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ABSTRACT

Endonuclease V (endo V) recognizes a broad range
of aberrations in DNA such as deaminated bases or
mismatches. It nicks DNA at the second phospho-
diester bond 30 to a deaminated base or a mismatch.
Endonuclease V obtained from Thermotoga mar-
itima preferentially cleaves purine mismatches in
certain sequence context. Endonuclease V has been
combined with a high-fidelity DNA ligase to develop
an enzymatic method for mutation scanning. A
biochemical screening of site-directed mutants
identified mutants in motifs III and IV that altered
the base preferences in mismatch cleavage. Most
profoundly, a single alanine substitution at Y80
position switched the enzyme to essentially a
C-specific mismatch endonuclease, which recog-
nized and cleaved A/C, C/A, T/C, C/T and even the
previously refractory C/C mismatches. Y80A can
also detect the G13D mutation in K-ras oncogene,
an A/C mismatch embedded in a G/C rich sequence
context that was previously inaccessible using the
wild-type endo V. This investigation offers insights
on base recognition and active site organization.
Protein engineering in endo V may translate into
better tools in mutation recognition and cancer
mutation scanning.

INTRODUCTION

Techniques to scan unknown single nucleotide polymor-
phisms (SNPs) or point mutations are an essential tool in
post-genomic era. Current mutation scanning methods
include single-stranded conformational polymorphism (SSCP)

and heteroduplex analysis (HA) (1,2), denaturing high
performance liquid chromatography (DHPLC) (3), and
chemical or enzymatic cleavage (4–7). Several enzymatic
cleavage methods have been developed (7,8). T4 endonucle-
ase VII and T7 endonuclease I, the two phage resolvases,
have been used for mutation scanning with limited success
due to high background generated by cleavage of non-
mismatch sequences (9). Other enzymes such as MutY
DNA glycosylase and thymine DNA glycosylase (TDG),
and CEL1 nuclease have also been employed in mutation
scanning (7,10).

Endonuclease V (endo V) is a DNA repair enzyme with
unique enzymatic properties. Under physiological conditions,
endo V cleaves deaminated bases at the second phospho-
diester bond 30 downstream to a lesion. By shifting reaction
conditions to higher pH, metal cofactor to Mn2+, using excess
enzyme, and/or using solvents such as dimethyl sulfoxide
(DMSO) and betaine, this repertoire may be extended to
include cleavage of most mismatched DNA base pairs
(11–13). This enzymatic property has been explored for the
development of mutation scanning techniques (8,14). We
have devised a scheme that uses thermostable endo V
obtained from Thermotoga maritima (Tma) to cleave
mismatches and a high-fidelity thermostable DNA ligase
from Thermus species AK16D to seal non-specific cleavage
(8,15,16). Co-incubation of the two enzymes allows for
endonucleolytic cleavage of mismatches with real-time
resealing of matched nicks, allowing for detection of low-
abundance mutations in tumor tissue at a ratio of 1:50 mutant
to wild-type DNA (8,15).

Tma endo V preferentially cleaves purine bases in a
mismatch in certain sequence context (13). The wild-type
enzyme cleaves the C-containing mismatches the least and
C/C mismatches are essentially resistant to cleavage (13).
Even some A/C mismatches are refractory to cleavage
when located in a G/C rich sequence context, as exemplified
in the G13D mutation in K-ras (8). Identification of endo V
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variants that can cleave C-containing mismatches will
broaden the applicability of the endo V/ligase mutation
scanning technique. Although an endo V–DNA complex
structure is not available, an extensive site-directed mutage-
nesis analysis has identified motifs and specific amino acid
residues that influence base recognition and DNA–protein
interactions (17). Taking advantage of a battery of over
60 endo V single-site mutants previously isolated, we
screened for and identified endo V variants that possessed
altered base preference in mismatch cleavage. Y80A in motif
III converted endo V to essentially a C-specific mismatch
cleavage variant that was capable of nicking refractory A/C
mismatches in the K-ras gene.

MATERIALS AND METHODS

Materials

Purified deoxyribooligonucleotides were ordered from
Integrated DNA Technologies Inc. (Coralville, IA). Duplex
deoxyoligonucleotide substrates were prepared as described
previously (17). The wild-type and mutant Tma endo V
proteins and Tsp AK16D DNA ligase were purified as
described previously (16–18).

Endo V cleavage assays

The cleavage reaction mixtures (10 ml) containing 10 mM
HEPES-KOH (pH 7.4), 1 mM DTT, 2% glycerol, 5 mM
MnCl2 unless otherwise specified, 10 nM oligonucleotide
DNA substrate and 10 nM of Tma endo V protein unless
otherwise specified were incubated at 65�C for 30 min. The
reactions were terminated by the addition of an equal volume
of GeneScan Stop Buffer [80% formamide, 50 mM EDTA
(pH 8.0), and 1% blue dextran]. The reaction mixtures were
then heated at 94�C for 3 min and cooled down on ice.
Samples (3.5 ml) were loaded onto a 10% denaturing poly-
acrylamide gel containing 7 M urea. Electrophoresis was
conducted at 1500 V for 1.5 h using an ABI 377 sequencer
(Applied Biosystems). Cleavage products and remaining sub-
strates were quantified using the GeneScan analysis software
version 3.0.

PCR amplification of K-ras exon I

For detecting K-ras mutations, genomic DNA was extracted
from cell lines as described (19). Cell lines HT 29 contains
wild-type K-ras gene. SW480 contains G12V (G!T) muta-
tion. DLD-1 contains G13D (G!A) mutation. K-ras exon I
was amplified by PCR as described (8). To remove Taq
DNA polymerase, 4 ml of 20 mg/ml proteinase K (Qiagen)
was added to the PCR mixtures (50 ml) and incubated at
70�C for 10 min. Proteinase K was inactivated by incubating
at 80�C for 10 min. Amplicons containing wild-type sequence
were added in approximately equal ratios when missing from
the sample (i.e. pure mutant cell line DNA). The mixed
PCR fragments, were heated at 94�C for 1 min to denature
the DNA, and then cooled at 65�C for 15 min and at room
temperature for 15 min to allow efficient formation of
heteroduplex DNA.

To generate sticky ended PCR products, K-ras exon
I was amplified as described with the exception that the

PCR primers are as follows (8): Oligo 1, 50-
CCCCGCTGAGGATAGTGTATTAACCTTATGTGTGAC-
ATGTTC-30 (underlined: N.BbvC IA site); Oligo 2, 50-FAM-
CCCCCCTCAGCAAAATGGTCAGAGAAACCTTTATCT-
GTATC-30 (underlined: N.BbvC IB site, which is comple-
mentary to the N.BbvC IA site). After PCR, the top strand
contained two N.BbvC IA sites and the bottom strand
contained two N.BbvC IB sites (Figure 4A). Post-PCR
processing and formation of duplex DNA were carried out
as described above. PCR products (6 mg) were then digested
at 37�C overnight with 60 units of N.BbvC IA in NEBuffer
2 (New England Biolabs). The reaction mixtures were
extracted with phenol/chloroform/isoamyl alcohol (25:24:1)
to remove proteins and passed through microcon YM-50
spin column (Millipore) to remove the small DNA fragments
generated by BbvC IA nicking.

RESULTS AND DISCUSSION

Examination of base preferences of mismatch
cleavage in endonuclease V mutants

Endonuclease V contains seven conserved motifs in which
motifs III and IV play a major role in protein–DNA interac-
tions (17). We screened a total of 64 mutants previously
isolated for mismatch cleavage activity (Figure 1) (17). The
assays were performed in the presence of Mn2+ instead of
Mg2+ since endo V enzymes show enhanced mismatch cleav-
age with Mn2+ (12,13). As expected, a majority of mutants
lost mismatch cleavage activity. Other mutants still main-
tained mismatch cleavage activity in a pattern similar to the
wild-type enzyme, which included G41V in motif II; Y80F,
I81A, P82A, R88E, R88K and R88Q in motif III, R118A
and H125A in motif IV; R205K, P207A, P209A, R211A,
R211K and H214D in motif VII (Figure 1). Yet, several
mutants in motifs III and IV showed quite distinctively
altered base preference in mismatch cleavage. An alanine
substitution at Y80 position essentially switches the base
preference from purine mismatches to C-specific mismatches
(Figures 1 and 2). All five C-containing mismatches were
cleaved by Y80A (Figure 2, compare the band intensities in
wild-type and Y80A). Most remarkably, even the refractory
C/C mismatch in this sequence context was cleaved on both
strands (Figure 2, C/C lane in Y80A). On the other hand,
cleavage of other mismatches was minimum or not detected.
A histidine substitution at Y80 rendered the enzyme more
active in cleaving T-containing mismatches, while reducing
the cleavage of other mismatches (Figure 2, Y80H). Appar-
ently, A86M preferentially cleaved A-containing mismatches
(Figure 2, A86M). All four A-containing strands G/A, C/A,
A/G and A/C and both strands in A/A were cleaved by
A86M. Other mutants such as G83V and F87A also showed
preference for A bases (Figure 1). The base preference in
R88E remained similar to the wild-type enzyme, i.e. G and
A bases were preferred. However, the cleavage site on the
top strand (blue band) is more promiscuous. Cleavage at
1 nt closer or 1 nt further away from the mismatches was
observed (Figure 2, R88E). Similar cleavage site promiscuity
occurred in R88Q (data not shown). A few H116 mutants
such as H116A, H116E and H116T somewhat preferred the
A base in a mismatch (Figures 1 and 2).
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Cleavage of A/C mismatches in synthetic
K-ras substrates

Given the strong preference of Y80A for the C base in a
mismatch, we tested its ability to cleave C-containing
mismatches that were refractory for the wild-type enzyme.
Previously, we developed an enzymatic mutation scanning

method, which takes advantage of the mismatch cleavage
of endo V and nicking joining activity of DNA ligase to
seal non-specific cleavage at matched bases (8). During the
course of that study, we found G13D mutation in K-ras
was completely refractory to endo V cleavage when using
Mg2+ as cofactor in the presence of both 5% (V/V) DMSO
and 1.5 M betaine. G13D is a G to A transition that yields

Figure 1. Base preference of mismatch cleavage of Tma endonuclease V mutants. Cleavage reactions were performed as described in Materials and Methods.
Motifs are shown in Roman letters. See (17) for sequence alignment.

Figure 2. Representative GeneScan gel pictures of mismatch cleavage. Cleavage reactions were performed as described in Materials and Methods.
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G/T and A/C mismatches. A closer look at the flanking
sequence indicates that the mismatches are located in a G/C
rich sequence context (TGGCG, the mutation site is under-
lined), which may make it difficult for endo V to cleave
(11). To test the ability of Y80A to cleave this sequence,
we synthesized oligodeoxynucleotide substrate that was
identical to the G13D sequence in K-ras (Figure 3A, A/C).
The overall design was consistent with the mismatch
substrates used for initial activity screening (Figure 2).
When using Mn2+ as the metal cofactor, the wild-type endo
V exhibited non-specific fragmentation of both the top and
the bottom strand as a result of non-specific cleavage, but
did not yield correct length fragments from the mismatched
base pair (Figure 3B). Remarkably, Y80A generated a cleav-
age band from the bottom C-containing strand at �38–39mer
position, indicating that the altered base preference has
enabled the mutant to cleave the refractory sequence
(Figure 3B). To verify the specificity of the cleavage by
Y80A, we synthesized a similar substrate but with the C
base on the top strand, which would generate a 27mer if
cleaved (Figure 3A, C/A). Again, the Y80A cleaved the
C-containing strand in the C/A mismatch at the anticipa-
ted position, while the wild-type enzyme generated lower

molecular weight fragments (Figure 3B). These results
confirmed the C base preference of the Y80A mutant in
the refractory sequence.

Cleavage of A/C mismatch in K-ras amplicons

To test the ability of the Y80A mutant to cleave PCR prod-
ucts, we amplified the exon 1 of the K-ras gene from both
the wild-type, G12V and G13D mutant cell lines. Heterodu-
plexes were generated by mixing the wild-type PCR amp-
licon with the mutant amplicons (Figure 4A, left). The
286 bp long heteroduplexes containing T/C and G/A mis-
matches from G12V and A/C and G/T mismatches from
G13D were treated with Y80A mutant endo V. Since Y80A
acted as a C-specific mismatch endonuclease (Figures 2
and 3), we scored the specific cleavage bands as resulting
from cleaving C-containing mismatches. As expected,
G12V was cleaved by Y80A on the C-containing strand to
yield a 166mer product (Figure 4B, left). However, cleavage
of A/C mismatch in the G13D was minimal (Figure 4B, left).
Previously, we have observed a reduction in fluorescence
signal in blunt end amplicons due to cleavage of the fluores-
cent label and the adjacent base by endo V, liberating the
label from the amplicon (15). We suspected similar cleavage
event might have occurred in the blunt ended amplicons that
have reduced the cleavage product signals (Figure 4B left,
bottom of gel). Given that the synthetic duplexes contained
overhangs (Figure 3), we thought the overhangs at the ends
may reduce the loss of fluorescence signal by endo V. We,
therefore, designed a method to convert the PCR amplicons
to sticky ended duplexes (Figure 4A, right). N.BbvC IA
recognizes double-stranded 50-GC#TGAGG-30 sequence and
nicks between the C and T. The recognition sequence was
incorporated into the PCR primers for amplifying the exon
I of K-ras gene (see Materials and Methods for details).
The resulting PCR amplicons were then treated with
N.BbvC IA to generate a two-base overhang at the 30 end
and five-base overhang at the 50 end for the C-containing
strand, respectively (Figure 4A, right). Both the G12V and
G13D heteroduplexes were cleaved by Y80A mutant endo
V (Figure 4B, middle). The non-specific products were sealed
by the high-fidelity Tsp. AK16D ligase, thus reducing the
background (Figure 4B, right). Some of the mismatch cleav-
age products were also sealed by the DNA ligase (16), result-
ing in a reduction in the intensity of the specific band.

This work identified endo V variant enzymes with substan-
tially altered base preferences in mismatch cleavage. Since all
these variant enzymes contained changes in motifs III and IV,
this underscores the important role these motifs play in base
recognition (Figure 1). Consistent with a previous study (17),
Y80 and H116 appear to be important determinants of base
recognition. Although an endo V–DNA co-crystal structure
is not available, secondary structure analysis indicates that
both Y80 and H116 are located in loop regions (20). We
speculate that motifs III and IV are components of recogni-
tion loops that are involved in specific base recognition.

Y80A is the most striking in that it essentially converts the
enzyme to a C-specific mismatch endonuclease (Figure 2).
Consequently, the previous refractory C/C mismatch for
the wild-type enzyme now becomes cleavable by the Y80A
mutant. First, how does a single alanine substitution at Y80

Figure 3. Cleavage of A/C mismatch in synthetic K-ras G13D sequence by
Y80A Tma endonuclease V mutant. Cleavage reactions were performed as
described in Materials and Methods with 2.5 mM MnCl2. (A) Schematic
illustration of A/C cleavage. A/C heteroduplex was formed by annealing of
50-FAM-TAACTTGTGGTAGTTGGAGCTGGTGACGTAGGCAAGAGTG-
CCTTGACGATACAGCTAATTCATTCC-30 and 50-TET-TGAATTAG-
CTGTAGCGTCAAGGCACTCTTGCCTACGCCACCAGCTCCAACTAC-
CACAAGT-30. C/A heteroduplex was formed by annealing of 50-FAM-
TATCGTCAAGGCACTCTTGCCTACGCCACCAGCTCCAACTACCAC-
AAGTTTATATTCAGTCATTCC-30 and 50-TET-TGACTGATAATA-
AACTTGTGGTAGTTGGAGCTGGTGACGTAGGCAAGAGTGCCTTG-
ACGA-30. (B) Cleavage of A/C K-ras G13D mismatch by wild-type Tma
endo V and Y80A mutant.
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position accomplish such a dramatic alteration in base pre-
ference? A simple model is illustrated in Figure 5. In the
wild-type enzyme, Y80 imposes an unfavorable interaction
with a C base, in which the amino group at C4 position
spatially clashes with the bulky tyrosine residue. This steric
hindrance prevents the wild-type endo V from recognizing
and cleaving C-containing strand in a mismatch. By substitut-
ing the phenol side chain with a small methyl group, Y80A
releases the steric tension and allows the C base to be
accommodated in the recognition pocket (Figure 5). A com-
parison with uracil DNA glycosylase (UDG) is illuminating.
The N204 in the recognition site of human UDG forms
hydrogen bonds with O4 and N3 of uracil via the amide
side chain and the Y147 excludes a thymine base by steric
complementarity (21). Interestingly, N204D confers cytosine
DNA glycosylase to hUDG by forming hydrogen bonds with
the C4-amino group and the N3-nitrogen via the carboxyl
side chain, while Y147A switches the enzyme to TDG by
preventing the steric clash with the C5-methyl group of
the thymine base (22). It is possible that endo V and UDG
adopted a similar strategy as part of base-specific recognition
mechanism (22–26).

The surprising alteration in base preference of mismatch
cleavage prompted us to investigate the potential implication
in improving the endo V/ligase mutation scanning technique
previously reported (8). The use of this technique in scanning
K-ras mutations met with difficulty partly due to the inabil-
ity of the wild-type endo V to cleave A/C mismatches in
some G/C rich sequence context (8). Data presented here
indicate that the Y80A is not only specific for C-containing
mismatches, but also for those embedded in G/C rich
environment (Figure 3). Therefore, the C-specific mismatch
cleavage ability may have enabled the Y80A to recognize
and nick the C-strand previously not accessible by the
wt endo V. Based on the model explained above, favorable
interactions between Y80A and a C base may facilitate the
base recognition process, which assists in guiding the com-
plex to a catalytically competent path. Likewise, the previ-
ously inaccessible C/C mismatch now becomes a substrate
for Y80A (Figure 2). The difference in A/C mismatch cleav-
age efficiency between amplicons with blunt or overhang
ends is due to loss of fluorescence signal by endo V cleavage.
This problem was previously addressed by synthesizing
modified primers that are refractory to endo V cleavage

Figure 4. Cleavage of A/C mismatch in K-ras G13D sequence amplified from colon cancer cell lines by Tma endo V mutant Y80A. (A) Schematic illustration of
blunt end and sticky end heteroduplex G12V and G13D PCR products. See Materials and Methods for details. (B) Cleavage of G13D by Tma endo V mutant
Y80A. Cleavage reaction mixtures (10 ml) containing 10 mM HEPES-KOH (pH 7.4), 1 mM DTT, 2% glycerol, 2.5 mM MnCl2, 100 ng of wild-type K-ras
homoduplex or G12V heteroduplex or G13D heteroduplex and 100 nM Tma endo V mutant Y80A protein were incubated at 65�C for 30 min. For the reactions
that were followed by ligation, the amount of K-ras homoduplex or heteroduplex was increased to 200 ng in the cleavage reactions. The cleavage reaction
mixtures were filtered through an YM-10 microcon spin column and washed with TE buffer containing 10 mM Tris–HCl (pH 7.6) and 1 mM EDTA. To seal the
non-specific nicks, the washed cleavage reaction mixtures (in 6 ml TE) were supplemented with 1 ml of 10 · Taklig buffer [20 mM Tris–HCl (pH 7.6), 100 mM
KCl, 10 mM DTT, 20 mg/ml BSA], 1 ml of 100 mM MgCl2, 1 ml of 10 mM NAD+ and 1 ml of 20 nM Tsp AK16D ligase. The ligation mixtures were incubated
at 65�C for 20 min.
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(15). Introducing a nicking site into a PCR primer provides a
simple alternative method to maintain mismatch cleavage sig-
nal. This study demonstrates how malleable endo V is, allow-
ing for alteration of base preference in mismatch cleavage by
single amino acid changes. Some of these mutants offer the
potential for developing base-specific endo V/DNA ligase
mutation scanning assays.
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