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Following a pretest, 8 participants who were unfamiliar with algebraic and trigonometric
functions received a brief presentation on the rectangular coordinate system. Next, they
participated in a computer-interactive matching-to-sample procedure that trained formula-to-
formula and formula-to-graph relations. Then, they were exposed to 40 novel formula-to-graph
tests and 10 novel graph-to-formula tests. Seven of the 8 participants showed substantial
improvement in identifying formula-to-graph relations; however, in the test of novel graph-to-
formula relations, participants tended to select equations in their factored form. Next, we
manipulated contextual cues in the form of rules regarding mathematical preferences. First, we
informed participants that standard forms of equations were preferred over factored forms. In
a subsequent test of 10 additional novel graph-to-formula relations, participants shifted their
selections to favor equations in their standard form. This preference reversed during 10 more
tests when financial reward was made contingent on correct identification of formulas in factored
form. Formula preferences and transformation of novel mathematical and stimulus functions are
discussed.

DESCRIPTORS: value, preference, mutual entailment, combinatorial entailment, trans-
formation of function

_______________________________________________________________________________

Many mathematical functions have graphs
that are transformations of a library of functions
on Descarte’s rectangular coordinate system.
Historically, transformation of graphs of func-
tions has been a major component of many
levels of algebra as well as of more advanced
courses in mathematics. Showing students how
a variable changes in defined stages has been
a dynamic learning tool in training mathema-

tical relations. In other words, allowing students
to ‘‘see’’ the transformations that occur when an
equation is modified in its particular character-
istics (Larson & Hostetler, 2001) helps the
learner to understand families of functions and
their relations to each other. This can be
particularly beneficial in showing how transfor-
mations are applied to mathematical functions
on the coordinate axis, and how the equation of
a function can be systematically modified to
transform the graph of any function (Sullivan,
2002).

Nevertheless, instructional strategies aimed at
training transformation of mathematical func-
tions have been circumvented in many high
school and college intermediate algebra classes
(R. Huettenmueller, personal communication,
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June 25, 2005). This is somewhat surprising in
that, traditionally, many state assessment in-
struments of algebra have included questions
regarding transformation of functions (e.g.,
Texas Education Agency, 2002), and most
Algebra I textbooks (e.g., Kennedy, McGowan,
Schultz, Hollowell, & Jovell, 1998; Saxon,
1997) and intermediate algebra textbooks
(e.g., Larson & Hostetler, 2001) emphasize
the importance of exposure to these concepts.
Moreover, this subject matter is often addressed
in varying degrees of complexity within college
algebra (e.g., Larson & Hostetler, 1997),
trigonometry (e.g., Smith, 1998), precalculus
(e.g., Sullivan, 2002), and calculus (e.g.,
Finney, Weir, & Giordano, 2001) textbooks.
Concurrently, math performance in the United
States has been in a state of continuous lag
behind most of the countries in the industrial-
ized world. Findings from the Programme for
International Student Assessment (PISA, 2003)
study indicate that 15-year-old students in the
United States are performing at a disappointing
level in fundamental math concepts when
contrasted with their counterparts in other parts
of the industrialized world. For example, the
United States ranked 24th of 29 countries with
regard to mathematics literacy. Moreover, the
PISA study indicated that 25% of American
students performed below the lowest possible
level of competence in mathematics. This lack
of fluency in the fundamentals of basic
mathematical operations has migrated into
postsecondary education, where more than
one in three college students must enroll in
a remedial math program prior to taking
college-level courses (Steen, 2003).

From the perspective of behavior analysis, it
seems likely that the omission of component
math skills would contribute to a cumulative
dysfluency in prerequisite and related problem-
solving skills (see Binder, 1996, for a discussion
of cumulative dysfluency). Consequently, ap-
plied behavior-analytic methods for training
transformation of mathematical functions appear

to be needed, and indeed recent research has
begun to address this issue (Ninness, Rumph,
McCuller, Harrison, et al., 2005; Ninness,
Rumph, McCuller, Vasquez, et al., 2005). This
work has drawn directly on some of the
procedures and concepts used in various types
of research on stimulus relations (e.g., Lane,
Clow, Innis, & Critchfield, 1998; Leader &
Barnes-Holmes, 2001; Lynch & Cuvo, 1995)
and in particular on relational frame theory
(RFT; Hayes, Barnes-Holmes, & Roche, 2001).
One of the core postulates of RFT is that much
of human relational responding, including
mathematical reasoning, is established in the
form of generalized relational operants through
appropriate histories of multiple-exemplar train-
ing (e.g., Y. Barnes-Holmes, Barnes-Holmes,
Smeets, Strand, & Friman, 2004). In fact, a wide
range of new training protocols using stimulus
relations are beginning to appear in the applied
literature. For example, Rehfeldt and Root
(2005) confirmed that a history of relational
responding generated requesting skills among 3
adults with severe developmental disabilities. In
addition, 1 of the participants demonstrated
tacting and textual behavior. Rehfeldt and Root
speculate that establishing derived relations has
the potential to generate novel forms of request-
ing and perhaps a wide range of complex verbal
skills. According to RFT, there are many such
relational operants (or relational frames), but
they all possess three defining behavioral prop-
erties: mutual entailment, combinatorial entail-
ment, and the transformation of stimulus
functions. It is important that the latter should
not be confused with the mathematical variety,
transformations of graphs of functions. Both
types of transformations are detailed below.

The concept of mutual entailment refers to
the derived relations that may obtain between
two stimuli or events. For example, if a given
stimulus is related to another such that Stimulus
A is the same as Stimulus B, then the derived
relation—B is the same as A—is mutually
entailed. The concept of combinatorial entail-
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ment refers to derived relations among three or
more stimuli. For example, given that A is the
opposite of B and B is the opposite of C, C
same as A and A same as C are defined as
combinatorially entailed relations. Among
many other possibilities (e.g., greater than or
less than), it might be that A is the same as B
and B is the same as C, in which case A remains
the same as C (and vice versa) as combinato-
rially entailed. There are virtually an unlimited
number of ways in which stimuli or events
might be mutually or combinatorially entailed,
and many of these may result in comparisons
other than sameness. Nevertheless, in all cases,
mutually and combinatorially entailed relations
constitute a relational network, and when such
a network has particular stimulus functions, the
functions of other events in that network may
transform or alter in accordance with the
derived relations.

Transformation of Stimulus Functions

The concept of transformation of stimulus
function refers to the changes that occur in the
behavioral functions of stimuli based on their
participation in a particular relational network.
In the present study, transformation of stimulus
function addresses how networks of newly
learned relations may become preferred over
others. As a practical matter, consider the
following brief example from Stewart, Barnes-
Holmes, Hayes, and Lipkens (2001). Perhaps
an English-speaking child has learned that
a nickel has a particular type of financial value
in relation to a dime,

and furthermore has learned the arbitrary compar-
ative relation of size, such that when offered a nickel
or a dime she will avoid the physically larger nickel
to pick the arbitrarily ‘‘larger’’ dime. If when visiting
the Netherlands the child is provided contextual cues
for the derivation of a relation between a ‘‘stuiver’’
and a ‘‘dubbeltje,’’ that is analogous to that between
a nickel and a dime (e.g., ‘‘stuiver is to dubbeltje as
nickel is to dime’’) then she may now derive that
a ‘‘stuiver’’ is half the value of a ‘‘dubbeltje.’’ (p. 77)

Conversely, if in the above example, the child
were to be informed (incorrectly) that the

relation between ‘‘stuiver’’ and a ‘‘dubbeltje’’
was the ‘‘opposite’’ of that of similar coins in her
native land, she might well derive that a ‘‘stuiver’’
is twice the value of a ‘‘dubbeltje.’’ Moreover,
while still operating under the control of such an
inaccurate rule, if given an opportunity to select
one of the two coins, this same individual is likely
to show a preference for the physically larger
‘‘stuiver.’’ Here, the specific value function of the
coins transforms in accordance with their re-
spective contextual cues (verbal descriptions of
their relative value) and independent of any
direct training or reinforcement addressing the
monetary systems involved.

In the same way that a particular discriminative
stimulus may control a class of unique responses
in alternating contexts, a particular rule that
describes a context may alter a class of responses,
but only in the context defined by the rule.
Informing a child that when she is in a particular
country, coins are the same as or the opposite of
similar coins in her native land may control her
preference for those coins, but only for the
duration of her stay in that country. The rules
function as a form of instructional control, but
only conditionally. Although the above account is
only a theoretical example, it has practical
implications for training several types of mathe-
matical relations. The current study focused on
the transformation of preference functions for
specific relational or mathematical networks.

Transformation of Mathematical Functions

When graphs of functions change by the
addition (or subtraction) of terms within
formulas for those functions, they are said to
transform. Collectively, these techniques are
often described as transformations of graphs of
functions (Larson & Hostetler, 2001). Critically,
the concept of relating relations may be
important in developing a behavior-analytic
understanding of the transformation of math-
ematical functions. When a student successfully
learns to relate a particular graph to a particular
formula, for example, this involves more than
simply relating two discrete stimulus events.
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Both the graph and the formula are composed
of multiple stimuli that relate to each other in
specific ways, so relating graph to formula thus
involves relating one set of relations to another
set of relations.

For instance, many functions have graphs
that interrelate in their various types of vertical
and horizontal shifts, reflections, compressions,
and stretches. As one example of a mathematical
transformation, the addition of a positive
constant inside of the argument shifts the
function to the left (negative direction), whereas
the subtraction of a constant inside of the
argument produces a shift to the right (positive
direction). For many students, horizontal
transformations run contrary to expectation,
and many students have difficulty learning to
identify graphed representations of such trans-
formations when displayed individually or in
multiple combinations of horizontal and verti-
cal shifts. Pilot research in our laboratory
suggests that horizontal shifts are especially
difficult for many students when the argument
entails a negative x coefficient and a negative
constant (e.g., y ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

{x { 4
p

). However, our
previous investigations have demonstrated that
training students to factor via matching-to-
sample (MTS) procedures allowed them to
learn horizontal shifts more efficiently and to
derive more complex transformations for
a much wider range of formulas and graphed
analogues.

For example, Ninness, Rumph, McCuller,

Vasquez, et al. (2005) employed a series of

MTS procedures in training formula-to-graph

relations. Participants were tested on 36 novel

variations of the original equations, and most

demonstrated substantially improved perfor-

mance. Participant error patterns were identi-

fied with the help of an artificial neural network

system called the self-organizing map (Koho-

nen, 2001). Subsequently, revised software was

developed to remediate errors, and participants

showed improved performances in identifying

mathematical relations. In a follow-up study

(Ninness, Rumph, McCuller, Harrison, et al.,
2005), participants took part in an MTS
procedure in which they received training on
particular standard formula-to-factored formula
and factored formula-to-graph relations as these
formulas pertain to reflections and vertical and
horizontal shifts. Participants demonstrated
combinatorial entailment by identifying stan-
dard formula-to-graph relations and showed
high levels of accuracy in identifying 40 novel
transformations of graphs of mathematical
functions. The fact that the participants were
capable of identifying novel transformations
indicated that they had not simply learned to
relate formula and graphs as discrete stimulus
events. Instead, they had learned to relate the
relations contained within the graphs and
formulas to each other, and this relating of
relations was then applied to the novel trans-
formation problems. The present study sought
to extend this research.

In most mathematical textbooks, equations
of functions are illustrated in standard form,
starting with the highest degree term and
continuing with terms in descending order.
(Depending on the function, some texts refer to
this as the general form of the equation.) In
contrast, factored equations are written as the
products of lower degree expressions, and they
are most often used for explanatory purposes or
to demonstrate the derivation of various
mathematical relations (Sullivan, 2002).

To delineate the present study from our
previous work in this area, in the present
investigation we attempted to expand our
analysis to include novel graph-to-formula
relations as well as the transformation of
stimulus functions of formulas. Unlike most
laboratory research in the area of derived
stimulus relations (e.g., Dougher & Markham,
1994; O’Hora, Roche, Barnes-Holmes, &
Smeets, 2002), the current investigation at-
tempted to address contextual control by
manipulating verbal instructions that address
novel mathematical relations. First, as in our
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previous research (Ninness, Rumph, McCuller,
Harrison, et al., 2005; Ninness, Rumph,
McCuller, Vasquez, et al., 2005), participants
were given a brief lecture, followed by comput-
er-interactive training on the relations between
standard formulas and more easily understood
factored formulas as well as factored formulas
and their graphical representations. MTS pro-
cedures were used to assess mutual entailment
and combinatorial entailment, and participants
were probed over an array of novel and complex
formula-to-graph relations. However, unlike
any of our previous studies in this area,
participants also were probed on 10 novel
graph-to-formula relations, in which two of the
six comparison items were correct. One of the
correct formulas was arranged in standard form
and the other in factored form. Then, we
attempted to transform participants’ preference
for particular forms of correct answers by
informing them that mathematicians prefer to
express equations in standard rather than
factored form. Finally, we implemented a con-
trol condition in which the experimental
contingencies were altered by informing partic-
ipants that they would receive increased finan-
cial reward for selecting correct equations
represented in the factored form rather than
the standard form.

METHOD

Participants and Setting

After obtaining informed consent and ad-
ministering a pretest to determine individuals’
familiarity with various mathematical functions,
the experimenters dismissed anyone who dem-
onstrated any prior knowledge of transforma-
tion of mathematical functions. Correctly
answering more than three of 15 pretest items
precluded an individual from participating in
the experiment.

Ten participants (9 women and 1 man),
ranging in age from 19 to 35 years, began the
experiment, but 2 did not complete the entire
training and testing sequence. All participants

were undergraduates or graduate students at
Stephen F. Austin State University. Participants
were recruited from various academic programs
by way of prearranged agreements with profes-
sors to offer this opportunity to their classes. All
participants received five test points on their
final examination for taking part in the
experiment. There were 70 tests of novel
relations in total. Each participant was paid
a maximum of $8.00 for the entire experiment,
with 10 cents per correct response during the
assessment of novel relations (i.e., the first 60
items) and 20 cents per correct response during
the last 10 trials. After completing the study, all
participants were debriefed and compensated
according to the number of correct responses
they provided in the assessment of novel
formula-to-graph and graph-to-formula rela-
tions. All sessions were conducted in rooms of
the university that remained free of external
diversions throughout the course of the exper-
iment.

Apparatus and Software

Participants were seated individually at a table
in a small session room containing a Hewlett
Packard Pavilion ze5170 (Pentium 4 2-GHz
processor with 512 MB RAM) laptop computer
that displayed both mathematical equations and
graphical representations of equations on a white
background. A Labtec AM 252 microphone
adjacent to each computer was conspicuously
attached to a side port of the computer.
Training and MTS procedures and the re-
cording of responses were controlled by the
computer program, which was written by the
first author in Visual Basic 6 and C++. The
software provided math instructional tutorials,
displayed graphs, and recorded the accuracy of
responses throughout all phases of the study.
The experimental sessions were conducted on
the laptop with an attached infrared mouse.

Design and Procedure

After a brief pretraining presentation (Stage
1), the participant was taken to the computer in
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an individual treatment room for Stage 2, where
computer-interactive training was conducted.
As in Ninness, Rumph, McCuller, Harrison, et
al. (2005), participants were trained and tested
on A-B and B-C relations and the assessment of
mutually entailed (B-A and C-B) and combi-
natorially entailed (A-C and C-A) relations. The
computer program then assessed the participant
on 40 novel relations between formulas and the
graphs of these functions.

At the conclusion of the assessment of novel
formula-to-graph relations, participants’ prefer-
ences for factored and standard forms of the
equations were assessed. In this phase, we
attempted to produce an experimental analogue
of the transformation of stimulus functions, or
change in formula preference, by way of
providing contextual cues in the form of verbal
rules that described a mathematical preference
for particular types of formulas over others. In
attempting to examine the transformation of
stimulus functions, rules were used to establish
contextual control over the discrimination of
correct formulas from the comparison array of
incorrect formulas. Participants were exposed to
comparison items with four incorrect formulas
and two correct formulas. One of the correct
formulas was represented in standard form and
the other in factored form. After participants
responded to 10 graph-to-formula comparisons,
they were given verbal rules indicating that
equations of graphs are preferred when they are
represented in their standard form. Subsequent
to responding to a set of 10 graph-to-formula
comparisons, we implemented a control condi-
tion in which we told participants that they
would receive supplemental reinforcement
(20 cents rather than 10 cents) for selecting
the correct comparison formula in factored
form rather than standard form.

Stage 1: Pretraining on basic mathematical
relations. The experimenter provided a pretrain-
ing lecture to participants individually using
PowerPointH illustrations of the rectangular
coordinate system. As illustrated in Figure 1,

the experimenter read rules regarding square
root operations from the screen and answered
questions, but only to the extent that the
questions pertained directly to sample-to-com-
parison items (A-B or B-C). The relations of B-
A, C-B, A-C, and C-A were not addressed.

Step 1: Provide A-B rules. In pretraining A-B
rules, the experimenter explained that a negative
coefficient of x inside the argument of the
standard form of a formula often makes
graphing the function more complicated and
that the standard form of the formula can be
factored to remove any negative signs that
preceded the x variable. It was explained that
factoring the standard formula makes it more
conducive to graphing techniques.

In this narrative account of A-B relations,
standard formulas were samples, and factored
formulas served as comparisons. For instance,
participants were shown a basic square root
function in its standard form and how to
express it when a negative one coefficient is
factored out of the argument. In the pretraining
and computer training phases, we used the
words ‘‘negative sign’’ rather than ‘‘21 co-
efficient’’ because most of our participants had
no familiarity with the latter term.

Step 2: Provide B-C rules. Because partici-
pants were unfamiliar with the Cartesian
coordinate system, the experimenter noted that
the horizontal number line is identified as the x
axis and that the vertical number line is called
the y axis. Participants were told that various
types of formulas were called functions and
could be employed to produce graphs. Using
PowerPointH slides, the experimenter read rules
explaining that a negative sign inside the radical
or the parentheses reflects the graph over in
(about) the y axis and that a negative sign
outside the radical or the parentheses reflects the
graph down in (about) the x axis. Likewise,
a constant value added or subtracted outside the
radical or the parentheses moves the graph up or
down the y axis in the same direction as
indicated by the sign. The illustrations and rules
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provided on the slide presentation were identi-
cal to those of the computer-interactive MTS
procedures that followed this presentation.

Step 3: Provide A-B exemplar. Participants
were exposed to an instance of an A-B test screen.
In this illustration, A was represented as
a standard square root formula and B as one of
six factored square root formulas, or compar-
isons. The experimenter told participants that
the same type of screen image would be used
during the computer-interactive training session.
Using a handheld laser pointer, the experimenter
identified the correct comparison item.

Step 4: Provide B-C exemplar. Participants
were exposed to a slide of a B-C test screen.

Here, B represented the factored formula, and
C was one of six possible graphical representa-
tions of B. Again, using the laser pointer, the
experimenter identified the correct comparison
item displayed on the screen. (The A-B and B-C
PowerPointH illustrations were not the same as
those used in Stage 2 for the actual computer-
interactive training.)

As in Ninness, Rumph, McCuller, Harrison,
et al. (2005), all participants were given the
same 15-min pretraining presentation regarding
the basics of the rectangular coordinate system
and the relation between the square root
formula and its graphical representation. Fol-
lowing the presentations, participants were

Figure 1. Stage 1 included giving rules and rules with exemplars by way of a PowerPointH presentation. Stage 2
involved computer-interactive conditional discrimination MTS training.
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escorted to the session room, and the experi-
menter demonstrated a point-and-click re-
sponse on a sample screen and made sure that
the participants could perform this type of
response independently. Participants were told
that mathematical rules would be posted on
various screens and were directed to read these
rules into the microphone adjacent to the
computer each time the program instructed
them to do so.

Stage 2: Training and testing of mathematical
relations. Before beginning the experiment, all
participants were advised that at various points
during the session, the computer would instruct
them to stop responding. At that time, they
were to contact the experimenter, who was
located in an adjacent office. Stage 2 involved
conditional discrimination MTS training; the
program presented the participants with visual
displays in the form of mathematical rules and
emphasized that these rules should be stated
aloud by reading them into a microphone.
Thus, participants read and practiced the
behaviors specified by mathematical rules. After
training and assessing standard formula-to-
factored-formula (A-B) relations and factored-
formula-to-graph (B-C) relations, participants
were tested for mutually entailed formula-to-
formula (B-A) relations and graph-to-formula
(C-B) relations. Then, the combinatorially
entailed relations between the standard form
of the formulas and their respective graphs (A-
C), as well as the graphs of the functions and
the original standard formulas (C-A), were
tested.

For samples and comparisons, formula size
was set at 24 using Times New Roman font.
When displayed as samples, graphs were
approximately 2 in. square on the computer
screen; however, when displayed as comparisons
in groups of six, they were reduced to
approximately 1.5 in. square each. On any
occasion during which a participant emitted an
incorrect response, the program randomized all
comparison elements on all screens and reex-

posed the participant to the entire MTS
protocol, starting from the beginning.

Step 1: Train A-B relations, test A-B. As in
Ninness, Rumph, McCuller, Harrison, et al.
(2005), computer-interactive training of A-B
included the following details. As the program
displayed a mathematical rule on each training
screen, the computer instructed the participant
to read this rule into the microphone. For
example, the participant read a rule indicating
that the standard form of the square root
formula can be factored to remove any negative
signs that precede the x variable. After reciting
each rule twice, the participant clicked ‘‘next’’
to advance to the screen that assessed A-B
performance (see Appendix A). Unlike the
previous training procedures employed in
Ninness, Rumph, McCuller, Harrison, et al.
(2005), the computer program did not generate
any audio output expressing the rules displayed
on the screen, nor did we attempt to record
participants’ reading of the rules displayed on
the computer screen.

Step 2: Train B-C relations, test B-C. The
same MTS procedure was used to train and test
B-C relations but focused on rules pertaining to
factored equations and their graphs. Rules
regarding reflections and vertical and horizontal
shifts associated with various functions on the
coordinate system were displayed and then read
aloud by participants. For example, the screen
displayed solid blue lines to represent the basic
square root functions and dashed red lines to
illustrate transformations of the square root
functions that occurred when the formulas
changed. These rules described mathematical
relations such as, ‘‘Negative sign inside the
radical is reflected over in the y axis. A positive
constant inside the radical or the parentheses
moves the function in the opposite direction
along the x axis.’’ (The program used the words
‘‘over in’’ rather than the conventional ‘‘about’’
based on pilot testing feedback that indicated
this phrasing was easier for many participants to
understand. See Appendix B for an illustration.)
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After these rules were displayed twice, the
participant clicked ‘‘next’’ to advance to the
screen that assessed B-C performance. Although
the assessment screens varied the specific values
of the constants within the formulas, the correct
answers were always obtainable by performing
in accordance with the previously displayed
rules.

Step 3: Test B-A, test C-B, test A-C, and test
C-A. This step assessed the mutually entailed
B-A and C-B relations and the combinatorially
entailed relations between the graphs of the
functions and the original standard equations
(A-C). Also, the combinatorial relations between
the standard forms of the formulas and their
graphs (C-A) were tested (see Appendix C).

All mathematical rules, formulas, and graph-
ical representations for horizontal and vertical
shifts as well as for reflections in the x axis and y
axis were trained according to this protocol. In
total, the program trained and tested two
versions of the square root function and two
versions of the common logarithmic function.

Figure 2 illustrates the trained and assessed
relations addressing the log function A2, B2,
and C2. Following the trained (A-B and B-C)
relations, the program tested the mutually
entailed (B-A and C-B) relations and combina-
torially entailed (A-C and C-A) relations.

Correction procedures and mastery criteria.
Mastery of the basic mathematical relations
required the participant to complete one error-
less sequence of all four classes of related
mathematical functions. This included six
MTS tests (A-B, B-C, B-A, C-B, A-C, and
C-A) within each class of functions. Therefore,
mastery required 24 consecutive correct identi-
fications of the formula-to-graph and graph-to-
formula relations. Participants who made MTS
errors during the assessment of relations were
returned to the beginning of the program; the
program randomized all comparison elements
before reexposing participants to the MTS
protocol. If a participant required more than
five reexposures to the protocol, the program

ended, and the participant was compensated,
debriefed, and excused from the study.

Assessment of novel formula-to-graph relations.
After demonstrating mutual entailment and
combinatorial entailment on both versions of
the square root functions and both versions of
the common logarithmic functions, participants
were tested on novel relations between formulas
and their graphs—specifically, 40 complex
variations of the trained mathematical formu-
la-to-graph relations. For each test item, the
participant attempted to match a new formula
with a graph from a selection of six graphs not
previously used during any training and
assessment screens. (Within any MTS test, the
comparison graphs were all the same type of
mathematical function; for instance, a sine
formula was only compared against variations
of sine graphs.) No accuracy feedback or
reexposure to training was given during assess-
ment of novel formula-to-graph relations. This
task required participants to identify graphs
relating to formulas with new combinations of
positive and negative constants inside and
outside the arguments of 40 new mathematical
functions. These novel formula-to-graph assess-
ments included multiple combinations of
reflections and vertical and horizontal shifts
for complex logarithmic, square root, exponen-

Figure 2. A square root function where A2 is in

standard form, B2 is in factored form, and C2 is the
graphical representation of this function.
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tial, square, cubic, tangent, and sine functions.
Performing these MTS tasks did not require the
participant to become familiar with the dynam-
ics of each type of mathematical function.
However, successful performance did require
the participant to identify new and complex
combinations of reflections and shifts as they
occurred among a wide array of diversified
functions. In effect, this task involved relating
specific relations expressed within the formula
to specific relations illustrated within the
graphs.

Figure 3 illustrates one of the 40 novel
formula-to-graph tests. The solid line on each
of the six comparison graphs represents the
basic function prior to transformation. The
dashed line shows the graph produced by the
novel formula. When given the formula for
a cube function with a negative constant 4
inside the argument (shifting right) and a neg-
ative 4 outside the argument (shifting down),
participants who answered correctly chose C as
the mathematical transformation of this func-
tion.

Figure 3. One of the 40 tests of novel formula-to-graph relations. The solid lines represent the basic cube function (y
5 x3), and the dashed lines indicate the possible transformation when the formula becomes more complex. A participant

who identified a novel variation of the formula that included a negative constant 4 within the argument and a negative
constant 4 following the argument would select C as the correct comparison item.
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Assessment of novel graph-to-formula relations.
After providing 40 formula-to-graph compar-
isons in the format illustrated in Figure 3, we
assessed participants’ preferences for factored
and standard forms of the equations. Here, the
program provided 10 trials of novel graph-to-
formula comparisons. On each screen, a graph-
ical representation of a function was positioned
at the top and an array of six equations was
displayed below. In each array, two of the
comparisons were correct: one in factored form
and the other in standard form. Figure 4 shows
1 of the 10 screen displays employed during this
phase, where F represents the standard form and
D represents the factored form of the argument
of this function.

Identifying standard arguments. After the
participant responded to the 10 graph-to-
formula comparisons, the computer interrupted
the program with the following message:

‘‘Please stop and contact the experimenter.
OK?’’ After being summoned, the experimenter
gave the participant a brief statement regarding
the types of equations preferred by mathema-
ticians and others working in related academic
areas. While pointing to a graph and its
equation within a precalculus textbook (Sulli-
van, 2002), the experimenter stated,

Generally, standard formulas of graphs are consid-
ered to be more elegant and sophisticated since they
contain fewer terms and operations. In the next part
of the experiment, there could be more than one
form of the correct answer on some tests. Mathe-
maticians try to identify equations in their standard
form if they are available.

The participants then clicked ‘‘OK’’ on the
input box of the computer screen and pro-
ceeded to respond to another series of 10 novel
graph-to-formula comparisons in which two of
the comparison items were correct. Again, one
of the correct answers was in standard form and
the other was in factored form.

Identifying factored arguments. After the
participant responded to the set of 10 graph-
to-formula comparisons, the program again
interrupted the testing procedure by displaying
the message, ‘‘Please stop and contact the
experimenter.’’ After being summoned, the
experimenter gave the participant the following
revised statement regarding the experimental
contingencies: ‘‘This time you can double your
earnings. We will give you 20 cents each time
you identify the correct formula in its factored
form.’’ This phase entailed 10 more tests of
graph-to-formula relations with two mathemat-
ically correct equations within each set of six
comparisons. Again, one of the two correct
equations in the array of comparisons was the
standard form and the other was the factored
form. At the conclusion of the 10th test, the
program ended, and the participant was de-
briefed and reimbursed according to the
number of comparison items correctly identi-
fied during the assessment of all novel relations.
Figure 5 illustrates the first 10 formulas used in
assessing novel graph-to-formula relations, dis-

Figure 4. One of the 30 tests of novel graph-to-
formula relations. The solid line represents the basic

exponential function (y 5 x3), and the dashed line
indicates the transformation when the formula becomes
more complex. A participant who identified that this

function included a negative coefficient of x, a positive
constant 6 within the argument, and a positive constant 4
following the argument would select F as the correct
comparison item in its standard form or D as the correct

comparison item in its factored form.
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played in standard and factored forms. The
remaining 20 formulas were variations of the
same types of formulas listed in this figure.

RESULTS

One of the participants made a series of
errors during the MTS training procedure. She
was reexposed to training five times, after which
the computer automatically exited her from the
program. She was debriefed, compensated, and
excused from the study. A 2nd participant was
interrupted during her first exposure to the
training sequence and was unable to return due
to a scheduling conflict. The remaining 8
participants completed the MTS training pro-
cedure in fewer than five exposures. Table 1
shows the number of required exposures for
each participant to complete the training of all
A-B and B-C relations.

Figure 6 shows the 40 probe formulas
employed in the test of novel formula-to-graph
relations. The subscripts of y identify the
sequence in which these formulas were pre-
sented by the computer program. For example,
y20 5 log(x + 4) was the 20th item given in the
assessment of novel formula-to-graph relations.
All but one of these test items are identical to
those used in the Ninness, Rumph, McCuller,
Harrison, et al. (2005) study.

The top of Figure 7 shows the pretest error
patterns of our eight participants on 15
formula-to-graph test items. Although the first
15 items in the pretest were reemployed, all the
comparison items were randomized during the

Figure 5. The first 10 formulas as displayed in
standard (left) and factored forms (right). Two additional
similar sets of 10 formulas in standard and factored forms

were used during the experiment.

Table 1

Number of Training Exposures Required to Attain Mastery

Participant A1-B1 B1-C1 A2-B2 B2-C2 A3-B3 B3-C3 A4-B4 B4-C4 Total

1 2 2 2 2 1 1 1 1 12
2 3 3 3 3 3 3 3 1 22
3 3 3 3 3 3 1 1 1 18
4 2 2 2 2 2 2 1 1 14
5 1 1 1 1 1 1 1 1 8
6 3 3 2 2 2 2 2 2 18
7 2 2 2 2 2 1 1 1 13
8 3 3 3 3 2 2 2 2 20

Figure 6. The 40 probe formulas employed in the test

of novel formula-to-graph relations. The subscripts of y
identify the sequence in which these formulas were
presented by the computer program.
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computer-interactive test of novel relations that
followed MTS training. Items 16 through 40
were composed of 25 novel formulas. Partici-
pants were not exposed to any of these formulas
(or their graphs) during any part of their
training or pretraining. Pretest results appear
to confirm that the participants were unfamiliar
with the types of formula-to-graph relations
used in this experiment.

Error Pattern 1 includes 3 participants who
demonstrated above 92.5% accuracy during the
assessment of novel stimulus relations. All 3
failed to respond correctly to the 11th test item
(y11 in Figure 6), which included a leading 21
coefficient before the argument of a square
function. These participants shared no other
common errors in the testing sequence.

Error Pattern 2 shows 2 participants who
correctly responded to the novel mathematical
relations with an accuracy level at or above
82.5%. They shared errors on Novel Test Items

6, 14, 15, 32, and 40. Item 6 required
identification of a graph when its formula
included a negative square root with a negative
argument. Item 14 involved a novel exponential
equation containing the number 4 in the base
and exponent. Item 15 was very similar but
involved an exponential equation containing
the number 4 in the base and a constant 4
subtracted outside the argument. Item 32
involved a square root function with a negative
argument and a constant 4 added outside the
argument. Item 40 addressed a novel cube
function in standard form. This function
included a leading negative coefficient of x
and a negative constant 4 inside the argument.
This item was also missed by 1 other
participant, who was not classified in this error
pattern.

Error Pattern 3 shows 2 participants who
made several errors consistent with those seen in
Error Pattern 2. These participants also missed

Figure 7. The top block shows the correct and incorrect responses on the pretest. Problem numbers are listed along

the x axis for each of the 8 participants. Accurate responses contain the digit 0; errors are shaded blocks containing 1. The
four blocks beneath show the same participants’ error patterns following training and classification by error patterns.

TRANSFORMATIONS OF FUNCTIONS 311



Item 16, which was arranged in a similar
exponential format. In addition, both partici-
pants failed to correctly identify the novel
formula-to-graph relation in Items 3, 16, 17,
30, and 34; however, there do not appear to be
any unique or distinguishing characteristics
regarding these test items. Participants in this
error pattern correctly identified novel mathe-
matical relations with an accuracy level at or
above 75%. Surprisingly, all of the participants
in Error Patterns 1, 2, and 3 correctly identified
Item 29, which included a double negative sign
preceding the argument of a square function.

Error Pattern 4 includes only 1 participant,
who showed more difficulty responding to the
novel formula-to-graph relations than the other
participants. This participant made errors
consistent with those of other participants and
several other errors that defied classification
with other participants. Nevertheless, she did
correctly identify 62.5% of the novel formula-
to-graph relations. Table 1 shows that she
required more training exposures than any of
the other participants to obtain mastery. Other
than this participant, there appears to be very
little correspondence between the number of
exposures required to reach the mastery criteria
and the number of errors that occurred during
the assessment of novel relations.

Thirty additional test screens (41 to 70)
assessed transformation of novel graph-to-
formula relations. These screens contained two
correct formulas in the array of six comparisons.
For each array of comparisons, one correct
formula was presented in standard form and the
other in factored form. Thus, for any given test,
the probability of being correct was approxi-
mately 33%; we did not attempt to categorize
these outcomes by analyzing error patterns. The
first 10 graph-to-formula tests were given
directly after the tests of novel formula-to-
graph relations. Participants were not informed
that we had included two forms of correct
formulas on each test screen (as shown in
Figure 4). Figure 8 shows that 7 of the 8

participants tended to select formulas in their
factored form during the first 10 novel graph-
to-formula relations. Participant 6 correctly
responded to all 10 tests, selecting five formulas
in factored form and five in standard form.
Only Participant 2 demonstrated more than
one error during these tests of novel graph-to-
formula relations.

After responding to the 10th test screen in
this series, the computer displayed a message
indicating that the participant was to stop and
contact the experimenter, who provided con-
textual cues in the form of rules. Here,
participants were informed that mathematicians
had a distinct preference for formulas expressed
in standard form; subsequently, all 8 partici-
pants demonstrated a conspicuous shift toward
selection of formulas in standard form. How-
ever, 5 of the participants still selected two or
fewer formulas in their factored form. Only
Participant 2 made more than one error during
these tests.

This trend shifted when the experimenter
indicated that reinforcement would be doubled
for identifying formulas in their factored form.
During the final 10 tests, only 3 participants
made errors and 5 of the participants selected
factored formulas exclusively. In general, for-
mula selection was consistent with the contex-
tual cues provided by the experimenter. Partic-
ipants averaged 53 min (range, 43 to 67 min)
to complete training, MTS testing, testing of
novel formula-to-graph relations, and testing of
novel graph-to-formula relations.

DISCUSSION

The current results replicate and extend those
of our earlier investigations of the relating of
mathematical formulas to mathematical equa-
tions (Ninness, Rumph, McCuller, Harrison, et
al., 2005; Ninness, Rumph, McCuller, Vas-
quez, et al., 2005). After completion of training,
participants were exposed to 40 novel formula-
to-graph tests and 30 novel graph-to-formula
tests. Of the 8 participants who completed the
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Figure 8. Participants tended to select formulas in their factored form during the first 10 novel graph-to-formula
relations. All 8 participants tended to shift their selection preferences in favor of the standard forms of the formulas

following the manipulation of rules suggesting that mathematicians favored formulas expressed in their standard form.
This trend shifted when the experiment indicated that reinforcement would be doubled for identifying formulas in their
factored form.
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MTS training sequence, 7 demonstrated sub-
stantially improved performance in identifying
novel formula-to-graph relations. Then, partic-
ipants were exposed to a series of 10 novel
graph-to-formula tests. In each trial, six com-
parison formulas included one correct version
of the equation in factored form and one correct
version in standard form. Our data suggest that
participants tended to select equations in their
factored form. This outcome is not especially
surprising in that the factored forms of these
equations require fewer operations to derive the
transformation of graphs of functions.

In the next stage, we manipulated two different
contextual functions. First, we gave the partici-
pants a brief lecture regarding the mathematical
importance of being able to recognize equations
in their standard form and subsequently assessed
their performance with 10 more tests of novel
graph-to-formula relations. Here, participants
demonstrated a shift in preference and tended
to select comparison equations in their standard
form. Then, we provided contradictory instruc-
tions for the final 10 test items, with increased
financial reward contingent on identifying for-
mulas in their factored form. Specifically,
participants received 20 cents per correct prob-
lem for identifying the factored form of the
mathematical relations (10 cents for the standard
form). Participants exhibited a systematic prefer-
ence for factored forms of the comparison
equations. Results confirm that participants
changed their formula preferences in accordance
with the contextual functions that were in effect.

Shifting Formula Preferences

Given that graphed and factored formulas
were paired during B-C training, selecting
a standard formula in the presence of a graph
entailed more complex combinatorial relations
than selecting a factored formula. Therefore,
participants’ initial preference for factored
forms of the formulas is not surprising.
However, attention should be given to the
notable shift in preferences in favor of the more
evasive standard form of the formulas when

given specific rules stating that standard
formulas of graphs are considered to be more
elegant and sophisticated. Likewise, the fact that
participants once again shifted their preferences
when given rules informing them that they
could double their earnings by simply identify-
ing the correct formula in its factored form
merits consideration.

Just as preference for large versus small coins
may change in accordance with the currency
rules established across different countries, so,
too, might a student’s preference for particular
types of mathematical formulas alter in accor-
dance with the rules established across experi-
mental or real academic settings. Indeed, there
are many instructors of advanced mathematics
classes who would disapprove of expressing
formulas in factored form (despite the fact that
the factored forms might be more explanatory).

This begs the question as to whether verbal
rules are sufficient to constitute a form of
contextual control. It has been argued that once
a repertoire of relational framing has been
established, relational frames and networks can
then function as contextual cues for relational
framing itself (e.g., D. Barnes-Holmes et al.,
2001). The finding that a transformation of
function occurs under the control of a rule (i.e.,
relational network) is consistent with this
argument. These data, particularly the shifts in
preference from factored to standard and back
to factored equations, demonstrate a transfor-
mation of stimulus functions in the context of
a mathematical relating relations task. Stewart,
Barnes-Holmes, Roche, and Smeets (2002)
reported a broadly similar effect, but in the
context of a basic experimental procedure that
did not articulate directly with an educational,
or indeed any, applied behavior-analytic con-
cerns. The extent to which our participants
came under the immediate and flexible control
of contextual cues in the form of rules regarding
the value of standard formulas [e.g., y 5

2ln(2x + 6) + 8] or factored formulas [e.g., y
5 2ln(2(x 2 6)) + 8] demonstrates how easily
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such rules may alter newly established complex
repertoires. Whether or not participants selected
the factored or standard versions of the correct
answers depended not only on the newly
derived repertoires for graph-to-formula rela-
tions but also on verbal rules describing the
changing value of particular types of formulas
across experimental conditions.

The transformation of stimulus functions has
been demonstrated many times in the labora-
tory environment (e.g., Stewart et al., 2002);
however, in the laboratory, contextual control is
typically established using novel arbitrary stim-
uli (but see Kohlenberg, Hayes, & Hayes, 1991,
who employed gender-specific names as con-
textual cues). In the current study, we used
natural language as a means for establishing
contextual control. The finding that a trans-
formation of function occurs under the control
of a rule (i.e., relational network) is consistent
with our view that once a repertoire of relational
framing has been established, relational frames
and networks can then function as contextual
cues. Insofar as this view is correct, there may be
considerable benefit in conducting further
studies in which natural language and RFT
training procedures are intermingled. Doing so
will allow researchers to determine if, and to
what extent, the RFT approach to complex
human behavior is valuable in producing greater
prediction and influence in applied or natural
settings.

If our participants had learned simply to
identify four three-member classes composed of
formulas and graphs in the same manner
employed in laboratory arrangements using
completely arbitrary shapes or nonsense sylla-
bles, then we might expect less robust perfor-
mance levels in tests of novel mathematical
relations. However, the formula-to-graph and
graph-to-formula relations identified by partic-
ipants in this study were not directly compara-
ble and allowed participants to identify net-
works of relations extending from the exemplars
provided during training. Our view, therefore,

is that participants were not relating samples
and comparisons as unitary stimuli but were
relating relations contained in the formulas to
the relations found in the graphs. Consequent-
ly, it would be overly simplistic to argue that the
current data could be described simply in terms
of four three-member equivalence classes (see
Hayes & Barnes, 1997, for a related discussion).

Multiple Exemplars in Mathematics

Multiple-exemplar training and derived
transformation of functions have produced
a series of impressive results with children
across a wide range of skills (e.g., Y. Barnes-
Holmes, Barnes-Holmes, Roche, & Smeets,
2001), and perhaps it is not surprising that such
methods produced similar effects in training
mathematical relations. Nevertheless, multiple-
exemplar training procedures that employ
a wider range of factoring techniques in
mathematics require more extensive investiga-
tion. For example, as noted in Ninness,
Rumph, McCuller, Harrison, et al. (2005),
a quadratic function may be expressed as y 5 x2

2 8x ; however, in this form, the equation does
not immediately lend itself to graphing.
Factoring (completing the square) allows one
to obtain y 5 (x 2 4)2 2 16. This version of
the formula increases the likelihood that
a participant who has learned to identify
formula-to-formula and formula-to-graph rela-
tions, by way of the above experimental
exercises, may also identify y 5 (x 2 4)2 216
as a graph that shifts horizontally to the right by
4 units and vertically 16 units.

As alluded to earlier, the concept of relational
frames indicates that derived relations that
could address a virtually infinite number of
diversified relations within a network of
mutually entailed and combinatorially entailed
relations such as same as, greater than, less than,
opposite of, inverse of, or reciprocal of. In our
laboratory, we have recently explored recipro-
cals functions in which, given that A is the
reciprocal of B and B is the reciprocal of C, C
same as A and A same as C are derived as
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combinatorially entailed. For example, a func-
tion such as y 5 sin(x) has a reciprocal of
cosecant function, y 5 csc(x), and the graphs of
these functions generate lines going in different
directions along the coordinate axis. Taking the
reciprocal of the cosecant function, we obtain y
5 1/csc(x). Here, the reciprocal of a reciprocal
is combinatorially entailed such that y 5 sin(x)
is the same as y 5 1/csc(x), and the graphs of
these functions appear precisely the same as they
form a Pythagorean identity (see Figure 9 for an
illustration of the equations and their respective
graphical functions). Note that only the formulas
in Figure 9 actually serve as samples and
comparison items within our training protocols;
however, the graphs below each formula help to
illustrate the topographic changes produced by
the respective formulas within the relational
network. We are developing several programs on
our experimental Web site to train these types of
reciprocal functions (see www.sfasu.edu/hs/

TransSinCosCscSec06.html as one illustration
of this protocol in progress). Indeed, preliminary
findings using similar types of RFT protocols are
most promising (Ninness et al., 2006). More-
over, multiple-exemplar training in our labora-
tory has shown that students who had difficulty
learning transformations of graphs of functions
were able to acquire such relations following
relatively brief MTS training.

As contextual cues in the form of new
mathematical rules are incorporated into a re-
lational network, most students only require
exposure to a minimal number of exemplars
consistent with precise rules to derive and
respond appropriately to many more detailed
and complex mathematical relations. We antic-
ipate that these procedures may contribute to
the development of more sophisticated training
platforms that permit users to derive complex
mathematical relations in less time and with
greater accuracy. As another variation on this

Figure 9. The function y 5 sin(x) has a reciprocal of cosecant function y 5 csc(x). Taking the reciprocal of the
cosecant function, y 5 1/csc(x) is obtained, and in this example, the reciprocal of a reciprocal is combinatorially entailed

and y 5 sin(x) is the same as y 5 1/csc(x).
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theme, Binder (1996) demonstrated that ap-
plying frequency-building methods to compo-
nents in an analogue of stimulus equivalence
experiments produced improved acquisition
rates during MTS procedures. Similar outcomes
have been demonstrated repeatedly in precision
teaching studies (e.g., Van Houten, 1980).
Frequency-building procedures could be in-
corporated into our software as we develop
more advanced versions of our training proto-
cols.

Caveats

As in our earlier research in this area, this
study did not attempt to isolate the influence of
the pretraining lecture from that of the
computer-interactive MTS training procedures.
Given that our participants were relatively naive
regarding graphing techniques as they applied
to the coordinate system, some introductory
discussion was necessary for them to interact
with the training and testing system. With the
results from this study and those of our previous
investigations, it is becoming increasingly
obvious that particular entry-level skills are
required to initiate training on such platforms.
Moreover, we are not suggesting that these
procedures constitute a stand-alone instruction-
al system for training all of the complexity of
mathematical functions. It does suggest, how-
ever, that having learned to match factored and
standard formulas and having learned to
identify the graphs of these functions with
a limited number of basic exemplars, partici-
pants derived a much wider array of more
complex and diversified formula-to-graph as
well as graph-to-formula relations.

Much of the current pedagogical emphasis in
U.S. high school and college mathematics
instruction is directed at facilitating students’
discovery of preexisting mathematical concepts
(Biggs & Moore, 1993). From kindergarten
math (e.g., Macmillan, 1990) through calculus
(e.g., Dubinsky & Schwingendorf, 1991),
learners are encouraged to uncover commonal-
ities and differences in their cognitive schema as

they encounter all manner of mathematical
challenges. From this perspective, students
construct their own knowledge of mathematical
relations and discover principles for themselves
(Slavin, 2006). Notwithstanding the pedagogi-
cal emphasis in math education, the current
lack of fluency in fundamental math skills has
now saturated substantial proportions of the
postsecondary population, with more than one
in three college students required to enroll in
remedial math before being permitted take
college-level courses (Steen, 2003).

One might fairly question whether a tech-
nology based on derived relational responding
can play a role in addressing such pervasive
deficits. Clearly, we have not yet demonstrated
in any of our research to date that a history of
reinforced relational responding is superior to
the more traditional forms of math instruction,
nor have we yet published evidence that
a history of multiple-exemplar training is more
effective or efficient than training all possible
mathematical relations directly. Nevertheless,
many behavior analysts are focusing on the
development of specific instructional strategies
that employ multiple-exemplar training as it
applies to the critical features among relations
in mathematics. Used in conjunction with
a well-designed mathematics curriculum, we
believe that an MTS approach to mathematical
relations might be adapted to traditional
modalities of instruction. Lynch and Cuvo
(1995) as well as Leader and Barnes-Holmes
(2001) have shown similar types of outcomes
with different populations and different types
of exemplars. With a current emphasis on
basic trigonometric functions, we are attempt-
ing to develop and deploy a Web-based beta
version of multiple-exemplar training at www.
sfasu.edu/hs/NinnessTrigGraph06.html. (Note
that although these links may be useful for
preliminary or complementary instruction re-
garding amplitude and frequency of odd and
even trigonometric functions, a complete MTS
protocol is required to train these functions
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most effectively.) Pilot research in our labora-
tory that addresses several trigonometric rela-
tions pertaining to amplitude and frequency (as
well as the reflections and shifts described in
this study) suggests that multiple-exemplar
training procedures can be very effective in
rapidly generating a wide range of complex
mathematical relations among individuals
without any history in this area. Preliminary
outcomes suggest that our MTS protocols
produce substantially higher acquisition rates
of formula-to-graph and graph-to-formula
trigonometric relations than the process of
directly training all possible combinations of
the various math functions under consideration
(e.g., Ninness et al., 2006). By expanding our
current architecture to include more basic
algebra, trigonometry, and precalculus rela-
tions, we hope to deploy a series of online
protocols directed at facilitating the remedia-
tion of students who suffer the insidious effects
of cumulative dysfluencies (Binder, 1996). Beta
versions of these applications are freely avail-
able to interested users; however, a complete
Web-based platform allowing us to rigorously
compare multiple-exemplar training to many
of the more traditional math education systems
is still under development.
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APPENDIX A

Moving from the standard form of the
formula to the most conducive form of the
formula, the conducive form always factors
out any negative signs that may precede x.

APPENDIX B

Negative sign inside the radical is reflected
over in the y-axis

A positive constant inside the radical or
the parentheses moves the function in the
opposite direction along the x-axis.

Moving from the standard form of the formula to the most conducive form of the formula,
the conducive form always factors out any negative signs that may precede x.
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APPENDIX B

Negative sign inside the radical is reflected over in the y-axis
A positive constant inside the radical or the parentheses moves the function in the opposite

direction along the x-axis.

320 CHRIS NINNESS et al.



APPENDIX C

TRANSFORMATIONS OF FUNCTIONS 321


