mechanisms for the generation of cytoplasmic microtubules;

one is due to the nucleation in the cytoplasm (Vorobjev et al,

1997) and the other is due to the microtubule release from the

centrosome after the nucleation in the centrosome (Abal et al,

2002). If this microtubule appearance is solely dependent on the

microtubule release from the centrosome, all microtubules

would disappear from the centrosome in the later phase of

regrowth. However, as seen in control cells, a subset of micro-

tubules are bound to the centrosome. Therefore, after cytoplas-

mic microtubules are generated by these mechanisms, a

subpopulation of microtubules may be anchored at the centro-

some in control cells. At present, it is not clear whether knock-

down of GSK-3 inhibits cytoplasmic nucleation of microtubules,

or the microtubule release from the centrosome, or both.

Identification of BICD1 as a GSK-3b-binding protein

To clarify the mechanism by which GSK-3b mediates micro-

tubule anchoring, we screened GSK-3b-binding protein(s) by
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Figure 2 Involvement of GSK-3b in the anchoring of microtubules.
(A) HeLa S3 cells transfected with control or GSK-3b siRNA were
subjected to the microtubule regrowth assay and stained with anti-
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2 min after regrowth.
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yeast two-hybrid screening and isolated BICD1. BICD1 is

a human homologue of Drosophila BICD (Suter et al, 1989)

and there are two homologues in mammals, BICD1 and

BICD2 (Hoogenraad et al, 2001). BICD proteins consist of

three coiled-coiled domains (Figure 3A) and are involved in

dynein-mediated minus end-directed transport from the Golgi

apparatus to the endoplasmic reticulum (ER) (Matanis et al,

2002; Hoogenraad et al, 2003).

Immunoprecipitation analyses showed that GSK-3b and

BICD1 form a complex at the endogenous level in HeLa S3

cells (Figure 3B). GSK-3b also formed a complex with BICD2

(data not shown). Although GSK-3a also interacted with

BICD1, the amount of BICD1 co-precipitated with GSK-3a
was lower than that with GSK-3b (Figure 3B). In vitro binding

studies using recombinant proteins demonstrated that His6-

GSK-3b bound directly to GST-BICD1 (Figure 3C). To identify

which region of BICD1 is important for the binding to GSK-

3b, various deletion mutants of Myc-BICD1 were expressed in

COS cells (Figure 3D). In addition to Myc-BICD1 (wild type),

Myc-BICD1-(380–701) and Myc-BICD1-(437–617) formed a

complex with GSK-3b, but Myc-BICD1-(1–435) did not. HA-

GSK-3b kinase-inactive mutants (K85M and K85R) did not

form a complex with Myc-BICD1 under the conditions in

which wild-type GSK-3b and a constitutively active GSK-3b
mutant (S9A) did (Figure 3E). These results indicate that

amino-acid region 437–617 of BICD1 and the kinase activity

of GSK-3 are necessary for the formation of a complex

between BICD1 and GSK-3b in intact cells.

Consistent with previously reported observations

(Hoogenraad et al, 2001), BICD1 exhibited a perinuclear

and punctate cytoplasmic distribution in HeLa S3 cells fixed

with paraformaldehyde, and it overlapped with a Golgi

marker, g-adaptin (Supplementary Figure 2A). In addition,

BICD1 was also present with g-tubulin, p150glued (a large

subunit of dynactin), and GSK-3b at the centrosome in cold

methanol-fixed cells (Figure 4A). Another anti-BICD1 anti-

bodies confirmed the colocalization of BICD1 with g-tubulin

(data not shown). BICD2 is also localized to the centrosome

(Supplementary Figure 2B).

To examine the presence of GSK-3b and BICD1 in the

centrosome biochemically, we isolated the centrosome from

CHO cells by the discontinuous sucrose-density gradient

(Mitchison and Kirschner, 1986). The centrosome, as indi-

cated by the presence of g-tubulin, was located to the inter-
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face between 50 and 70% sucrose gradient (Figure 4B). In

addition, GSK-3b and BICD1 were also cosedimented with the

g-tubulin, suggesting that GSK-3b and BICD1 are the integral

centrosomal components. GSK-3a was also observed in the

centrosomal fractions (Figure 4B). Furthermore, we spotted

the centrosome fraction on the cover glass and the fraction

was stained with anti-GSK-3b, BICD1, and g-tubulin antibo-

dies. GSK-3b was localized with a part of the g-tubulin spot

and also an additional portion of the centrosome (Figure 4C).

BICD1 was almost overlapped with g-tubulin (Figure 4C).

Although GSK-3b and g-tubulin may appear not to be over-

lapped exactly, 74.6% (n¼ 75) and 76.6% (n¼ 60) of spots

stained with anti-g-tubulin antibody were positive for GSK-3b
and BICD1, respectively. These results strongly suggest that

GSK-3b and BICD1 are integrated in the centrosome and that

BICD is involved in the centrosomal functions.

Involvement of BICD in the anchoring of microtubules

To examine the new function of BICD, and the protein levels

of BICD1 or BICD2 were decreased by RNAi (Figure 5A).

BICD1 and BICD2 disappeared from the centrosome by the

RNAi treatment (Supplementary Figure 2B). Reduction of

either BICD1 or BICD2 induced weak defects in the radial

array formation of microtubules (data not shown) and

double knockdown of BICD1 and BICD2 (BICD1/2) showed

more robust phenotypes (Figure 5B), suggesting that BICD1

and BICD2 compensate the function of each other. However,

g-tubulin and p150glued were detected at the centrosome in

BICD1/2 double knockdown cells (Figure 5B and data not

shown). Microtubule regrowth assay demonstrated that the

ability of microtubules to anchor to the centrosome is lost but

nucleation is observed at the centrosome in BICD1/2 double

knockdown cells (Figure 5C). The similar phenotypes in GSK-

3b and BICD knockdown cells suggest the functional inter-

action of GSK-3b and BICD.

As Rab6 small GTPase is known to be involved in the

Golgi–ER trafficking through binding to BICD (Matanis et al,

2002), we examined whether Rab6 also has a role in micro-

tubule organization. Microtubules anchored at the centro-

some were seen in Rab6 knockdown cells, although a subset

of microtubules were released and distributed along the cell

periphery when compared with control cells (Supplementary

Figure 3A and B). These observations were different from

those seen in BICD1/2 knockdown cells (see Figure 5B).

As it has been demonstrated that the Golgi apparatus func-

tions as a microtubule anchorage site (Rios et al, 2004),

partially released microtubules may have been caused by

the disruption of the Golgi apparatus in Rab6 knock-

down cells. Knockdown of Rab6 induced severe Golgi

disruption as previously reported (Young et al, 2005),

whereas knockdown of BICD1/2 affected the Golgi morphol-

ogy to a lesser extent (Supplementary Figure 3C). Taken

together, these results suggest that BICD has a specific

role in the microtubule anchoring to the centrosome in a

Rab6-independent manner.

Functional interaction between GSK-3b and BICD1

BICD2 has been shown to interact with dynein and dynactin

(Hoogenraad et al, 2001). Endogenous dynein intermediate

chain (DIC), p150glued, and p50dynamitin (another dynactin

subunit) were co-precipitated with BICD1 as well as GSK-3b
(Figure 6A). When the protein levels of GSK-3b were reduced
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or anti-GSK-3b antibody. Scale bar, 10 mm. (B) The lysates from CHO cells were fractionated by the sucrose gradient and probed with the
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by RNAi or when the cells were treated with SB216763, the

interaction of BICD1 with DIC and GSK-3b was impaired but

BICD1 still bound to p150glued and p50dynamitin (Figure 6A).

Therefore, the kinase activity of GSK-3 is required for the

formation of a complex between BICD1 and dynein.

Furthermore, endogenous BICD1 was not present at the

centrosome in the GSK-3b knockdown cells and SB216763-

treated cells (Figure 6B). The centrosomal localization of

g-tubulin and DIC was not affected in these cells (Figure 6B

and data not shown). As it has been shown that BICD2

acts as an accessory factor for the dynein motor

(Hoogenraad et al, 2001; Matanis et al, 2002) and that the

dynein–dynactin complex is implicated in anchoring function

at the centrosome (Quintyne et al, 1999), these results

prompted us to examine the cooperative functions of

BICD1 and the dynein and dynactin complex in the minus

ends of microtubules.

To examine whether GSK-3b-regulated interaction of

BICD1 with dynein is involved in the anchoring of micro-

tubules to the centrosome, we generated a fusion construct in

which DIC was fused to the N-terminus of BICD1 (HA-DIC-

BICD1) and introduced into GSK-3b knockdown cells. HA-

DIC-BICD1, HA-BICD1, and HA-DIC showed diffuse cytosolic

distribution and centrosomal localization when these pro-

teins were expressed in control HeLa S3 cells (Supplementary

Figure 4A). Localization of these expressed proteins at the

centrosome was confirmed by colocalization with centrin 3

(Supplementary Figure 4B). Expression of these proteins

did not affect the radial array formation of microtubules

(Supplementary Figure 4A). When HA-BICD1 was expressed

in GSK-3b knockdown cells, it was observed diffusely

with dots and not concentrated to the perinuclear region

(Figure 6C). HA-DIC1 showed diffuse cytosolic distribution

and centrosomal localization in GSK-3b knockdown cells
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BICD2 siRNA were stained with anti-b-tubulin (red) and g-tubulin (green) antibodies. Cells with the radial array or the nonradial array
microtubules were counted and the results shown are means7s.d. of three independent experiments (right panels). (C) HeLa S3 cells
transfected with control (upper panels) or BICD1 and BICD2 (lower panels) siRNA were subjected to the microtubule regrowth assay and fixed
at 2 or 10 min after regrowth. The cells were stained with anti-b-tubulin (red) and g-tubulin (green) antibodies. Cells with small asters at 2 min
and cells with focused microtubules at 10 min were counted and the results shown are means7s.d. of three independent experiments (right
panels). Scale bars, 10mm.
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(Figure 6C). Unfocused microtubules in these cells were not

affected by the expression of HA-BICD1 or HA-DIC (Figure 6C

and D). In contrast, expression of HA-DIC-BICD1 in GSK-3b
knockdown cells significantly restored unfocused micro-

tubules (Figure 6C and D). Furthermore, HA-DIC-BICD1 was

colocalized with g-tubulin, indicating that this fusion protein

was located to the centrosome (Figure 6E). These results

suggest that the stabilization of the BICD–dynein complex by

GSK-3b is important for the maintenance of the focused radial

array of microtubules.

Phosphorylation of BICD1 by GSK-3b is essential for the

radial array formation of microtubules

Endogenous BICD1 was immunoprecipitated with anti-BICD1

and incubated with calf intestinal alkaline phosphatase

(CIAP). The slowly migrating band of endogenous BICD1

on SDS–PAGE disappeared by treatment with CIAP, suggest-

ing that BICD1 is phosphorylated (Figure 7B). When Myc-

BICD1 was expressed alone, it migrated as a broad band on

SDS–PAGE. The relative intensity of the upper bands of Myc-

BICD1 was increased when Myc-BICD1 was coexpressed with
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wild-type GSK-3b and decreased when it was coexpressed

with GSK-3bK85R (Figure 7B). Therefore, GSK-3b may be

involved in the phosphorylation of BICD1. The sequence of

S/TXXXS/T is known to be a consensus sequence of the GSK-

3b phosphorylation site. Between amino acids 570 and 609 of

BICD1, there are some possible phosphorylation sites

(Figure 7A). All serine and threonine residues in these

possible phosphorylation sites were substituted with alanine

(Figure 7A: 3A, 570/574/578A and 7A, 585/589/593/597/

601/605/609A). Although Myc-BICD1-3A exhibited the same
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then the lysates were probed with the indicated antibodies. (E) The cells prepared in (D) were stained with anti-GFP or anti-b-tubulin antibody.
Arrowheads indicate the cells expressing GFP-BICD1 or GFP-BICD-7A. Scale bar, 10mm. (F) Cells with focused microtubules were counted (at
least 200 cells were evaluated for each experimental group). The results shown are means7s.d. of at least three independent experiments.
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GFP-BICD1-7A, GFP-BICD1S609A, GFP-BICD1T597A, or GFP-BICD1S585A were immunoprecipitated with anti-BICD1 antibody, and the immuno-
precipitates were probed with the indicated antibodies. The results shown are representatives of three independent experiments.
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mobility shift as Myc-BICD1, Myc-BICD1-7A showed a

reduced mobility shift (Figure 7B). Neither wild-type

GSK-3b nor GSK-3bK85R affected the mobility of this mutant

(Figure 7B). The extent of the phosphorylation level of BICD1

in GSK-3b knockdown cells metabolically labeled with 32P

was reduced as compared with that of the control cells

(Figure 7B). Purified GSK-3b phosphorylated Myc-BICD1 in

a time-dependent manner in vitro but Myc-BICD1-7A was

phosphorylated to a lesser degree (Figure 7C). In the absence

of purified GSK-3b, Myc-BICD1 was not phosphorylated (data

not shown). Therefore, the serine and threonine residues in

the region between amino acids 585 and 609 could be GSK-3b
phosphorylation sites.

To clarify the function of GSK-3b-dependent phosphoryla-

tion of BICD1, BICD1 mutants, in which siRNA target

sequences were silently mutated, were expressed in BICD1/2

double knockdown cells (Figure 7D). GFP-BICD1 (Figure 7E

and F) and GFP-BICD1-3A (data not shown) located to the

centrosome, and microtubules radiated from the place

where GFP-BICD1 was present. In contrast, GFP-BICD1-7A

was distributed diffusely and did not restore the radial array

formation of microtubules (Figure 7E and F). Further-

more, we mutated Ser585, Thr597, or Ser609 to Ala in

BICD1 (S585A, T597A, and S609A) (Figure 7A). Among

these mutants, GFP-BICD1-3A and GFP-BICD1S609A formed

a complex with endogenous DIC as well as GFP-BICD1, but

GFP-BICD1-7A, GFP-BICD1S585A, and GFP-BICD1T597A did not

(Figure 7G). Consistent with these results, GFP-BICD1S585A

and GFP-BICD1T597A, but not GFP-BICD1S609A, lost the ability

to restore the radial array formation of microtubules

(Figure 7F). Therefore, at least Ser585 and Thr597 in BICD1

are important phosphorylation sites for BICD1 to exert

its functions, and GSK-3b-dependent phosphorylation is

required for the interaction of BICD1 with dynein.

Consistent with this idea, Myc-BICD1S609A was phosphory-

lated by purified GSK-3b to an extent similar to Myc-BICD1

(Figure 7C), but the phosphorylation of Myc-BICD1T597A was

reduced to a lesser degree (data not shown).

Centrosomal localization of ninein mediated

by BICD1 and GSK-3b
Centrosomal proteins, such as ninein, PCM-1, and centrin 3,

play an important role in the positioning and anchoring of the

microtubule minus ends, and their localization is known to

be regulated by the dynein–dynactin system (Dammermann

and Merdes, 2002). BICD1 binds to the cargo via its

C-terminal domain and to the dynein motor via its N-terminal

domain (Hoogenraad et al, 2001). We hypothesized that

BICD1 transports some centrosomal proteins to the centro-

some in a dynein-dependent manner. Although ninein, PCM-

1, and centrin 3 localized to the centrosome in control cells,

ninein was not concentrated at the centrosome in GSK-3b
knockdown or BICD1/2 double knockdown cells (Figure 8A).

When the amounts of ninein at the centrosome were

quantified, they were indeed decreased in GSK-3b or

BICD1/2 knockdown cells as compared with control cells

(Figure 8B). PCM-1 localized to the pericentrosomal area in

BICD1/2 double knockdown cells and partially colocalized

with g-tubulin, but it was not concentrated to the centrosome

in GSK-3b knockdown cells (Figure 8A). In contrast, knock-

down of BICD1/2 or GSK-3b had no impact on the localiza-

tion of g-tubulin or centrin 3 at the centrosome (Figure 8A).

When the lysates of HEK293T cells expressing Myc-BICD1

and GFP-ninein were immunoprecipitated with anti-Myc

antibody, GFP-ninein was detected in the Myc-BICD1

immune complex (Figure 8C). Furthermore, GFP-ninein

formed a complex with Myc-BICD1-3A and Myc-BICD1-7A

(Figure 8C). Microtubules freely assembled in the cytoplasm

are induced by taxol treatment and their minus ends are not

attached to the centrosome (De Brabander et al, 1981), but

they contain centrosomal proteins including anchoring

proteins (Bornens, 2002). By the treatment of HeLa S3 cells

expressing GFP-ninein with taxol, the centrosomal micro-

tubules disappeared and GFP-ninein was observed at

the cell periphery where BICD1 was also colocalized

(Figure 8D). When HA-DIC-BICD1 was expressed in GSK-3b
knockdown cells, ninein was colocalized with this fusion

protein (Figure 8E). Taken together with the observations that

HA-DIC-BICD1 was located to the centrosome (see Figure 6E),

these results indicate that expression of HA-DIC-BICD1 in-

duces the recruitment of ninein to the centrosome in GSK-3b
knockdown cells.

As previously reported (Dammermann and Merdes, 2002),

focused microtubules were hardly observed in ninein knock-

down cells (Supplementary Figure 5A and B). Expression of

HA-DIC-BICD1 in ninein knockdown cells did not rescue this

phenotype (Supplementary Figure 5C). Taken together, these

observations suggest that BICD could bind to ninein inde-

pendently of the phosphorylation state of BICD by GSK-3b
and to the dynein motor in cooperation with GSK-3b, and

thereby, transport ninein to the centrosome.

Discussion

New roles of GSK-3b in centrosome through BICD

During the course of analyzing the multiple functions of GSK-

3b, we found that microtubules do not radiate from the

centrosome in GSK-3b knockdown cells. GSK-3b has already

been shown to regulate microtubule dynamics by phosphor-

ylating several substrates including MAPs and the plus-end

tracking proteins (þTIPs), such as APC and CLASP

(Akhmanova et al, 2001; Cohen and Frame, 2001; Jope and

Johnson, 2004). In addition, GSK-3b is present at the plus

ends of microtubules and mediates cell polarization

and protrusion through microtubules (Etienne-Manneville

and Hall, 2003). As the phosphorylation of these substrates

by GSK-3b influences their association with microtubules

and local microtubule stability, the regulation of þTIPs by

GSK-3b may be involved in the radial array formation of

microtubules. However, in this study, we focused on a new

aspect of roles of GSK-3b in the centrosome because GSK-3b
was present there. It has been reported that GSK-3 inter-

acts with microtubules during mitosis and accumulates at

the centrosomes and spindle poles in mammalian cells

(Wakefield et al, 2003) and that Shaggy, the Drosophila

homologue of GSK-3b, becomes enriched in the centrosome

throughout mitosis (Bobinnec et al, 2006). However, the roles

of GSK-3b in the centrosome have yet to be clarified. We

speculated that GSK-3b has a role in the regulation of the

transport of the proteins necessary for the anchoring of

microtubules to the centrosome and/or in the microtubule

anchoring itself.

To prove this idea, we paid an attention to BICD among

the GSK-3b-binding proteins, which are isolated by yeast
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two-hybrid screening. In addition to a role of BICD in the

Golgi–ER trafficking (Matanis et al, 2002), we found that

BICD regulates the anchoring of microtubules to the centro-

some, as BICD1/2 knockdown or overexpression of the

BICD1 deletion mutants (data not shown) induced micro-

tubule unfocusing. Therefore, it is conceivable that GSK-3b
and BICD share common roles in at least the anchoring of

microtubules to the centrosome.

Regulation of functions of BICD by GSK-3b-dependent

phosphorylation

We found that BICD is a phosphoprotein and that this

phosphorylation could be regulated by GSK-3b. Although

the phosphorylation state of BICD1 was affected by GSK-3b
in intact cells, the degree of phosphorylation of BICD1 by

GSK-3b in vitro was low. Many substrates of GSK-3 require

prior phosphorylation by some other protein kinase (Plyte
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et al, 1992; Cohen and Frame, 2001). Prior phosphorylation

by some kinase that remains to be identified might result in

more efficient phosphorylation of BICD1 by GSK-3b.

We showed that BICD1 mutants, in which the serine or

threonine residues in the possible phosphorylation sites by

GSK-3b are changed to alanine, lose the ability to restore the

microtubule unfocusing in BICD1/2 double knockdown cells.

These results indicate that the phosphorylation of BICD1,

most probably by GSK-3b, is important for the anchoring of

microtubules to the centrosome. Our mutational analyses

suggested that Ser585 and Thr597 but not Ser609 are phos-

phorylation sites. Given the processive nature of GSK-3

phosphorylation, the phosphorylation of the C-terminal site

(Ser609) fits the idea that a C-terminal phosphoserine or

phosphothreonine is important for the substrate specificity

of GSK-3. However, this is not the case for BICD1 and the

presence of the similar substrates has been reported (Holmes

et al, 1986). Casein kinase-II (CK-II) phosphorylates glycogen

synthase and inhibitor-2 and thereby potentiates phosphor-

ylation by GSK-3, although the distance between serine and/

or threonine residues phosphorylated by CK-II and GSK-3 is

clearly variable and there are serine and threonine residues

that are not phosphorylated between the phosphorylation

sites by CK-II and GSK-3.

The kinase activity of GSK-3b was necessary for the

formation of a complex between BICD1 and DIC, and

BICD1 mutants in which the possible phosphorylation sites

by GSK-3b are mutated, lost the ability to bind to DIC. These

results suggest that GSK-3b-dependent phosphorylation of

BICD1 is important for the transport of BICD1 by the dy-

nein–dynactin complex. Knockdown of GSK-3b induced the

loss of anchoring of microtubules to the centrosome, and

it also caused the dissociation of BICD from the dynein

complex. These two phenotypes in GSK-3b knockdown

cells were linked, because the radial formation of micro-

tubules in GSK-3b knockdown cells was restored by the

expression of a fusion protein of BICD1 and DIC. Therefore,

GSK-3b could play a role in stabilizing the formation of a

complex between dynein and BICD, resulting in anchoring

microtubules to the centrosome.

As Mishappen, a fly homologue of the vertebrate Nck-

interacting kinase (NIK) (Houalla et al, 2005), and Nek8

(Holland et al, 2002) are known to phosphorylate BICD, it

is possible that multiple kinases are involved in the BICD

phosphorylation. However, in our hands, mammalian

NIK did not phosphorylate mammalian BICD1 (data not

shown). Although Nek8 is known to localize to the Golgi

apparatus or primary cilia but not at the centrosome, knock-

down of Nek8 does not affect the ciliogenesis (Mahjoub et al,

2005), indicating that a role of Nek8 in the microtubule

organization is not clear.

Molecular mechanism by which GSK-3b and BICD

regulate microtubule anchoring to centrosome

The localization and function of proteins involved in the

microtubule anchoring, such as ninein, PCM-1, and centrin 3,

are regulated by dynein–dynactin-mediated minus end-direc-

ted transport (Dammermann and Merdes, 2002). We showed

that knockdown of GSK-3b or BICD1/2 does not affect

the localization of g-tubulin and centrin 3. These results are

consistent with the microtubule regrowth assay in which

microtubule aster appeared shortly after regrowth in GSK-

3b or BICD1/2 knockdown cells. Therefore, GSK-3b and BICD

are not involved in recruitment of g-TuRC to the centrosome

or the regulation of the g-TuRC activity at the centrosome. As

the centrosomal localization of PCM-1 was not affected in

BICD1/2 knockdown cells but it was disrupted in GSK-3b
knockdown cells, GSK-3b may determine the localization of

PCM-1 in cooperation with protein(s) other than BICD.

Ninein was not observed in the centrosome in GSK-3b or

BICD1/2 knockdown cells, indicating that GSK-3b and BICD

are involved in the centrosomal localization of ninein. Ninein

is well known as a minus-end-capping protein and a compo-

nent of anchoring complex, and tethers microtubules to the

centrosome (Bornens, 2002; Delgehyr et al, 2005). We found

that BICD associates with ninein at the minus end of taxol-

induced microtubule bundle. Furthermore, BICD and ninein

formed a complex in a biochemical immunoprecipitation

assay. Therefore, these results suggest that ninein is one of

the cargos of BICD-containing dynein–dynactin complex and

that GSK-3 regulates the binding of BICD and dynein, thereby

playing a role in transporting ninein to the centrosome. It has

been reported that a recessive mutant of the fly homologue of

BICD, BICD, disrupts the formation and maintenance of the

polarized microtubules, which are essential for the differen-

tiation of Drosophila oocytes (Theurkauf et al, 1993), indicat-

ing that BICD would regulate microtubule focusing at the

centrosome beyond the species. The involvement of Shaggy

in the functions of BICD remains to be elucidated.

At present, we cannot exclude the possibility that GSK-3b
and BICD have a function in stabilization of microtubules and

that they are involved in the microtubule anchoring itself.

However, this former possibility is unlikely as it has been

reported that centrosome-free microtubules in epithelial cells

are stable (Rodionov et al, 1999), and indeed we observed

clear microtubules, although they were not focused to the

centrosome, in GSK-3b knockdown cells. Therefore, it is

conceivable that GSK-3b and BICD can be involved in the

transport of proteins such as ninein and anchoring function.

Materials and methods

Immunocytochemistry
The immunocytochemical analyses of the cultured cells were
performed as described (Hino et al, 2003; Yamamoto et al, 2003)
except that the cultured cells were fixed with 100% methanol for
10 min at �201C or were simultaneously fixed and permeabilized
with phosphate buffered saline (PBS) containing 3.7% paraformal-
dehyde and 0.05% Triton X-100.

For quantitative measurement of focused microtubules, back-
ground of all images was subtracted and the integrated intensity of
microtubules around the centrosome was divided by the average
of three points at cell periphery. When the ratio was more than
1.5-fold, cells had clear visible focused microtubule array and were
counted as ‘cells with focused microtubules’. At least 300 cells were
evaluated for each experimental group. All process and measure-
ments were carried out by MetaMorph software (Universal imaging
corporation).

Microtubule regrowth assay
The microtubule regrowth assay was carried out as reported
previously (Delgehyr et al, 2005). Briefly, siRNA-transfected cells
were treated with 20mM nocodazole in DMEM for 45 min at 371C
and then nocodazole was removed by washing with PBS and cells
were incubated with DMEM at 371C. After 2–10 min of regrowth,
the cells were fixed with PBS containing 3.7% paraformaldehyde
and 0.05% Triton X-100, and then stained with anti-b- and g-tubulin
antibodies. Cells with small asters at 2 min and cells with focused
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microtubules at 10 min were counted. At least 300 cells were
evaluated for each experimental group.

Complex formation and immunoprecipitation
For direct binding of BICD1 to GSK-3b, 0.1mM His6-GSK-3b was
incubated with 0.5mM GST-BICD1 or GST in 30 ml of reaction
mixture (50 mM Tris–HCl, pH 7.5, 10 mM MgCl2, and 1 mM
dithiothreitol) for 2 h at 301C. After GST-BICD1 and GST were
precipitated with glutathione-Sepharose, the precipitates were
probed with anti-His6 antibody.

To show the complex formation of BICD1 with DIC, p150glued,
p50dynamitin, or GSK-3 at the endogenous level, HeLa S3 cells (60-
mm diameter dish) were lysed in 200ml of lysis buffer (25 mM Tris–
HCl, pH 8, 50 mM NaCl, 0.5% Triton X-100, 20mg/ml leupeptin,
20mg/ml aprotinin, and 5 mM phenylmethylsulfonyl fluoride). The
lysates were immunoprecipitated with anti-BICD1 antibody, and the
immunoprecipitates were probed with the indicated antibodies.

To determine which region of BICD1 interacts with GSK-3b, COS
cells (60-mm diameter dish) were transfected with various deletion
mutants of BICD1 and lysed in 200ml of lysis buffer. The lysates
were immunoprecipitated with anti-Myc antibody, and the im-
munoprecipitates were probed with anti-Myc and anti-GSK-3b
antibodies.

Isolation of centrosome
The centrosome was basically prepared from CHO cells according to
the methods described previously (Mitchison and Kirschner, 1986).
Five confluent 100-mm dishes of CHO cells were treated with 10 mg/
ml of nocodazole (Sigma) and 5mg/ml of cytochalasin D (Sigma) for
90 min. After the drug treatment, the cells were immediately
washed with ice-cold PBS, 0.1 PBS containing 8% sucrose and 8%
sucrose in distilled water, and LB (1 mM Tris–HCl at pH 7.5 and
0.1% b-mercaptoethanol). The cells were then lyzed with 1 ml of
0.5% Nonidet P-40 in LB and agitated on ice for 10 min. Then cells
were collected and 20 ml of 1/50 volume of 50�PE (500 mM PIPES/

NaOH at pH 7.2, 50 mM EDTA, and 5% b-mercaptoethanol) was
added. After the centrifugation for 3 min at 1500 g to remove
the debris, the supernatants (1 ml) were loaded on a 11-ml of
discontinuous sucrose gradients consisting of 40 (3 ml), 50 (3 ml),
and 70% (5 ml) (w/w) in gradient buffer (10 mM PIPES/NaOH at
pH 7.2, 0.1% Triton X-100, and 0.1% b-mercaptoethanol). The
gradient was then centrifuged at 112 000 g for 2 h at 41C in SCP70H2
ultracentrifuge (HITACHI, Tokyo, Japan) using a P40ST swinging
rotor. After the ultracentrifugation, the top supernatants were
aspirated to the 40% sucrose region and 20 fractions of 0.5 ml each
were collected from the top of the gradient. The aliquots were
subjected to the SDS–PAGE and probed with indicated antibodies.
The centrosome-enriched fraction was spotted onto poly-D-lysin-
coated coverslips, fixed and stained with the indicated antibodies.

Others
Yeast two-hybrid screening and in vitro phosphorylation of BICD1
by GSK-3b were carried out as described previously (Ikeda et al,
1998).

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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