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During bouts of evolutionary diversification, such as adaptive radiations, the emerging species cluster

around different locations in phenotype space. How such multimodal patterns in phenotype space can

emerge from a single ancestral species is a fundamental question in biology. Frequency-dependent

competition is one potential mechanism for such pattern formation, as has previously been shown in

models based on the theory of adaptive dynamics. Here, we demonstrate that also in models similar to

those used in quantitative genetics, phenotype distributions can split into multiple modes under the force

of frequency-dependent competition. In sexual populations, this requires assortative mating, and we show

that the multimodal splitting of initially unimodal distributions occurs over a range of assortment

parameters. In addition, assortative mating can be favoured evolutionarily even if it incurs costs, because it

provides a means of alleviating the effects of frequency dependence. Our results reveal that models at both

ends of the spectrum between essentially monomorphic (adaptive dynamics) and fully polymorphic

(quantitative genetics) yield similar results. This underscores that frequency-dependent selection is a

strong agent of pattern formation in phenotype distributions, potentially resulting in adaptive speciation.

Keywords: speciation; frequency-dependent selection; pattern formation; assortative mating;

competition; recombination
1. INTRODUCTION
Explaining the origin of diversity is a core problem in

evolutionary biology that continues to receive much

attention from both empiricists and theoreticians

(Coyne & Orr 2004; Dieckmann et al. 2004). The process

of diversification can be described as evolutionary change

taking place in phenotype space. If individual organisms

are assessed for their phenotypes, populations can be

represented by the corresponding phenotype distributions,

giving information about the abundance of different

phenotypes in the population. A single, ancestral population

would typically yield a unimodal phenotype distribution,

with the average phenotype being at or close to the

distribution’s peak. Processes of speciation can then often

be described as the splitting of an ancestral and unimodal

phenotype distribution into two (or more) peaks or

modes, so that the descendent species emerging from

speciation correspond to different peaks of the phenotype

distribution. On the phenotypic level, speciation can thus

cause pattern formation: during speciation, unimodal

phenotype distributions may become multimodal.

Traditional explanations for such pattern formation

through speciation are based on geographical isolation:

different, but phenotypically similar subpopulations of an

ancestral species come to occupy different and mutually

isolated habitats in which they embark on different
r for correspondence (doebeli@zoology.ubc.ca).
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evolutionary trajectories. These trajectories may eventually

take the populations evolving in differenthabitats todifferent

locations in phenotype space so that the joint phenotype

distribution of all descendent species becomes multimodal.

It is important to appreciate that this allopatric mode of

phenotypic pattern formation and speciation results from

geographical isolation, rather than from ecological

interactions within the ancestral population.

The situation is reversed for sympatric processes of

speciation, which unfold due to ecological interactions

within the ancestral population, rather than as a

consequence of geographical isolation. For example,

when phenotypes differ in their resource preference and

when most individuals in an ancestral population prefer

similar resources, selection may favour rare phenotypes

with a different resource preference. In this case,

diversification of the ancestral population may be an

adaptive response to the detrimental effects of frequency-

dependent competition. In general, adaptive speciation

occurs when an ancestral lineage splits into phenotypically

diverging descendent lineages due to disruptive selection

caused by frequency-dependent interactions (Dieckmann

et al. 2004). In this mode of speciation, pattern formation

in phenotype space is caused by interactions that are

intrinsic to the ancestral population. The theoretical

framework of adaptive dynamics predicts that such

adaptive diversification can occur under a wide variety of

ecological scenarios (Metz et al. 1996; Geritz et al. 1998;
This journal is q 2006 The Royal Society
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Dieckmann & Doebeli 1999; Doebeli & Dieckmann 2000,

2003; Dieckmann et al. 2004; Kisdi & Gyllenberg 2005).

In this framework, adaptive diversification is epitomized

by the phenomenon of evolutionary branching, which

occurs when frequency-dependent selection drives a

population towards a point in phenotype space at which

selection turns disruptive. Evolutionary branching can be

characterized mathematically and is a generic outcome of

adaptive dynamics models (Metz et al. 1992, 1996; Geritz

et al. 1998; Kisdi & Gyllenberg 2005).

Most models of evolutionary branching are based on a

number of seemingly significant simplifying assumptions.

Chief among those are the assumptions that reproduction is

asexual and that populations are essentially monomorphic at

all times (except when branching occurs, after which each of

the emerging lineages is assumed to be essentially mono-

morphic). Obviously, both of these assumptions are often

violated in real populations. It is thus important that it has

been shown that evolutionary branching is also a robust

outcome in asexual models of polymorphic populations

(Metz et al. 1996; Meszéna et al. 2005) and that a number of

recent models have incorporated explicit genetics to study

adaptive speciation in sexual populations (Doebeli 1996,

2005; Dieckmann & Doebeli 1999; Kisdi & Geritz 1999;

Kondrashov & Kondrashov 1999; Drossel & McKane

2000; Geritz & Kisdi 2000; Doebeli & Dieckmann

2003; Dieckmann et al. 2004; Bürger & Schneider 2006;

Schneider & Bürger 2006; Bürger et al. in press). In sexual

populations under disruptive selection, random mating

typically prevents speciation, so that diversification requires

the presence of assortative matingmechanisms ensuring that

individuals preferentially mate with similar phenotypes.

Such mechanisms have been considered in models with

genetic architectures based on small to intermediate

numbers of loci with additive effects (see articles cited

above). One general conclusion of such studies is that

adaptive speciation, or pattern formation in phenotype

space, is possible in sexual populations when mating

is assortative.

It has recently been suggested by Polechová & Barton

(2005) that occurrences of adaptive speciation in sexual

populations could often be a consequence of the particular

genetic models used and that other genetic models would

not generate diversification in sexual populations even

with assortative mating. One reason for this caveat might

be that in genetically explicit models with a finite number

of loci and with finite allelic effects, a population’s variance

is automatically constrained, leading to more intense

intraspecific competition and thus strengthening disrup-

tive selection. In models with more flexible genetic

architectures, intraspecific competition might simply

result in increased population variance. In particular, for

populations described by a continuous phenotype distri-

bution (rather than by a single monomorphic type or by

the frequencies of a finite number of types), one might

have the intuitive expectation that frequency-dependent

competition merely flattens unimodal phenotype distri-

butions, thus compensating for the effects of competition.

According to this intuition, frequency-dependent selec-

tion would not result in pattern formation in phenotype

space, i.e. in a bimodal or multimodal split of the

phenotype distribution and hence would not result in

adaptive speciation.
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To describe the dynamics of continuous phenotype

distributions under frequency-dependent competition,

Polechová & Barton (2005) used the ‘infinitesimal’

model of quantitative genetics, which assumes a large

(infinite) number of unlinked loci with additive effects

(Roughgarden 1979; Bulmer 1980). Polechová & Barton

(2005) claim that in such models, frequency dependence

never leads to adaptive speciation even if mating is

assortative. This would support the intuitive notion that

frequency dependence can generate increased population

variance, but not pattern formation in the form of bimodal

or multimodal phenotype distributions. These questions

are very interesting and deserve further study. In this

paper, we use a more general class of models to show that

frequency-dependent competition in sexual populations

indeed leads to pattern formation in phenotype space

under many circumstances.

The intuitive notion that in models for continuous

phenotype distributions, frequency dependence only

leads to increased variance, but not to phenotypic

clusters, thus turns out to be wrong in general. Instead,

if mating is assortative, frequency-dependent competition

often generates multiple phenotypic modes also in

infinitesimal models. Since the splitting of a population

reduces the strength of disruptive selection, assortative

mating facilitates the evolutionary response to frequency

dependence. Consequently, there is selection for assorta-

tive mating in initially randomly mating populations, in

which segregation and recombination would otherwise

prevent the emergence of multiple modes. This is why

pattern formation in phenotype space is a possible

outcome of frequency-dependent competition in infini-

tesimal models of sexual populations.

Our results show that, with regard to adaptive

diversification, the outcomes of asexual adaptive dynamics

models at one end of the spectrum, and of infinitesimal

sexual models at the other end, are surprisingly congruent.

In the sexual models, assortative mating is required for

adaptive speciation to occur, but in both types of model, the

emergence ofdistinct phenotypic clusters out ofunimodalor

even monomorphic ancestral populations can readily be

caused by frequency-dependent ecological interactions.

This pattern formation in sexual models could be an

important mechanism underlying the instability and

disruption of the sexual continuum of phenotypes

(Maynard Smith & Szathmáry 1995; Noest 1997) and

hence could help address the fundamental question why life

forms appear to cluster phenotypically (Coyne & Orr 2004).
2. MODEL DESCRIPTION
Below, we introduce the dynamics of the density distribution

f(x) of a quantitative character x in a sexual population.

(a) Ecological dynamics

The ecological model underlying our analysis is an

extension of Lotka–Volterra competition equations to

polymorphic populations, in which the competitive impact

of phenotype y on a phenotype x is measured by the

competition kernel a(xKy). For a focal phenotype x, the

total competitive impact experienced in a population

described by the distribution f is given by the convolution

ða � fÞðxÞZ

ð
aðxKyÞfðyÞdy: ð2:1Þ
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In the asexual case, the dynamics of the distribution f is

then given by the following partial differential equation:

vf

vt
Z rf 1K

a � f

K

� �
Z rfKrf$a � f=K : ð2:2Þ

Here, r is the intrinsic growth rate, which we assume to

be independent of the phenotype x, andK(x) determines the

carrying capacity as a function of x. Thus, Krf$a�f/K

corresponds to the usual competition term in Lotka–

Volterra models, whereas rf describes exponential popu-

lation growth.
(b) Mating and reproduction

We incorporate sexual reproduction following standard

procedures (Roughgarden 1979; Bulmer 1980; see also

Polechová & Barton 2005). We assume that matings are

initiated bilaterally. The probability of mating between

two phenotypes u and v is therefore proportional to the

product of two preference functions, which we assume to

be Gaussian,

Aðu;vÞZ
1ffiffiffiffiffiffi

2p
p

sA
exp K

ðuKvÞ2

2s2
A

� �
$

1ffiffiffiffiffiffi
2p

p
sA

exp K
ðuKvÞ2

2s2
A

� �
;

ð2:3Þ

where sA is a measure for the degree of assortment: large

sA correspond to random mating, while small sA
correspond to assortative mating (note that we will always

assume here that assortative mating occurs with respect to

the quantitative character that determines the ecological

interactions).

In accordance with the assumptions underlying the

infinitesimal model of quantitative genetics (Bulmer

1980), we assume that a mating between phenotypes u

and v produces a Gaussian offspring distribution

NðuCvÞ=2;sf
ðxÞ, with a mean equalling the midparent value

(uCv)/2 and a variance of s2
f .

To establish a baseline case, we assume that all

phenotypes have the same per capita birth rate. This

means that the relative contribution a mating with

phenotype v makes to the offspring pool of a given

phenotype u must be normalized by the total amount of

mating that phenotype u participates in,

NðuÞZ

ð
Aðu; vÞfðvÞdv: ð2:4Þ

Then, the distribution of offspring with phenotypes x

produced by phenotype u is given by

1

NðuÞ

ð
fðvÞAðu; vÞNðuCvÞ=2;sf

ðxÞdv: ð2:5Þ

Finally, the total density of offspring at phenotype x

resulting from all possible matings is given by

bðxÞZ

ð
fðuÞ

1

NðuÞ

ð
fðvÞAðu; vÞNðuCvÞ=2;sf

ðxÞdv

� �
du: ð2:6Þ

The mating scheme just described for the infinitesimal

model is a direct extension of the one used in Dieckmann &

Doebeli (1999) for genetically explicit multilocus models.

Putting everything together, we obtain the following

equation for the dynamics of phenotype distributions in

sexual populations:

vf

vt
Z rbKrf$a � f=K : ð2:7Þ
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The essential parameters in this dynamical system are sA
(degree of assortment) and sf (width of the so-called

segregation kernel (Roughgarden 1979) that describes the

offspring distribution of a given mating pair), as well as the

functional forms of the ecological functions a and K. For

numerical simulations of the partial differential equation

(2.7), we always used carrying-capacity functions K with

finite variance, which implies that phenotypes far from

the optimal phenotype are not viable. This allows the

numerical simulations to be restricted to a finite interval

without creating artefacts.
(c) Competition kernel and carrying-capacity

function

It is already very interesting to study the dynamics of the

asexual model, equation (2.2), which is determined by the

functions a and K. In particular, one can ask whether, for

given functions a and K, equilibrium distributions of the

asexual model exhibit phenotypic clustering in the form of

multiple modes. For example, if the competition kernel a

and the carrying capacity K are both of Gaussian type with

variances s2
a and s2

K , respectively, then the model has an

equilibrium density distribution that is also Gaussian, with

variance maxð0;s2
KKs2

aÞ (if s2
KKs2

a is negative, the

equilibrium distribution has all its density concentrated

at the maximum of K). In particular, with Gaussian a and

K, equilibrium distributions of the asexual model never

exhibit more than one phenotypic cluster.

However, it is known that the asexual model with

Gaussian ecological functions is structurally unstable

(Sasaki & Ellner 1995; Sasaki 1997) and that generic

choices for the ecological functions often lead to pattern

formation with distinct phenotypic clusters (Meszéna et al.

2005). We therefore use competition kernels of the form

aðxKyÞZ exp K
jxKyj2C3a

2s
2C3a
a

� �
; ð2:8Þ

and carrying-capacity functions of the form

KðxÞZK0exp K
x2C3K

2s
2C3K
K

 !
: ð2:9Þ

Here, the shape parameters 3a and 3K measure deviations

from the Gaussian case.
(d) Equilibrium distributions

For 3aZ3KZ2 (the ‘quartic’ case in which the competition

kernel and the carrying capacity are both platykurtic), it

can easily be shown numerically that equilibrium distri-

butions of the asexual model (2.2) have multiple peaks

whenever sa is small enough.

By contrast, for the sexual model (2.7) with Gaussian

ecological functions a and K with variances s2
a and s2

K , one

can show, by carrying out the various integrals introduced

above, that a Gaussian equilibrium distribution exists

whose variance s2
eq satisfies the following equation:

2 s2
A Cs2

eq

� �2

4s4
eq s2

f Cs2
eq

� 	
C2s4

A 2s2
f Cs2

eq

� 	
Cs2

As
2
eq 8s2

f C5s2
eq

� 	

Z
1

2s2
eq

C
1

2 s2
a Cs2

eq

� �K 1

2s2
K

: ð2:10Þ
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Figure 1. Equilibrium phenotype distributions for different degrees of assortative mating with Gaussian competition kernel and
Gaussian carrying-capacity function, corresponding to 3aZ3KZ0 in equations (2.8) and (2.9). (a) Random mating (sAZN)
does not allow pattern formation. (b, c) Assortative mating (with sAZ0.56 and 0.28, respectively) can generate multimodal
phenotype distributions. (d ) With Gaussian ecological functions, very strong assortative mating (sAZ0) leads to unimodal
phenotype distributions. In each panel, the grey curve shows the carrying-capacity function K. Other parameters: rZ1, K0Z1,
sKZ2, saZ1 and sfZ0.2; initial phenotype distributions were Gaussian with variance equal to that of a solution of equation
(2.10); dynamics was run for 104 time units.
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For example, in the case of random mating, sAZN, the

variance of the Gaussian equilibrium distribution satisfies

1

2s2
f Cs2

eq

Z
1

2s2
eq

C
1

2 s2
a Cs2

eq

� �K 1

2s2
K

: ð2:11Þ

Similarly, in the case of extreme assortative mating, sAZ0,

there is a Gaussian equilibrium distribution with a

variance satisfying

1

2
�
s2
f Cs2

eq

�Z 1

2s2
eq

C
1

2 s2
a Cs2

eq

� �K 1

2s2
K

: ð2:12Þ

The existence of Gaussian equilibrium distributions in

infinitesimal models in which the ecological functions have

Gaussian form may be perceived as supporting the claim

that frequency-dependent competition in polymorphic

populations does not usually generate multimodal pheno-

type distributions. However, two important caveats need to

be kept in mind. First, even though a Gaussian equilibrium

distribution exists, it may not be stable under the dynamics

given by equation (2.7). Second, the existence of the

Gaussian equilibrium given by equation (2.10) depends on

the assumption that the ecological functions a and K have

Gaussian form. As mentioned above, the asexual model

with Gaussian ecological functions is structurally unstable,

and hence there is no reason to believe that sexual models

with non-Gaussian ecological functions and assortative

mating would generally admit unimodal equilibrium

distributions.

The use of Gaussian functions for a and K has a long

tradition in the literature (Roughgarden 1979). Unfortu-

nately, other than for the fact that a Gaussian decrease in

competitive effects and in carrying capacities appears to be

heuristically appealing, there is no reason for using these

particular functional forms. In fact, Ackermann & Doebeli

(2004) have shown that the case in which both

the competition kernel and the carrying capacity are

Gaussian with finite variance cannot be derived from

the underlying mechanistic consumer-resource model

introduced by MacArthur (1972), which lies at the basis

of most competition models for continuous characters

(Roughgarden 1979). This in itself does not mean that the

Gaussian case is biologically implausible, but it means that

there is no biological reason why this case should receive

preferential treatment over other, more general functions,
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such as those given by equations (2.8) and (2.9). In fact,

the mathematical simplicity of the Gaussian case, which

sometimes allows analytical equilibrium solutions, may

lead to an undesirable bias towards drawing conclusions

from a structurally unstable scenario (Meszéna et al.

2005). More general models, such as those based on

equations (2.8) and (2.9), will generally yield more robust

results, even though one typically has to resort to

numerical simulations for solving the corresponding

dynamical equations for the phenotype distribution.
3. RESULTS
Before we turn our attention to the effects of assortative

mating on the dynamics of phenotype distributions in

sexual populations, we mention two general conditions

that are necessary for pattern formation in the form of

multimodal distributions. First, the width of the offspring

distribution of a given mating pair, sf, must be small

enough compared with the width of the carrying-capacity

function, sK. Wide offspring distributions tend to

homogenize populations and hence to prevent pattern

formation. Second, the force of frequency-dependent

selection needs to be strong enough for the emergence of

multiple phenotypic clusters. For our purposes, this

means that in the ecological functions given by equations

(2.8) and (2.9), the width of the competition kernel, sa,

must be small enough compared with the width of the

carrying-capacity function, sK. Wide competition kernels

weaken frequency-dependent disruptive selection and

hence prevent pattern formation.
(a) Implications of assortative mating

Even with these necessary conditions being satisfied, we

never observed phenotypic pattern formation when

mating was random, in which case the equilibrium

distributions were invariably unimodal. However, strik-

ingly different outcomes resulted when mating was

assortative, i.e. for small enough sA. This is illustrated in

figure 1, which shows stable equilibrium distributions of

the infinitesimal model for different values of sA for the

case in which the competition kernel and the carrying

capacity are both Gaussian. As we pointed out in the

previous section, this model admits Gaussian equilibrium

distributions with variances given by equation (2.10).
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These equilibrium distributions are stable for high sA
(random mating; figure 1a) as well as for very low sA (very

strong assortment; figure 1d ). In these cases, the

numerical simulations are in exact agreement with the

analytical predictions for the variances of the equilibrium

distribution given by equation (2.11) for sAZN and by

equation (2.12) for sAZ0.

However, there is a range of intermediate values of sA
for which the Gaussian equilibrium distributions are

unstable, and instead the dynamics converges to an

equilibrium distribution exhibiting distinct phenotypic

modes as shown in figure 1b,c. Since mating is assortative,

the phenotypic clusters emerging through such pattern

formation represent incipient species: the resultant

clusters are reproductively isolated to a large degree,

with little gene flow occurring between them. To illustrate

the niche partitioning between the incipient species, the

grey lines in figure 1 show the carrying-capacity function

K, indicating the total available niche space. For

figure 1b,c, the initial phenotype distributions were chosen

to be very close to the Gaussian equilibrium distribution,

but, rather than approaching this Gaussian equilibrium,

the system diverges from these unimodal distributions and

exhibits pattern formation. Our numerical simulations

indicate that when the multimodal equilibrium distri-

butions are stable, they are attractors for a large range of

initial conditions. This is illustrated in figure 2 for the case

shown in figure 1b.
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We note that the fact that the Gaussian equilibrium is

stable for very small sA (figure 1d ) is a consequence of the

special and non-robust characteristics of the Gaussian

case for the asexual model, in which Gaussian ecological

functions always generate unimodal solutions (see §2): for

very strong assortative mating, the sexual model becomes

similar to the asexual model (albeit even in the limit of

sAZ0, the sexual model is not exactly equivalent to the

asexual model unless sfZ0).

Figure 3a–d shows examples of equilibrium distri-

butions for quartic ecological functions, i.e. for 3aZ3KZ2

in equations (2.8) and (2.9). Again, random mating

results in unimodality (figure 3a), but assortative mating

readily results in multimodal phenotype distributions

(figure 3b–d ). In this case, diversification occurs even for

very strong assortative mating (figure 3d ), corresponding

to the fact that models with quartic ecological functions

admit multimodal solutions even in the asexual case. In

contrast to the case of Gaussian ecological functions, the

existence of unimodal equilibrium distributions (stable or

unstable) cannot be asserted when ecological functions are

non-Gaussian. Even if such equilibrium distributions exist

in the quartic case, our simulations indicate that they are

never stable when assortment is strong enough. In

particular, for the values of sA used for figure 3a–d, the

dynamics converges to the shown multimodal equilibrium

distributions independent of the various initial conditions

that we tested.
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In the quartic case, our extensive numerical simulations

indicate that the dependence of pattern formation on the

various parameters can be roughly summarized as follows.

First, for multimodal pattern formation, we have the basic

requirement that sa must be small enough to produce

frequency-dependent disruptive selection, i.e. sa!sK.

Second, both sf and sA need to be small compared with

sa and sK. We have found that this can be approximately

summarized by the two conditions sfCsA!sa and

sfCsA!sK/3. Our simulations indicate that these con-

ditions generally imply pattern formation in the quartic

case. These conditions also apply in the case of Gaussian

ecological functions, except that with Gaussian functions,

we have the additional condition sf!sA. If this condition

is not satisfied, the sexual system behaves like the

Gaussian asexual model and possesses a stable unimodal

distribution (figure 1d). On theoretical grounds, it is

difficult to assess the biological relevance of the above

conditions. There is at least some empirical support for

the ecological condition sa!sK (Bolnick et al. 2003), and

situations in which the genetic kernels (described by sf
and sA) are narrower than the ecological kernels

(described by sa and sK) do not appear to be unrealistic.

Figure 4 further illustrates the generality of the

phenomenon of diversification through pattern formation

in phenotype space in the presence of assortative mating.

In figure 4a, we considered different forms of the carrying-

capacity function by varying the shape parameter 3K, while

assuming a Gaussian form for the competition kernel

(3aZ0). For a given carrying-capacity function K, we

varied the assortative mating parameter sA from values

corresponding to random mating (right) to values

representing strong assortment (left). For each parameter
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combination (sA, 3K), the figure indicates whether the

resulting equilibrium phenotype distribution had a single

or multiple modes. Analogously, in figure 4b, we

considered different forms of the competition kernel a

by varying the shape parameter 3a, while assuming a

Gaussian form for the carrying-capacity function (3KZ0).

To produce figure 4, we used uniform initial phenotype

distributions to start the dynamics for each tested

parameter combination. However, the results were

virtually identical when Gaussian initial distributions with

unit variance were used. The fact that these very different

initial conditions yielded the same results underscores that

the long-term dynamics of the models considered is largely

independent of the initial conditions. Thus, figure 4 shows

that diversification resulting in multimodal phenotype

distribution occurs for a wide range of assortative mating

parameters, and for general classes of competition kernels

and carrying-capacity functions.
(b) Evolution of assortative mating

Given that assortative mating can facilitate phenotypic

diversification due to frequency-dependent interactions, as

evidenced in figures 1, 3 and 4, it is natural to ask whether

there is selection pressure on assortment itself to evolve in

initially randomly mating populations. We analyse the

selection acting on assortment in two steps. We first assume

that the degree of assortment is asexually inherited (one

could think of it as being maternally inherited), which

permits an adaptive dynamic analysis. We then implement

the sexual inheritance of the assortment trait based on

standard quantitative genetics in an individual-based model.

For the adaptive dynamic analysis, we extended

equation (2.7) to two types differing in their degree of

assortment. This allows us to follow the dynamics of the

phenotype distributions of the two different types, and in

particular to determine when one type can invade the

other. With f1(x) and f2(x) denoting the phenotype

distributions of the two types with assortative mating

parameters sA1
and sA2

, respectively, the resulting

dynamics is given by

vf1

vt
Z rb1Krf1$a � ðf1 Cf2Þ=K ; ð3:1Þ

vf2

vt
Z rb2Krf2$a � ðf1 Cf2Þ=K : ð3:2Þ

Since the two types are ecologically equivalent, their per

capita death rates r$a� (f1Cf2)/K are equal, while their

birth rates b1(x) and b2(x) may differ as a result of

differential assortment. These birth rates are derived in

Appendix A. To understand the evolutionary dynamics

of assortative mating, we used equations (3.1) and (3.2) to

generate pairwise invasibility plots (Metz et al. 1996;

Geritz et al. 1998). These are two-dimensional plots in

which possible resident phenotypes are shown on the

horizontal axis and possible mutant phenotypes on the

vertical axis. For each resident–mutant pair (sA,res,

sA,mut), we first let a population consisting only of the

resident type reach equilibrium, and then introduced a

mutant type at small total density, in order to evaluate

whether the mutant’s growth rate was positive or negative.

The mutant’s initial phenotype distribution was assumed

to have the same shape as the resident’s equilibrium

distribution, but with a much reduced total density. Using

equations (3.1) and (3.2), the mutant’s growth rate was
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Figure 5. Pairwise invasibility plots for the degree of
assortment. In each plot, the horizontal axis shows resident
values of sA and the vertical axis mutant values of sA. Regions
are shaded according to whether the rare mutant’s growth
rate is positive (black) or negative (light grey) for resident–
mutant pairs in that region. Intermediate grey levels indicate
regions in which the rare mutant’s growth rate did not differ
from 0 by more than 10K5. (a) Gaussian competition kernel
and Gaussian carrying-capacity function, corresponding to
3aZ3KZ0 in equations (2.8) and (2.9). (b) Quartic
competition kernel and carrying-capacity function, corre-
sponding to 3aZ3KZ2 in equations (2.8) and (2.9). Without
costs of assortment, the pairwise invasibility plots show
directional selection for increased assortative mating. (c, d )
Same as (a,b), but with the cost of assortment set to cZ0.75
in equation (3.3). Now there is an intermediate level of
assortment to which directional evolution converges from
both above and below. The corresponding intermediate
resident degree of assortment cannot be invaded by any
mutants (as indicated by the light grey regions) and hence is
evolutionarily stable. Other parameters: rZ1, K0Z1, sKZ2,
saZ1 and sfZ0.2. The pairwise invasibility plots were
obtained by varying resident and mutant values of sA from
0 to 1 in increments of 0.0375. For each resident–mutant
pair, the resident’s phenotype distribution was first allowed to
equilibrate from a flat initial distribution for 104 time units,
before a rare mutant with the same distribution shape as the
resident but low total density was introduced; the mutant’s
growth rate was then measured over 100 time units.
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measured as the change in total density over a number of

subsequent generations. This procedure generates a

partitioning of the pairwise invasibility plot into plus

regions, indicating that for such resident–mutant pairs, the

mutant can increase when rare and hence will potentially

invade the resident, and minus regions, indicating that the

mutant cannot invade the corresponding resident, but

instead will go extinct.

Figure 5 shows examples of such pairwise invasibility

plots that were obtained using the same ecological

functions as used in figures 1 and 3. In figure 5, regions

in which the mutant can invade the corresponding

resident are black, while regions in which the mutant

cannot invade the corresponding resident are light grey. In

both figure 5a (Gaussian ecological functions) and

figure 5b (quartic ecological functions), the area below

the diagonal is black, whereas the area above the diagonal
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is light grey (note that the diagonal itself belongs neither to

the plus nor to the minus region, because a rare mutant

with the same assortment phenotype as the resident will

neither grow nor decline in total density, since the resident

is at equilibrium). For very small resident values of sA,

mutant growth rates are very close to zero. This is because

in such resident populations, any rare mutant has a strong

effective assortment very similar to the resident, which is a

consequence of the assumption that the probability of

mating between two types is determined by the product of

their respective preferences; see equation (A 1) in

Appendix A. Thus, for very small values of sA, selection

as measured by initial mutant growth rates is nearly

neutral, which is indicated by medium grey shading in

figure 5a,b. Nevertheless, the figure shows that there is

directional selection for decreased sA and hence for

increased assortment. This is not surprising: selection

favours increased assortment because assortative mating is

a mechanism that facilitates the evolutionary response

to frequency-dependent competition (Dieckmann &

Doebeli 1999). This mitigation of frequency dependence

manifests itself as pattern formation in phenotype space.

There are various ways in which assortative mating

could incur fertility costs. One straightforward way to

incorporate such costs in the models studied here is to

assume that the intrinsic growth rate r is negatively

affected by increased assortment, i.e. by decreased sA.

For example, we can replace the birth terms bi(x) in

equations (3.1) and (3.2) by

½1Kc=ð1CsAi
Þ�biðxÞ; ð3:3Þ

so that the new cost parameter c determines the maximal

fertility cost, incurred for very strong assortment (i.e. for

sA/0). With costs of assortment, the pairwise invasibility

plots change qualitatively as shown in figure 5c,d. For low

resident values of sA, the plus and minus regions are now

reversed across the diagonal, so that the plus region is

above the diagonal and the minus region is below the

diagonal. This means that for low resident values of sA,

mutants with higher values of sA than the resident,

i.e. less-assortative mutants, can invade, while more

assortative mutants cannot. Thus, at low values of sA,

there is directional selection for less assortative mating.

However, at high values of sA, there is still directional

selection for increased assortment (i.e. for lower sA). The

point at which the two regimes of directional selection

meet on the horizontal axis is an evolutionary attractor for

the degree of assortment. Once the population has

reached the corresponding degree of assortment, either

from above or from below, no further invasion of nearby

mutants occurs. As expected, costs of assortative mating

thus move the evolutionary attractor for the trait sA away

from 0. Figure 5c,d shows that even for moderately high

costs of assortative mating, the degree of assortment is still

expected to evolve to substantial levels.

Finally, we used an individual-based model to investi-

gate the full evolutionary dynamics of assortment. In such

a model, individuals are described by their ecological trait

x and their assortment trait sA. At each point in time,

every individual experiences a per capita death rate and a

per capita birth rate. The per capita death rate is

determined by the ecological trait and is calculated

according to the death term in equation (2.7) (integrals

are replaced by sums over all individuals in the
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Figure 6. Evolutionary dynamics of the individual-based model for Gaussian and quartic ecological functions and for costs of
assortment set to cZ1 in equation (3.3). (a) In both cases, the initial distribution in the two-dimensional phenotype space was
chosen to describe a randomly mating population (high values of sA) situated at the maximum of the carrying-capacity function.
(b) Evolutionary outcome for Gaussian ecological functions. (c) Evolutionary outcome for quartic ecological functions. After
104 time units, phenotype distributions in both cases have moved into the region in which mating is assortative, permitting
multimodality in the ecological phenotype. The shown bimodal distributions are stable and no longer change appreciably. This
illustrates that pattern formation through the evolution of assortative mating is possible even if assortative mating is costly and
the degree of assortment is inherited sexually. Other parameter values were the same as in figure 5, except for K0 in equation
(2.9), which was set to K0Z600 (in the individual-based model, this parameter can be used to scale the total population size,
which equalled approximately 500 individuals in the shown simulations). The parameter sf,ass describing the width of the
offspring distribution in the direction of the assortment trait was set to 0.05.

354 M. Doebeli et al. Pattern formation in phenotype distributions
population). The per capita birth rate incorporates

potential costs of assortment and is given by equation

(3.3). At each point in time, individual rates are summed

up to give the total birth and death rates B and D,

respectively. The waiting time until the next birth or death

event is drawn from an exponential probability distri-

bution with mean 1/(BCD), and a birth or death event is

then chosen with probabilities B/(BCD) and D/(BCD),

respectively. If a death event occurs, one individual is

chosen probabilistically according to its relative contri-

bution to the total death rate. The chosen individual is

removed, and the birth and death rates of all other

individuals are adjusted accordingly. If a birth event

occurs, one individual is chosen probabilistically accor-

ding to its relative contribution to the total birth rate. The

chosen individual then selects a mating partner probabil-

istically according to the mate choice function given by

equation (A 1) in Appendix A, evaluated for all other

individuals in the population (as before, mate choice is

based on the ecological trait). The resulting mating pair

produces an offspring whose phenotypes are drawn from

two Gaussian distributions with means given by the

midparent values of the two traits and with standard

deviations sf for the ecological trait and sf,ass for the

assortment trait. The offspring individual is inserted, and

the birth and death rates of all other individuals are

adjusted accordingly. This stochastic model naturally

extends to finite populations the deterministic models

introduced and analysed above.

Figure 6 shows examples of the joint evolutionary

dynamics of the ecological phenotype and the assortment

phenotype in the individual-based model. The initial

conditions for these dynamics were chosen such that

populations were mating approximately randomly. As a

consequence, the phenotype distribution for the ecologi-

cal trait was initially unimodal (figure 6a). However,

despite costs of assortment, assortative mating readily

evolved to a degree that allowed the formation of

phenotypic clusters and hence diversification (figure 6b,c).
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4. DISCUSSION
Our results show that even in infinitesimal genetic models

for the dynamics of continuous phenotype distributions in

sexual populations, frequency-dependent selection can

split the population into separate phenotypic clusters

when mating is assortative. If such pattern formation in

phenotype space occurs, the emerging phenotypic clusters

represent incipient species, as they are at least partially

reproductively isolated due to assortative mating. Thus,

frequency-dependent selection can cause adaptive specia-

tion in these models.

Apart from assortative mating, two requirements need

to be met for diversification to occur. The width of the

offspring distribution produced by a given mating pair

must be small enough, and frequency dependence must

be strong enough. Our extensive numerical explorations

of thousands of different cases revealed that when these

conditions are satisfied, pattern formation occurs for a

wide range of assortative mating parameters and for a

wide range of forms of the competition kernel and the

carrying-capacity function. Moreover, assortative mating

can readily evolve in initially randomly mating popu-

lations even if it comes at considerable cost. This is in

accordance with the recent results from explicit multi-

locus models showing that costs to assortment do not

prevent adaptive sympatric speciation unless such costs

are high (Doebeli 2005; Doebeli & Dieckmann 2005;

Bürger & Schneider 2006; Schneider & Bürger 2006;

Bürger et al. in press). In this study, we have focused on

assortative mating based on the ecological trait under

frequency-dependent selection. Such assortment models

are usually called one-allele models (Kirkpatrick &

Ravigné 2002), in contrast with two-allele models, in

which assortment is based on a selectively neutral display

trait. The evolution of assortment in two-allele models for

adaptive speciation has been studied in models with

explicit multilocus genetics (Dieckmann & Doebeli 1999;

Doebeli 2005), with the conclusion that while recombi-

nation between the display and the ecological traits
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hinders adaptive diversification, speciation is nevertheless

possible in such scenarios, even if there are costs to

assortment (Doebeli 2005). It would clearly be interest-

ing to study two-allele scenarios in infinitesimal models

incorporating frequency-dependent competition.

Additionally, in this paper, we have considered only the

costs to assortment that differentiate between different

levels of assortative mating. For a population with a fixed

degree of assortment, these costs are the same for all

individuals. However, it is important to consider also

scenarios in which there is a cost to assortment due to

Allee effects. In this case, individuals may differ in fertility

even in populations with a fixed degree of assortment,

because rare phenotypes will encounter fewer preferred

mates than common phenotypes, and so may have lower

fertility. Allee effects can be incorporated into infinitesimal

models (Noest 1997), and results for the dynamics of

pattern formation in such models will be reported

elsewhere. Implementing the individual-based model

introduced at the end of the previous section is a

straightforward exercise, and we invite readers to explore

the dynamics of phenotypic pattern formation based on

their own models and/or implementations. Whether the

regions in parameter space for which diversification can be

observed are biologically realistic is a question that needs

to be addressed in empirical studies, but mathematically

speaking, it is clear that phenotypic pattern formation is a

robust outcome of infinitesimal models.

In fact, diversification involving assortative mating may

be easier in infinitesimal models than in other more explicit

genetic models based on a finite number of loci with finite

effects, such as those investigated by Dieckmann & Doebeli

(1999), Kirkpatrick & Nuismer (2004), Schneider &

Bürger (2006), Bürger & Schneider (2006) and Bürger

et al. (in press). One obstacle to speciation in such models is

that genetic variation in the ecological trait can be

exhausted if mating is strongly assortative (Kirkpatrick &

Nuismer 2004; Bürger et al. in press). This cannot happen

in deterministic infinitesimal models, in which offspring

distributions always range across the whole spectrum of

phenotypes (albeit with very low frequencies at most

phenotypes). In infinitesimal models, all phenotypes are

thus present at all times, and hence any loss of phenotypes

on which selection can act is not a problem. At any rate, the

results reported here for infinitesimal models are in

surprisingly good overall agreement with models for

adaptive diversification based on adaptive dynamics

and multilocus genetics (Dieckmann & Doebeli 1999;

Doebeli & Dieckmann 2000; Bürger et al. in press),

supporting the understanding that adaptive speciation

due to frequency-dependent interactions can safely be

considered a theoretically plausible scenario.

It should, of course, be analysed whether infinitesimal

models can indeed provide a sufficiently accurate

approximation of multilocus dynamics under frequency-

dependent disruptive selection. This may well be the case

over shorter time spans, involving mostly standing genetic

variation (Bulmer 1980), but the robustness of this

approximation becomes more uncertain when one takes

into account mutation and substitution of allelic effects at

the loci. It could happen that variation typically becomes

concentrated on just one or a few loci (van Doorn &

Dieckmann in press), which is similar to the outcome

predicted in adaptive dynamics models. Alternatively,
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variation might increase at all loci, potentially increasing

sf, which could in principle result in a stable unimodal

equilibrium distribution. In addition, there are other

possible evolutionary responses to frequency-dependent

competition, such as sexual dimorphism and a widening of

individual niche widths (Bolnick & Doebeli 2003;

Ackermann & Doebeli 2004; Rueffler et al. 2006) that

could be considered. Although these are relevant issues,

here we have focused our treatment on the infinitesimal

model used by Polechová & Barton (2005) because, at the

very least, it represents a conceptually interesting and

traditionally well-received case.

Our results are in contrast to those reported by

Polechová & Barton (2005) for infinitesimal models in

which both the competition kernel and the carrying

capacity are Gaussian functions. Rather than focusing on

the actual dynamics of phenotype distributions, results

presented by Polechová & Barton (2005) only concern the

variance of Gaussian equilibrium distributions: these

authors seem to have implicitly assumed that the dynamics

of the infinitesimal model always converges to such

Gaussian solutions. In particular, Polechová & Barton

(2005) did neither consider the possibility that the

Gaussian equilibrium could be unstable nor investigate

models with non-Gaussian ecological functions, which

might not admit unimodal equilibrium solutions in the

first place. Our results show that, in general, the dynamics

of infinitesimal models does not converge towards

unimodal equilibrium distributions when mating is

assortative. While they do not appear to have numerically

solved the infinitesimal model, Polechová & Barton

(2005) mention that their simulations of a related

model, the ‘symmetric’ model with explicit multilocus

genetics, suggest that dynamics in that symmetric model

always converges to Gaussian equilibrium solutions, thus

apparently lending support to their implicit assumption of

stable Gaussian equilibrium distributions for the infini-

tesimal model. However, evaluating dynamical stability of

one model in terms of another model is obviously not

possible. Moreover, it has already been shown by Doebeli

(1996) that the symmetric model also often exhibits

pattern formation in the form of bimodal equilibrium

distributions when mating is assortative.

Based on their analysis of the infinitesimal model,

Polechová & Barton (2005) concluded that the process of

assortment itself, irrespective of any frequency-dependent

competition, was the most important driver of divergence

in sexual models of sympatric speciation. This conclusion

was based on the observation that in the infinitesimal

model with sKZN and sufficiently strong assortment, the

variance of a solution can increase without bound, even in

the absence of frequency-dependent competition (i.e. if

saZN). The possible role of assortment in permitting

genetic divergence is of course a relevant issue. For the

infinitesimal model, equilibrium solutions with infinite

genetic variance exist. For instance, for an infinite width of

the carrying-capacity function, and with very strong

assortative mating (sAZ0) but without frequency depen-

dence, equation (2.12) for determining the equilibrium

variance seq reduces to 1=ðs2
f Cs2

eqÞZ1=s2
eq, which only

admits seqZN as a solution. This solution might be

regarded as an artefact of the assumption of the

infinitesimal model that there is an unlimited supply of

genetic variation in the population. Nevertheless, the
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qualitative conclusion that assortment sometimes can

relax genetic constraints and thus enable an increase in

genetic variation seems valid.

An interesting question is then whether assortment

itself, without frequency-dependent competition, can lead

to pattern formation. For our model, making the

assumptions of very strong assortment (sAZ0), no

frequency dependence (saZN) and a Gaussian carrying

capacity with finite sK, we infer from equation (2.12) that

there is a Gaussian equilibrium distribution with finite

variance s2
eqZ ð1=2ÞðKs2

f Csf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
f C4s2

K

q
Þ, which is

approximately equal to sf sK for small sf. Numerical

simulations indicate that this unimodal solution is always

stable. Similarly, when the carrying capacity is not of

Gaussian form, but still unimodal, even very strong

assortative mating never generated pattern formation in

the absence of frequency dependence. Thus, in our

numerical analysis of the infinitesimal model, speciation

was never observed when frequency dependence was

absent, independent of the strength of assortment.

We can gain an intuitive understanding of the reason for

this conclusion by noting that equation (2.7) in the limit of

sA/0 approaches the asexual case in equation (2.2),

except that the offspring distribution NðuCvÞ=2;sf
acts like a

mutation kernel, smoothing the distribution f. For such

an asexual model, with very high rate of mutation and no

frequency-dependent competition, there is no reason to

expect clustering of phenotypes, since there are no forces

that could counteract the homogenization of a multi-

modally clustered distribution. Thus, under very strong

assortment, the sexual production of offspring, involving

segregation and recombination, can increase genetic

variation in the infinitesimal model, in a manner

analogous to the process of mutation. This source of

variation, however, cannot by itself drive pattern forma-

tion, just as mutation cannot by itself drive pattern

formation. In the infinitesimal models considered here

and in Polechová & Barton (2005), speciation is thus

impossible without frequency-dependent competition.

The results reported here are in complete agreement

with those of Noest (1997), who presented an analytical

study of a special class of infinitesimal models, in which the

carrying capacity was assumed to be uniform (i.e.

independent of x), and the competition kernel was

assumed to be Gaussian. These models admit a uniform

equilibrium phenotype distribution, and Noest (1997)

investigated the conditions under which this uniform

solution becomes unstable in the presence of assortative

mating. His analytical results match our numerical results

in essential aspects: if the offspring distribution is

sufficiently narrow and frequency dependence is suf-

ficiently strong, then the uniform solution can become

unstable when mating is assortative. Noest (1997) did not

study more general forms of the ecological functions, for

which analytical results are not feasible, and he did not

consider the evolution of assortative mating. However, his

results already clearly showed that frequency dependence

and assortative mating can break up the sexual continuum

(Maynard Smith & Szathmáry 1995) through the forma-

tion of multimodal distributions in phenotype space.

Our results lead to the same conclusion for a more general

class of models and evolutionary scenarios: adaptive

speciation can occur as a result of pattern formation in
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phenotype space due to frequency-dependent selection

and the evolution of assortative mating.
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APPENDIX A
Here, we derive expressions for the birth rates b1(x) and

b2(x) used in equations (3.1) and (3.2). The probability of

mating between types 1 and 2 is the product of their

respective preferences determined by sA1
and sA2

. Thus,

for a given phenotype u of mating type 1, the probability

of mating with a phenotype v of mating type i (where iZ1

or 2) is proportional to

A1iðu; vÞZ
1ffiffiffiffiffiffi

2p
p

sA1

exp K
ðuKvÞ2

2s2
A1

 !

$
1ffiffiffiffiffiffi

2p
p

sAi

exp K
ðuKvÞ2

2s2
Ai

 !
:

ðA 1)

In accordance with equation (2.7) for the single-type case,

the offspring distribution of type 1 is then given by

b1ðxÞZ

ð
f1ðuÞ

�
1

N1ðuÞ

ð
½f1ðvÞA11ðu; vÞ

Cf2ðvÞA12ðu; vÞ�NðuCvÞ=2;sf
ðxÞdv

�
du; ðA 2)

where

N1ðuÞZ

ð
½f1ðvÞA11ðu; vÞCf2ðvÞA12ðu; vÞ�dv; ðA 3)

provides the normalization necessary to ensure that, up to

explicit costs of assortment, all phenotypes have the same

total reproductive output. An analogous formula holds for

b2(x).

If there is only one assortment type present, with

assortative mating parameter sA, the above two-type

model reverts to the original single-type model.
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Evolutionarily singular strategies and the adaptive growth

and branching of the evolutionary tree. Evol. Ecol. 12,

35–57. (doi:10.1023/A:1006554906681)

Kirkpatrick, M. & Nuismer, S. L. 2004 Sexual selection can

constrain sympatric speciation. Proc. R. Soc. B 271,

687–693. (doi:10.1098/rspb.2003.2645)
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Polechová, J. & Barton, N. H. 2005 Speciation through
competition: a critical review. Evolution 59, 1194–1210.

Roughgarden, J. 1979 Theory of population genetics and
evolutionary ecology. New York, NY: Macmillan.

Rueffler, C., Van Dooren, T. J. M., Leimar, O. & Abrams, P.
2006 Disruptive selection and then what? Trends Ecol.
Evol. 21, 238–245. (doi:10.1016/j.tree.2006.03.003)

Sasaki, A. 1997 Clumped distribution by neighborhood
competition. J. Theor. Biol. 186, 304–329. (doi:10.1006/
jtbi.1996.0370)

Sasaki, A. & Ellner, S. 1995 The evolutionarily stable
phenotype distribution in a random environment.
Evolution 49, 337–350. (doi:10.2307/2410344)

Schneider, K. A. & Bürger, R. 2006 Does competitive
divergence occur if assortative mating is costly? J. Evol.
Biol.19, 570–588. (doi:10.1111/j.1420-9101.2005.01001.x)

van Doorn, G. S. & Dieckmann, U. In press. The long-term
evolution of multi-locus traits under frequency-dependent
disruptive selection. Evolution.

http://dx.doi.org/doi:10.1038/22521
http://dx.doi.org/doi:10.1038/22521
http://dx.doi.org/doi:10.1046/j.1420-9101.1996.9060893.x
http://dx.doi.org/doi:10.1046/j.1420-9101.1996.9060893.x
http://dx.doi.org/doi:10.1111/j.1420-9101.2005.00912.x
http://dx.doi.org/doi:10.1111/j.1420-9101.2005.00912.x
http://dx.doi.org/doi:10.1086/303417
http://dx.doi.org/doi:10.1086/303417
http://dx.doi.org/doi:10.1038/nature01274
http://dx.doi.org/doi:10.1038/nature01274
http://dx.doi.org/doi:10.1111/j.1420-9101.2005.00912.x
http://dx.doi.org/doi:10.1111/j.1420-9101.2005.00912.x
http://dx.doi.org/doi:10.1006/jtbi.2000.2030
http://dx.doi.org/doi:10.1098/rspb.2000.1194
http://dx.doi.org/doi:10.1098/rspb.2000.1194
http://dx.doi.org/doi:10.1023/A:1006554906681
http://dx.doi.org/doi:10.1098/rspb.2003.2645
http://dx.doi.org/doi:10.1086/338370
http://dx.doi.org/doi:10.2307/2640805
http://dx.doi.org/doi:10.1111/j.1420-9101.2004.00852.x
http://dx.doi.org/doi:10.1038/22514
http://dx.doi.org/doi:10.1103/PhysRevLett.95.078105
http://dx.doi.org/doi:10.1103/PhysRevLett.95.078105
http://dx.doi.org/doi:10.1016/0169-5347(92)90073-K
http://dx.doi.org/doi:10.1016/0169-5347(92)90073-K
http://dx.doi.org/doi:10.1098/rspb.1997.0193
http://dx.doi.org/doi:10.1016/j.tree.2006.03.003
http://dx.doi.org/doi:10.1006/jtbi.1996.0370
http://dx.doi.org/doi:10.1006/jtbi.1996.0370
http://dx.doi.org/doi:10.2307/2410344
http://dx.doi.org/doi:10.1111/j.1420-9101.2005.01001.x

	Multimodal pattern formation in phenotype distributions of sexual populations
	Introduction
	Model description
	Ecological dynamics
	Mating and reproduction
	Competition kernel and carrying-capacity function
	Equilibrium distributions

	Results
	Implications of assortative mating
	Evolution of assortative mating

	Discussion
	M.D. was supported by NSERC (Canada) and the James S. McDonnell Foundation (USA). O.L. was supported by the Swedish Research Council. U.D. acknowledges financial support by the Vienna Science and Technology Fund, WWTF.
	Appendix A
	References


