Population Genetic Studies in the Congo

IV. Haptoglobin and Transferrin Serum Groups in the Congo and in Other African Populations

E. R. GIBLETT,¹ A. G. MOTULSKY,² AND G. R. FRASER^{2*}

¹King County Central Blood Bank, Seattle, Washington 98104. ²Departments of Medicine (Division of Medical Genetics) and Genetics, University of Washington, Seattle 98105.

GENETIC HETEROGENEITY among the various Negroid populations of Africa is amply demonstrated by the gene distributions within the blood groups, the abnormal hemoglobins, and the locus determining glucose-6-phosphate dehydrogenase (G6PD) production. This variation in Congolese populations is described in three companion papers (Motulsky *et al.*, 1966; Fraser, 1966; Fraser *et al.*, 1966). Numerous investigators have reported the haptoglobin and, to a lesser extent, transferrin phenotypes among various tribal groups. This paper will summarize those findings and will present hitherto unpublished data on Congolese natives as well as two Bantu tribes in South Africa.

MATERIALS AND METHODS

In 1959, specimens of blood were collected from Pygmies in the Ituri Forest and from various inhabitants of rural and urban areas in the Congo region. Serum was shipped by air to Seattle in ice-containing thermos jugs, arriving in good condition. During a similar period, serum specimens obtained from South African native blood donors by Dr. A. Zoutendyk were also sent by air, and most of these were in satisfactory condition for electrophoretic analysis.

Starch gel electrophoresis was performed by the horizontal method of Smithies (1955), although occasional samples were repeated by the vertical method (Smithies, 1959). A discontinuous buffer system (Poulik, 1957) was employed for both kinds of gels. Control sera of known haptoglobin and transferrin types were routinely included for comparison. Gels were sliced and stained with benzidine and amido black as previously described (Giblett, 1959).

Table 1 lists the geographic origin, tribe, sex, relative age, per cent with hemoglobin AS, frequency of G6PD deficiency, regional incidence of malaria, and any additional known data pertaining to the subjects tested. Most individuals were in apparently good health, and 25 of the Yaka women were pregnant. A number of people tested in series Stan, Ya, and Leo were hospital patients.

Received April 4, 1966.

Supported by U. S. Public Health Service research grants AM 09745 and HE 03091 from the National Institutes of Health.

^{*}Present address: Department of Genetics, University of Adelaide, South Australia.

	$\mathbf{T}_{\mathbf{r}}$	ABLE 1.	SOURC	E OF S	PECIM	(ENS AN)	d Deta	ILS OF	INDIVI	DUALS SI	URVEYE	d in Th	IS PAP	ER.		
Geographica and series des	l source ignation	Tribe		No.	ß	ex	Age	H	lb AS	G6PD leficiency (males) %	Malaria		Additio	nal		
Leopoldville	Leo	Mixed Ba	untu	66	780 ⁷	219	Adult		20.4	13.9	Low	A	few were	hospital pa	tients	
Stanleyville	Stan	Mixed Ba	untu	98	J	o,	Adult	-	29.2	14.3	Low	Η	spital par	tients		
Bukavu	Shi	Shi		116	5	ō.	10-20 yı	rs.	6.5	13.8	Low	Sci	hool child	ren		
Astrida	Tu	Tutsi		06	5	م ً	10-20 y	TS.	none	2.2	Low	Sci	hool child	ren		
Nyanza	Hu	Hutu		66	5	مً	10-20 y	TS.	5.1	6.1	Low	Sci	hool child	ren		
Popokabaka	Ya	Yaka		101	41 <i>o</i> 7	¢09	Adults		28.0	22.0	Prevalen	t Hc	ospital pa	tients (25 v	vomen pi	egnant)
Gemena	Wa	Ngbaka		57	5	o_	Adults		10.5	6.1	Prevalen	t M	ostly host	oital patient	ts	
Ituri Forest	Pyg	Pygmies		126	5	مً	Adults	-	31.0	4.0	Prevalen	t				
Johannesburg		Xhosa		265	J	o <u>,</u>	Adults		1	ł	Low	BI	ood donot	S.		
Johannesburg		Msutu		218	•	o,	Adults		I	ł	Low	BI	ood donoi	52		
							HAPTOG	SUIGOLE						TRANSF	ERRINS	
			1-1		63	-2	6	-1	2-1	l (mod)		6		Dı		C
Population		No. N	o. qu	re- ency	No.	Fre- quency	No.	Fre- quency	No.	Fre- quency	No.	Fre- quency	No.	Fre- quency	No.	Fre- quency
CONGO																
Pyg		121 8	у. 8	99(25	.206	49	.405	1	600.	38	.314	80	.067	113	.933
Leo		93 3.	4	366	14	.150	34	.366	80	.086	e	.032	e	.032	90	.968
Stan		93 2	60	301	13	.140	46	.495	0	0	9	.064	5	.054	88	.946
Ya		98 3,	4 .5	147	4	.041	25	.255	5	.051	30	.306	10	.102	88	898.
Wa		57 14	5 25	363	10	.175	21	.368	67	.035	6	.158	9	.105	51	.895
Shi		110 15	f. 6	173	14	.127	48	.436	5	.045	24	.218	80	.073	102	.927
Hu		91 2	». م	308	18	.197	27	.297	7	.022	16	.175	c7	.022	68	.978
Tu		90 2	5	277	24	.266	23	.255	63	.022	16	.177	4	.044	86	.956
SOUTH AFRICA																
Xhosa		265 71	5 22	383	57	.215	96	.362	28	.106	6	.034	9	.023	259	776.
Msutu		218 6.	3.	589	46	.211	83	.381	15	.069	11	.050	20	.091	198	606.

554

HAPTOGLOBIN AND TRANSFERRIN IN THE CONGO

RESULTS AND DISCUSSION

Table 2 presents the observed haptoglobin and transferrin phenotype frequencies. These results may be compared with the data in Table 3, which summarizes the reports of other workers and includes a large sample of random American Negro adults studied in this laboratory.

A notable feature is the variable frequency of apparent ahaptoglobinemia. This phenomenon is known to be associated with increased red cell destruction and is also subject to hormonal influence. Barnicot *et al.* (1960) noted a higher frequency among women in Nigeria, and this finding was confirmed in Liberian subjects by Neel *et al.* (1961), who also found that pregnancy was a contributing factor. Among the 25 pregnant women in the Yaka sample tested, 14 had no demonstrable haptoglobin, as compared with only six of the 35 nonpregnant women. Among the 39 males tested, however, ten were haptoglobin deficient, so that, if sex alone is a determinant of haptoglobin level, its effect is apparently masked by other factors in this population.

Attempts to correlate the frequency of ahaptoglobinemia with the distribution of malaria, sickle hemoglobin, and G6PD deficiency were largely unrewarding, in accordance with the findings of Barnicot et al. (1960). For example, although those tribes having a high incidence of malaria, such as the Ngbaka, Yaka, and Pygmy, also had high levels of ahaptoglobinemia (15 to 31%), other tribes with little or no malaria, such as the Shi and Tutsi, also had high levels of ahaptoglobinemia. No correlation was found with sickle trait; several tribes with a relatively low frequency of hemoglobin S had large numbers of ahaptoglobinemics, and no difference in the frequency of ahaptoglobinemia was found between sicklers and nonsicklers as a whole. Similarly, G6PD deficiency could not be shown to occur more commonly in those groups with absent haptoglobin. Nevertheless four of the 12 individuals who were both sicklers and enzyme deficient were anaptoglobinemic. Although these numbers are small, this finding might indicate that possession of both these genes may have caused the depression of serum haptoglobin levels that neither can do alone. It may be significant that the population samples obtained in two urban areas, Leopoldville and Stanleyville, had the smallest number of individuals without demonstrable haptoglobin. This might be a reflection of the lower prevalence of a variety of diseases associated with red cell parasitism and/or liver damage as compared to rural populations.

Calculation of haptoglobin gene frequencies is necessarily based on the assumption that genetic, physiological, and environmental agents tending to depress the amount of serum haptoglobin affect all phenotypes equally. This assumption is unlikely to be correct for two reasons: (1) Individuals of type 1–1 ordinarily have higher haptoglobin levels than those of type 2–2 (Nyman, 1959), and therefore one might reasonably expect that individuals of the latter phenotype would be more susceptible to "suppressive" influences. (2) Studies of American Negro families (Giblett and Steinberg, 1960) indicate a higher incidence of ahaptoglobinemia among individuals who carry a gene associated with the Hp 2–1(mod) phenotype. Parker and Bearn (1963) consider this to be an operator rather than structural gene mutant, but the argument is un-

						и А РТО	SNIDUIT						TRANSF	FREINS	
							CALIFORN								
			1-1		2-2	2		2-1((pom		0	0	DI		0
Population	No.	No.	Fre- quency	No.	Fre- quency	No.	Fre- quency	No.	Fre- quency	No.	Fre- quency	No.	Fre- quency	No.	Fre- quency
NORTH AFRICA	113	200	603	22	080	656	878 8	1		I	I	ł	1	1	I
Liberia ² Liberia ²	914 356	321 149	-002. 419		.093	207	.188	37	.104	70	.197	25	690.	308	.925
Nigeria															
Yoruba ³	66	53	.535	3	.030	11	.111	I		32	.323	ł	I	1	1
Fulani ⁴	111	40	.360	3	.027	22	.198	ō	.045	41	.369	2	.063	104	.937
Fulanis	84	24	.286	4	.048	14	.166	I	1	42	.500	10	.147	57	.838
Habe ⁴	120	24	.200	7	.058	52	.433	4	.033	33	.275	18	.150	102	.850
Ibo	20	13	.185	4	.057	12	171.	7	.100	34	.486	6	.128	61	.872
Senegal ⁷	396	148	.374	47	.119	141	.356	44		16	.040	1		I	I
Gambia ⁶	157	48	.306	11	010.	23	.146	11	.070	64	.408	4	.025	153	.975
EAST AFRICA ⁸															
Uganda Baeanda	165	47	.285	14	.085	54	.327	10	090.	40	.242	5	.030	160	026.
Misc. Bantu	26	4	.154	7	.076	12	.462	4	.154	4	.154	0	0	26	1.0
Tanganyika Bondi	60	10	.167	14	.233	21	.350	3	.050	12	.200	S	.083	55	516.
Kenya Masai	50	10	.200	12	.240	22	.440	1	.020	δ	.100	0	0	50	1.0
CENTRAL AFRICA															
Congo Leonoldville ⁴	140	82	.59	ũ	.035	53	.375	I	I	0	0	ļ	I	I	I
Tutsi ¹⁰	86	24	.279	19	.221	41	.477	I	1	61	.023) 19	075	, 100	005
Hutu ^{10,11}	96	27	.282	19	.198	46	.479	I	I	4	.041	- -)	
Congo ¹¹	66	38	.384	13	.131	44	.444	67	.020	61	.020	9	.061	93	.939
SOUTH AFRICA12				ġ	010	1	006	°	960	¢	960	đ	960	113	07.4
Zulu	116	36	.310	R7	007.	4 0	000.	•		•		• •		3 1	
Hottentot	59	18	.305	16	11.2.	ç, ;	424	-			210	* -	100.	6	005. 270
Bushmen	113	12	.106	59	523	40	-304 	.	.	4	.110.	* (#7T.	50	010
Cape Colored	88	17	.193	52	.250	49	.557	•	0	•	0	м	.023	99	1.1. G *
NORTH AMERICA ¹³ Negroes	952	277	.291	170	.178	355	.373	115	.121	35	.037	78	.081	874	.919
		Š	utton et al.	(1959).				IA8	lison and B	arnicot (1	960).				
		Ϋ́́Ψ́́Ψ́	[eel et al. (19 llison et al. arnicot et al. lumberg and	961). (1958). . (1960). 1 Gentile	(1961).			1728 1178 1288	nnet and M n Sande et n Ros et al. rnicot et al. blett (1962)	al. (1963) al. (1963) (1963). (1959).					
		12	foullec et al.	(1960).				5							

556

HAPTOGLOBIN AND TRANSFERRIN IN THE CONGO

affected, regardless of the genetic mechanism. Thus, one might anticipate that mildly suppressive agents would be more effective in individuals with the Hp 2–2 phenotype, but this would not be observed in populations subject to highly active "suppressors," such as severe hemolytic disease, liver damage, or combinations of these and other factors with pregnancy. Furthermore, if one combines the Hp^2 and Hp^{2m} gene frequencies, those populations having the largest number of individuals with the Hp 2–1(mod) phenotype should show a deficiency of the (combined) Hp^2 gene, provided the effect of environmental factors is minimal.

In view of these difficulties, only approximate Hp gene frequencies can be obtained. Thus in the Congo, omitting the Pygmies and the Hp 2-1(mod) and Hp 0 phenotypes, 183 individuals were Hp 1-1, 224 Hp 2-1, and 97 Hp 2-2. This leads to an estimate of the gene frequencies as $Hp^{1} = 0.585$ and $IIp^{2} = 0.415$ ($\chi^{2}[1] = 3.65$). In South Africa, the Xhosa and Msutu have rather lower frequencies of the Hp 2-1(mod) and Hp 0 phenotypes. More realistic estimates of the frequencies may therefore be obtained as follows

Xhosa
$$Hp^{1} = 0.539$$
, $Hp^{2} = 0.461$ $(\chi^{2}[1] = 5.48)$
Msutu $Hp^{1} = 0.544$, $Hp^{2} = 0.456$ $(\chi^{2}[1] = 3.05)$

The data on transferrin has been summarized previously by Giblett (1962) and are presented here to indicate the range in frequency of the Tf CD₁ phenotype among the various tribes. In this and previous reports on transferrins in Africa, the slow-moving variant has been assumed to be Tf D₁ in the absence of adequate control sera. However, Parker and Bearn (1961) have described a variant, D_{Chi}, which can only be differentiated from D₁ by electrophoresis at higher than usual voltage at a cold temperature. However, since the phenotype of most Negro subjects with a slow moving Tf variant whose serum has been adequately tested has been designated Tf CD₁, it is probable that this variant is the most common of the variant phenotypes in Africa.

SUMMARY

The haptoglobin and transferrin phenotype frequencies of several Congolese populations and two South African tribes are presented. The high frequency of Hp^{1} characteristic of most other areas of Africa was also found in these people, although there was considerable variability. Apparent anaptoglobinemia, also characteristic of African populations, was particularly common in tribal peoples, and some factors influencing this phenomenon are discussed.

REFERENCES

- ALLISON, A. C., AND BARNICOT, N. A. 1960. Haptoglobins and transferrins in some east African peoples. Acta Genet. Stat. Med. (Basel) 10: 17-23.
- ALLISON, A. C., BLUMBERG, B. S., AND AP REES, M. 1958. Haptoglobin types in British, Spanish Basque and Nigerian African Populations. *Nature* 181: 824–825.
- BARNICOT, N. A., GARLICK, J. P., AND ROBERTS, D. F. 1960. Haptoglobin and transferrin inheritance in northern Nigerians. Ann. Hum. Genet. (Lond.) 24: 171–183.

BARNICOT, N. A., GARLICK, J. P., SINGER, R., AND WEINER, J. S. 1959. Haptoglobin and

transferrin variants in Bushmen and some other South African peoples. *Nature* 184: 2042.

- BLUMBERG, B. S., AND GENTILE, Z. 1961. Haptoglobins and transferrins of two tropical populations. *Nature* 189: 897–899.
- FRASER, G. R. 1966. Population Genetic Studies in the Congo. II. Effect of hemoglobin S and glucose-6-phosphate dehydrogenase deficiency on mortality and fertility. Amer. J. Hum. Genet. 18: 538–545.
- FRASER, G. R., GIBLETT, E. R., AND MOTULSKY, A. G. 1966. Population genetic studies in the Congo. III. Blood groups (ABO, MNSs. Rh, Js^a). Amer. J. Hum. Genet. 18: 546– 552.
- GIBLETT, E. R. 1959. Haptoglobin types in American Negroes. Nature 183: 192-193.
- GIBLETT, E. R. 1962. The plasma transferrins. Prog. Med. Genet. 2: 34-63.
- GIBLETT, E. R., AND STEINBERG, A. G. 1960. The inheritance of serum haptoglobin types in American Negroes: Evidence for a third allele, Hp^{2m} . Amer. J. Hum. Genet. 12: 160–169.
- HARRIS, H., ROBSON, E. B., AND SINISCALCO. M. 1959. Genetics of the plasma protein variants. In Ciba Foundation Symposium on Biochemistry of Human Genetics, G. E. W. Wolstenholme and C. M. O'Connor. eds. London: J. and A. Churchill, pp. 151–177.
- MOTULSKY, A. G., VANDEPITTE, J., AND FRASER, G. R. 1966. Population genetic studies in the Congo. I. Glucose-6-phosphate dehydrogenase deficiency, hemoglobin S, and malaria. *Amer. J. Hum. Genet.* 18: 514–537.
- MOULLEC, J., FINE, J. M., AND LINHARD, J. 1960. Les groupes d'haptoglobine dans un èchantillon de la population Africaine de Dakar. *Rev. Hémat.* 15: 174–182.
- NEEL, J. V., ROBINSON, A. R., ZUELZER, W. W., LIVINGSTONE, F. B., AND SUTTON, H. E. 1961. The frequency of elevations in the A₂ and fetal hemoglobin fractions in the natives of Liberia and adjacent regions with data on haptoglobin and transferrin types. *Amer. J. Hum. Genet.* 13: 262–278.
- NYMAN, M. 1959. Serum haptoglobin: methodological and clinical studies. Scand J. Clin. Lab. Invest., Vol. II, Suppl. 39, 169 pp.
- PARKER, W. C., AND BEARN, A. G. 1961. Haptoglobin and transferrin variation in humans and primates: two new transferrins in Chinese and Japanese populations. *Ann. Hum. Genet.* (Lond.) 25: 227–241.
- PARKER, W. C., AND BEARN, A. G. 1963. Control gene mutation as a possible explanation of certain haptoglobin phenotypes. Amer. J. Hum. Genet. 15: 159-181.
- POULIK, M. D. 1957. Starch gel electrophoresis in a discontinuous system of buffers. Nature 180: 1477-1479.
- SMITHIES, O. 1955. Zone electrophoresis in starch gels: Group variations in the serum proteins of normal human adults. *Biochem. J.* 61: 629–641.
- SMITHIES, O. 1959. Zone electrophoresis in starch gels and its application to studies of serum proteins. Adv. Prot. Chem. 14: 65-113.
- SONNET, J., AND MICHAUX, J. L. 1960. Glucose-6-phosphate-dehydrogenase deficiency, haptoglobin groups and sickle cell trait in the Bantus of West Belgian Congo. Nature 188: 504–505.
- SUTTON. H. E., NEEL. J. V.. LIVINGSTONE, F. B., BINSON, G., KUNSTADTER, P., AND TROMBLEY, L. E. 1959. The frequencies of haptoglobin types in five populations. Ann. Hum. Genet. (Lond.) 23: 175–183.
- VAN ROS, C., VAN SANDE, M., AND DRUET, R. 1963. Groupes d'haptoglobine et de transferrine dans des populations africaines et européennes. Ann. Soc. Belge. Méd. Trop. 43: 511-534.
- VAN SANDE, M., VAN ROS, G. AND DRUET, R. 1963. Determination of haptoglobin group frequencies by starch gel and agar gel electrophoresis: Application to Belgian and Burundi populations. *Nature* 197: 603–604.