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At frequencies above 3 kHz, the tympanic membrane vibrates
chaotically. By having many resonances, the eardrum can transmit
the broadest possible bandwidth of sound with optimal sensitivity.
In essence, the eardrum works best through discord. The eardrum’s
success as an instrument of hearing can be directly explained
through a combination of its shape, angular placement, and
composition. The eardrum has a conical asymmetrical shape, lies at
a steep angle with respect to the ear canal, and has organized
radial and circumferential collagen fiber layers that provide the
scaffolding. Understanding the role of each feature in hearing
transduction will help direct future surgical reconstructions, lead to
improved microphone and loudspeaker designs, and provide a
basis for understanding the different tympanic membrane struc-
tures across species. To analyze the significance of each anatomical
feature, a computer simulation of the ear canal, eardrum, and
ossicles was developed. It is shown that a cone-shaped eardrum
can transfer more force to the ossicles than a flat eardrum,
especially at high frequencies. The tilted eardrum within the ear
canal allows it to have a larger area for the same canal size, which
increases sound transmission to the cochlea. The asymmetric ear-
drum with collagen fibers achieves optimal transmission at high
frequencies by creating a multitude of deliberately mistuned
resonances. The resonances are summed at the malleus attachment
to produce a smooth transfer of pressure across all frequencies. In
each case, the peculiar properties of the eardrum are directly
responsible for the optimal sensitivity of this discordant drum.
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The function of the middle ear in terrestrial mammals is to
transfer acoustic energy between the air of the ear canal to the

fluid of the inner ear. The first and crucial step of the transduction
process takes place at the tympanic membrane, which converts
sound pressure in the ear canal into vibrations of the middle ear
bones. Understanding how the tympanic membrane manages this
task so successfully over such a broad range of frequencies has been
a subject of research since Helmholtz’s publication in 1868 (1, 2).

Even though the function of the eardrum is clear and the
anatomy of the eardrum is well characterized, the connection
between the anatomical features and the ability of the eardrum
to transduce sound has been missing. The missing structure–
function relationships can be summarized by the following three
questions. Why does the mammalian eardrum have its distinctive
conical and toroidal shape? What is the advantage of its angular
placement in the ear canal? What is the significance of its highly
organized radial and circumferential fibers?

The shape of the human and feline eardrum is known from
detailed Moiré interferometry contour maps (refs. 3 and 4 and Fig.
1a). From the contour maps, three-dimensional reconstructions
reveal the striking similarity of the two eardrums. In both cases, the
eardrum has an elliptical outer boundary, whereas the central
portion has a distinctive conical shape (Fig. 1b). As one moves away
from the center, the cone starts to bend forming an outer toroidal
region (Fig. 1 b and c).

The angular placement of the eardrum within the ear canal is
well documented. Measurements of the cat ear canal indicate
that the angle between the eardrum and the inferior canal wall
ranged between 30° and 45° (5). In humans, the angle is between
45° and 60° (6). In the human and cat, the eardrum forms the

superior wall of the ear canal rather than being a nearly
perpendicular termination of the canal as is often depicted.

The eardrum consists of a large pars tensa area and a smaller
pars flaccida area. The pars flaccida is more compliant than the
pars tensa, and thus its mechanical significance is less important
except in some desert animals like the gerbil (7). The pars tensa
is composed of four main layers (Fig. 1d shows a schematic
representation): an outer epidermal layer, two fibrous collagen-
fiber layers in the lamina propria segment, and an inner mucosal
layer. Scanning electron micrographs show a well organized
arrangement of circular and radial fibers (8, 9). The two separate
fibrous collagen layers of the eardrum are unique to mammals
(reviewed in ref. 10). The radial fibers are the dominant fiber
layer within the inner conical region of the eardrum. As one
progresses outward into the toroidal region, the fiber density and
thickness of the circumferential fiber layer gradually increases.
Eventually, the circumferential fibers become very dense and
form the annular ligament, where the eardrum attaches to the
ear canal wall. The collagen fiber layers determine the mechan-
ical stiffness of the eardrum. The outer epidermal and the inner
mucosal layers are relatively flexible, and they mostly contribute
to the overall mass of the eardrum. Because the subepidermal
layer and the submucosal layer consist of connective tissue and
are also relatively flexible, they are part of the epidermal and
mucosal layers, respectively (Fig. 1d). An extensive review of the
layers that make up the eardrum can be found in the literature
(10–12). A detailed description of the fiber layers has not been
previously incorporated into a model of the eardrum (13–18).

In this work, these anatomical features have been embodied into
a mathematical model of the eardrum and ear canal [see supporting
information (SI) Fig. 6]. The model encompasses experimentally
measured geometries and orientations of the ear canal, eardrum,
and middle ear bones. The best available estimates for material
properties of the eardrum were used. In addition, the acoustics of
the ear canal were fully coupled to the vibration of the eardrum.
The open middle ear cavity was represented as a radiation imped-
ance. The model used a combination of rigid bodies, finite element,
and asymptotic methods to ensure accuracy over the entire fre-
quency range of 200 Hz through 20 kHz. By using a combination of
methods, the strengths of each were exploited while avoiding their
shortcomings. The specifics of the model are discussed in more
detail in Methods. The animal of choice was the domestic cat (Felis
catus) because there is a significant amount of anatomical data,
physiological data, and material properties known for the middle
ear of that species. It is also an animal that spans a relatively wide
frequency range (19, 20).

Results
To validate the mathematical model, five different outputs were
compared against experimental measurements: ear canal im-
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pedance and reflectance, umbo (center of the eardrum near the
malleus tip) velocity to ear-canal-pressure ratio, middle-ear-
cavity pressure to ear-canal-pressure ratio, middle-ear pressure
gain, and eardrum displacement patterns. Some of these results
were for the open middle-ear cavity case, whereas others were
for the closed cavity case. All showed agreement between the
measured and calculated responses. Two of these five results, for
the open cavity case, are shown in Fig. 2 (see SI Figs. 7 and 8 for
ear canal impedance and reflectance comparisons). Fig. 2a
compares the ear-canal-pressure to vestibule-pressure transfer
function, or the middle-ear pressure gain, of the model to the
range of experimental values (21, 22). The measured magnitude
varies by approximately �10 dB, which is not atypical for
physiological measurements. The model results agree with mag-
nitude, particularly on the high-frequency side, and phase data.
Perhaps the most difficult validation test is to match the irregular
surface vibration patterns of the eardrum. The calculated sur-
face displacements at four different locations on the eardrum are
shown in Fig. 2b along with actual measurements at similar
locations (23). There is agreement in both the amplitude vari-
ations and the frequency, �2 kHz, where the large oscillations
begin to occur.

Our single model has been able to show both a smoothly
varying middle-ear pressure transfer function (24) and the highly
nonuniform displacement patterns seen experimentally (23, 25)
for frequencies up to 20 kHz. For frequencies �3 kHz, the
eardrum surface moves together in unison (Fig. 2b) and the
pressure transfer function is also smooth. Above 3 kHz, surface
measurements reveal large oscillations on the eardrum, yet the
pressure transfer function from the eardrum to the inner ear
remains relatively smooth. The eardrum has good transmission

properties by having so many resonances that no single reso-
nance can dominate the response. The eardrum appears to have
many mistuned resonances that average out to an overall high
output at the malleus handle. This partially explains how, in a
variety of species, sound transmission through the middle ear can
have a wide bandwidth and not limit the sensitivity of hearing
(26–29). With the model validated, the baseline response was
used to explore the role of each anatomical feature by modifying
the feature away from its naturally occurring state.

The results are insensitive to modest changes in the geometric
and material properties. However, some larger alterations are
shown in Figs. 3–5. First, the effect of changing the eardrum’s
shape was explored. The results for the different eardrum cone
depths shown in Fig. 3a are plotted in Fig. 3b. The deep eardrum
response is about the same as the normal case with a slight loss
at low frequencies and a slight gain at high frequencies. However,
the shallow eardrum has a 25-dB loss at high frequencies. This
result makes intuitive sense when the function of the eardrum is
considered. The eardrum must transfer acoustic energy into
motions of the malleus. Air has low mechanical impedance,
whereas the mechanical impedance at the center of the eardrum,
the umbo, is high. The eardrum must act as a transformer
between these two impedances; otherwise, most of the energy
will be reflected rather than transmitted. The mechanical trans-
former properties of the eardrum are derived from its shape and
mechanical properties. The toroidal outer section is very flexible
and has a large surface area. This f lexibility provides the low
impedance needed to match the low impedance of air. In
contrast, the inner portion of the eardrum is a steep conical
section with many radial fibers. These fibers are very stiff in the
direction needed to drive the umbo. This stiff inner portion of the
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Fig. 1. Eardrum anatomy and microstructure. (a) Contour plot of cat tympanic membrane using Moiré interferometry (4) with slice lines used to divide the
eardrum. (b) Each slice in a is fit in the inner section as a cone and in the outer section as a toroid. This slice is from the anterior–superior quadrant, but the fit
to the contour data (red squares) is typical. (c) Approximation of the eardrum obtained after slicing and fitting with cone and toroid sections. The blue line
represents the annulus of the eardrum. (d) Schematic representation of the thickness profile for each slice from the umbo to the outer edge (annulus). The
thickness is taken to taper linearly toward the umbo. The vertical dimension is greatly exaggerated to illustrate the four-layer composite of the eardrum. The
inner radial and circumferential collagen fiber layers provide the scaffolding for the tympanic membrane (8, 11).
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eardrum matches the large impedance of the umbo. Between
these two regions, the eardrum smoothly transitions from low-
impedance, transverse modes of vibration in the toroidal region
to high-impedance, in-plane modes of vibration in the conical
region. The wave speed of the in-plane motion is significantly
slower than the speed of sound in air (12, 27). This behavior is
reflected in the computational results. When the eardrum is
made too shallow, its impedance matches the air, but it lacks the
stiffness needed to drive the umbo. This effect is especially
pronounced at high frequencies, as demonstrated by the shallow
eardrum case. At the other extreme, increasing the conical
portion raises the stiffness of the eardrum, which provides a poor
match between the air and the eardrum. This is most clearly seen
in the model at low frequencies.

Next, the purpose of the inclination of the eardrum within the ear
canal was examined. The response of an eardrum placed perpen-
dicular to the ear canal was compared against the normal position.
To make the eardrum perpendicular, one must adjust either the

eardrum area or the ear canal area. There are two questions
addressed by this analysis. The first is, ‘‘what is the effect due to the
angle of the eardrum?’’ It was hypothesized that the tapered angle,
which produces a narrowing of the canal in the anterior section, may
result in air pressure being ‘‘trapped’’ at frequencies where the
wavelengths are short in comparison with the tapered dimensions.
The second has to do with dimensional scaling of the model. Given
that there are so many modes on the drum surface one might expect
that dimensionally scaling the area could dramatically alter the
sound transmission to the cochlea.

As shown in Fig. 4a, both possibilities were examined. In one
case, the area of the eardrum was maintained. The ear canal was
made larger to accommodate the new orientation. In the other
case, the ear canal area was maintained, but the eardrum area
was scaled to fit within the normal canal. The resulting pressure
transfer functions are shown in Fig. 4b. There is very little
difference between the two cases when the eardrum size was
maintained. However, when the eardrum is made smaller and
the ear canal preserved, a simple area dependence occurs. This
results in a 10-dB loss at all frequencies �2 kHz. One can
conclude that the inclination of the eardrum allows a larger
eardrum to fit inside a smaller ear canal diameter. This decreases
the acoustic pressure in the ear canal needed to produce
perceivable vibrations in the cochlea while at the same time
optimizing the amount of space used.

Although the angled eardrum did produce an increase in
pressure in the inferior portion of the ear canal (data not shown),
in comparison with the perpendicular drum of the same area, it
did not produce an increase in sound transmission to the cochlea
disproportionately at the high frequencies. When scaling the
area of the eardrum, one must also scale the thickness as well.
If one decreases the area alone, the eardrum becomes too stiff
to be an effective sound transducer. Here, the eardrum thickness
was scaled down so that the first resonant frequency of the
eardrum was preserved (data not shown). Thus, sound trans-
mission to the cochlea in the high-frequency region (�2 kHz)
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Fig. 2. Validation of eardrum model by comparing experimental data
against model results. (a) Middle ear pressure gain: the ratio of the pressure
in the vestibule of the cochlea to the pressure in the ear canal. Model result
(black line) is compared with two sets of experimental results. The range of
results reported by Nedzelnitsky (21) are within the gray area bounded by blue
lines, whereas measurements by Decory et al. (22) are shown by the green
lines. The model result agrees in both magnitude and phase with the exper-
imental measurements. (b) Displacement measurements of four points on the
eardrum relative to the center of the eardrum (umbo). Solid and dashed blue
lines indicate measurements from Decraemer et al. (23), whereas black lines
are the model calculations. The model correctly predicts the response magni-
tudes at each point. An exact match of the data and calculations is not
expected given that only an approximate position of the measurements is
known.
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does scale proportionally with eardrum area, as expected. How-
ever, �1 kHz, the pressure transfer function will asymptotically
approach the angled case as a result of the thickness scaling used.

The effect of changing the eardrum’s fibrous structure was
explored last. The three different eardrum structures shown in
Fig. 5a were compared. In all cases, the shape and thickness
profiles were held fixed. The first type of structure examined was
an isotropic eardrum. Because most eardrum modeling attempts
in the past have treated the eardrum as an isotropic structure
(15–18), this case provides a comparison with the previous
literature. For the isotropic case, the response was computed for
two different values of elastic modulus. The second type of
structure examined closely approximates the actual eardrum
using the anatomical information currently available. The ear-
drum is radially orthotropic, but the relative stiffness in the
circumferential (E0) and radial (Er) directions change with
position. Near the outer edge of the eardrum, the circumferen-
tial and radial stiffness are nearly equal. Moving inward toward
the umbo, the radial stiffness increases as the radial fibers
converge, whereas the circumferential fiber layer gradually
disappears. This arrangement of fibers is depicted in Fig. 5a
Center. The third eardrum structure takes the orthotropic nature
of the eardrum to an extreme. In this case, the effective elastic
modulus in the circumferential direction is set to zero. Setting
E0 � 0 eliminates the effect of the circumferential fibers.

The results for each eardrum are shown in Fig. 5b. Comparing
the isotropic cases with the anatomically realistic condition
reveals a tradeoff. The isotropic case can be made to match the
normal case in either the low frequency region or the high-
frequency region, but not both at the same time. With an elastic
modulus of E � 0.03 GPa, an isotropic eardrum is soft enough
to match the impedance of the air at low frequencies but not stiff

enough at high frequencies to drive the umbo. This results in a
20-dB transmission loss at frequencies �8–10 kHz. Note, how-
ever, that the output is smoothly varying, suggesting that spatial
integration of the modes is taking place even for an isotropic
drum. Conversely, with an elastic modulus of E � 0.1 GPa, an
isotropic eardrum is stiff enough to drive the umbo at high
frequencies but is too stiff at low frequencies, resulting in a 10-dB
loss. The anatomical fiber arrangement in an asymmetrical
eardrum seems to be a good compromise at all frequencies. In
the case with no circumferential fibers, an improved low-
frequency performance is predicted. However, there may be
serious problems with maintaining the integrity of the eardrum
without any circumferential fibers. Therefore, although this case
has the best sound transmission, it may not be practically
attainable. This sequence of calculations clearly demonstrates
the advantages of an orthotropic structure with dominant radial
fibers in the inner region supported by a toroidal outer region.

Discussion
Comparison with Finite-Element Models. An important development
in middle ear mechanics is Funnell and Lazlo’s application of the
finite element modeling approach (30). In that model, flat trian-
gular shell elements were used to represent the eardrum. The
thickness of each element was 40 �m with an isotropic Young’s
modulus of 0.02 GPa. The ossicular chain was represented by a
mass-less lever suspended by a rotational elastic spring. For differ-
ent eardrum shapes, the umbo displacement was calculated for
quasistatic input pressures. The calculations showed that increased
curvature decreases the umbo displacement due to hoop stiffness.
Decreasing cone depth, that is flatter cone, increased the output
suggesting that ‘‘the conical shape is disadvantageous.’’ Further-
more, they argued that the isotropic model is quite successful, and
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thus ‘‘it has not been necessary to introduce anisotropy’’ at least �1
kHz, the stated region of validity.

The analysis was extended by calculating with a finer mesh
resolution (31). All conclusions were based on eigenvalue cal-
culations, or the natural frequencies, of the system stiffness
matrix. Many frequency modes starting with the first mode of 1.8
kHz were reported for frequencies �4 kHz. This first mode
frequency was lower than the 3-kHz first mode frequency
observed by Khanna and Tonndorf (32). The effects of modi-
fying the 3D eardrum shape, like cone depth and curvature, on
the frequency modes were reported. The conclusion drawn is
that ‘‘the conical shape, and perhaps the curvature, may serve to
extend the frequency range of the eardrum.’’ Because the
calculations were done for frequencies �4 kHz, it is not clear
what one may expect at higher frequencies.

Effects of damping (Rayleigh type) were subsequently exam-
ined by Funnell et al. (17). More significant was that the
calculations from 0.6 to 20 kHz were reported. Displacement for
the umbo, anterior points away from the umbo, and posterior
points away from the umbo were reported. All of the model
results indicate a ‘‘displacement-amplitude roll-off proportional
to 1/f2�, which means it rolled off with a slope of �12 dB/octave
at frequencies above �2 kHz. However, preliminary measure-
ments of the anterior and posterior regions reported in the same
paper did not decrease at such a steep rate. In fact, points away
from the umbo increase in amplitude in relation to the umbo by
a factor of up to 30 (Fig. 3). Thus, previous models have not
reproduced the data shown in Fig. 3. One possible reason for this
is the use of constant thickness eardrum instead of the radially
tapered eardrum (Fig. 1d). Although the ear-canal to cochlea
pressure transfer function was not calculated by Funnell et al.
(17), the pressure transfer function magnitude will likely have
the same slope as the umbo displacement, which is also �12
dB/octave, due to the lever model of the ossicles. This is
inconsistent with measurements (21, 22), where the slope is less
than �6 dB/octave. In the present model, the average slope of
the magnitude is closer to approximately �4 dB/octave (Fig. 2a
Top).

Despite the fact that the model does not accurately reproduce
data at frequencies above a few kHz, they did make the
important observation that the umbo motion was smoother than
points away from the manubrium. They attributed this to ‘‘a sort
of spatial integration over the eardrum, due to the fact that the
manubrium is rigid and is coupled to the drum along its whole
length’’ which, in effect, averages out ‘‘all but the largest local
variations of response.’’ The large number of modes was attrib-
uted to the asymmetrical nature of the eardrum. In this sense, the
present model is similar. However, why the multiple modes are
present in the first place was not explicitly stated. In the present
formulation, multiple modes without energy dissipation on the
eardrum are critical in producing a large average output and thus
greater sensitivity of sound transmission to the cochlea at high
frequencies. Thus, the eardrum is intentionally designed to have
many discordant resonances with a thin, lightweight, and colla-
gen-reinforced material. These discordant resonances join to-
gether at the long handle of the malleus to produce a large
average but smooth response. Fig. 5b shows that the microstruc-
ture of the eardrum and its asymmetrical cone shaped anatomy
are both important. Inclusion of both features allows the model
to reproduce the physiological data at both low and at high
frequencies, which was not previously possible.

Other investigators have represented the eardrum using the
finite-element approach in a manner very similar to that of Funnell
et al. (17) discussed above. Koike et al. (15, 33) depart in that they
investigated the human eardrum with radially decreasing thickness.
In their model, they found it necessary to use artificially linear and
torsion springs at the boundary between the tympanic membrane
and its surrounding annulus. Above 2 kHz, the calculated ear canal

impedance shows a mass-like behavior, whereas the middle ear
pressure transfer function has a corresponding �12 dB/octave
slope. These are not consistent with comparable measurements,
suggesting deficiencies in the models at high frequencies. However,
consistent with our findings (ref. 34 and Fig. 4), they did report that
a flat eardrum decreases the response, in comparison with the
response for a normal cone shaped drum, in the 1- to 8-kHz range.
Gan et al. (16) represent the coupling between the eardrum and the
tympanic annulus boundary by using elements that are approxi-
mately five times softer than the remainder of the elements
representing the par tensa. In the present model the anatomically
based toroidal shape and circumferential collagen fiber layer nat-
urally avoid having to use these artificial boundaries. The toroidal
shape provides a natural mechanism to minimize the hoop stiffness
of the linear cone shape. In addition, the Gan et al. (16) formulation
incorporates significant material damping (Rayleigh type), which
produces a very smooth response at the stapes as well as on the
eardrum surface. The later is inconsistent with measurements
shown in Fig. 2b. Rabbitt and Holmes (13) formulated a general
framework for the eardrum using asymptotic methods. However,
they did not report the consequences of the microanatomy.

This mathematical model of the eardrum and ear canal was
entirely based on the available information for the anatomy,
eardrum structure, and reasonable approximations for elasticity
(Fig. 1). The model yields results for the dynamic behavior that
are in good agreement with the available experimental mea-
surements in cats, without artificial parameters or boundary
conditions (34). Significant deviations from the anatomical
situation were considered, which indicated that the normal
system is nearly optimal. The pressure transmission capability of
the eardrum suffers if it is made too shallow or too deep, the area
is reduced, or the fibrous structure are modified.

Potential Application of Results. These results can be directly
applied to the design of loudspeakers and microphones. Using
mistuned and relatively light-weight orthotropic structures could
result in increased high-frequency sensitivity and a larger band-
width over currently available devices. Perhaps most impor-
tantly, these results suggest a way to improve the surgical
reconstruction of damaged eardrums. By using lightweight or-
thotropic materials, rather than the heavier isotropic or aniso-
tropic materials currently used by clinicians, the high-frequency
response may be restored, which may have consequences for
better hearing in noisy situations. It is known that one’s ability
to hear the target speech in the presence of spatially separated
interfering talkers is improved due to binaural release from
masking (e.g., ref. 35). Improved audibility above the speech
frequency range of 3–4 kHz helps individuals better localize
sounds by reducing the cone of confusion (36). It is our hypoth-
esis that, by improving the surgical outcome of tympanoplasties
for high frequencies, surgeons will be able to provide patients
higher bandwidth of hearing, which will allow their central
mechanisms to better localize sounds and separate target speech
from interfering sounds that are spatially separated. The poten-
tial benefit to patients will be the ability to hear better the target
speech when there are interfering sources of sounds.

Methods
The biocomputational model (see SI Fig. 6) incorporates the
measurements of the geometry of the ear canal (37), the 3D
asymmetrical geometry of the eardrum (3), the details of the
eardrum fiber structure (11), a simple lever model for the
ossicles terminated by known values for the cochlear impedance
(38), and radiation damping representing the open middle-ear
cavity.

Ear Canal Acoustics and Eardrum Coupling. The ear canal acoustic
equations used are modified 1D Horn equations that contain a
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right-hand side term that allows a flexible wall with velocity Vtm
normal to canal wall surface
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�t2 � co
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�t
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 , [1]

where 
 is a parameter along the boundary of the canal wall and
�a is the appropriate metric for converting the differential
parameter d
 to a length. Taking the Fourier transform gives the
harmonic response
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A finite-element approach is used to solve Eq. 2. The ear canal
is divided into a series of cylindrical sections that are perpen-
dicular to the ear canal centerline, whose curvature changes
along the canal. This allows solving for the average pressure
within each cylindrical section as a function of the canal inlet
pressure and the wall volume displacements. The intersection of
each cylindrical section with the subpatches of the eardrum slices
is determined by using relative geometrical relationships be-
tween the two. This approach fully couples the displacements of
the eardrum to the acoustics of the ear canal.

Eardrum Displacements. The microstructure of the eardrum anat-
omy and its material properties are used to formulate a piece-
wise asymptotic constitutive model of the eardrum. Each slice of
the eardrum (Fig. 1b) has a curvature near the outer edge
(locally a toroidal surface) and a straight central portion (locally
conical). Near its center, the eardrum is attached to the malleus,
whereas the outer edge is attached to the annular ligament.

The overall membrane thickness is tapered linearly as indicated
by recent measurements (39). The circumferential fiber layer is
tapered to nearly-zero thickness at the umbo, whereas the radial
fiber layer thickness decreases slightly (Fig. 1d). The fiber conver-
gence leads to a 1/r relationship for the fiber density. Because of this,
the elastic modulus of the radial layer decreases with the distance
away from the umbo to capture the effect of the diverging radial
fibers. For this reason, the elastic modulus within the fiber layer
decreases as 1/r from the umbo to the outer edge. Direct measure-

ments of the static elasticity of portions of the eardrum and dynamic
measurements indicate an effective Young’s modulus near 0.1–0.22
GPa for the posterior and 0.2–0.3 GPa in the anterior sections of
the eardrum (12). These values represent a reference elastic mod-
ulus somewhat midway between the umbo and the tympanic
annulus, which is where the dynamic measurements terminated. In
this work, the reference for the elastic modulus is chosen as the
outer edge instead of the midpoint. Extrapolation to the outer edge
reference point for the radial fiber layer lead to Er � 0.1 GPa,
whereas E� � 0.8Er for the circumferential fiber layer. Eardrum
density was assumed to be that of water (1,000 kg/m3). All of these
parameters are specified for each slice. Each slice is then subdivided
into 10 patches, which was chosen after a sensitivity analysis for the
number of patches (Fig. 1c).

The calculation for the displacement (dynamic response) of each
patch of every slice of the eardrum was done with an asymptotic
algorithm (FAST4) for elastic shells (40). The parameters for the
constitutive model for a patch of the eardrum were the input to
FAST4. In this formulation, each patch is assumed to be locally
axisymmetric. The shell program calculates the volume displace-
ment for each patch. The area fraction of a patch that lies within
that segment of the ear canal slice was used to determine the
volume fraction for the patch. All patch displacements within a
given cylindrical section of the ear canal are summed together to
determine the total surface displacement Vtm in Eq. 2.

Ossicle Model. The middle ear ossicles are approximated as rigid
bodies. A classical lever model (malleus to incus length ratio of
2) represents the malleus–incus complex with inertia due to body
masses and rotational stiffness. The stapes and cochlear load
termination is given by a parametric fit of experimental data
(38). This ossicle and cochlea model is clearly a much-simplified
termination for the eardrum. However, the ossicle and cochlea
model permits calculations of ear canal impedance and reflec-
tance (SI Figs. 7 and 8), eardrum surface displacements (Fig. 2b),
and middle ear pressure gains (Figs. 2a and 3–5). Full details of
the model implementation are available (34).
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