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Summary

When family data are ascertained through single selection based on truncation, a prevailing method of
analysis is to condition the likelihood function on the proband’s actual phenotypic value. An alternative
method conditions the likelihood function on the event that the proband’s measurement lies in the trunca-
tion region. Both methods are contrasted here by using Monte Carlo simulations; identical sets of data
were analyzed using both methods. The results suggest that, under either method, (1) parameter estimates
are nearly unbiased and (2) likelihood-ratio tests of null hypotheses are approximately distributed as x>
However, conditioning on the proband’s actual phenotypic value yields considerably less efficient estimates
and reduced power for hypothesis tests. A corresponding result also holds under complete ascertainment. It
is argued, therefore, that whenever sufficient information is available on the nature of truncation, the alter-

native approach should be used.

Introduction

Genetic epidemiology often deals with investigations
of familial aggregation of diseases and disease-related
traits based on samples of related individuals. Since
familial environment is known to exert influence on
many diseases and disease-related traits (e.g., Dadone
et al. 1984; Lipid Research Clinics Program 19844,
1984b; Janus et al. 1985), resolution of familial
aggregation into genetic and familial environmental
(cultural) inheritance constitutes an important step.
Although many such investigations employ random
ascertainment of families, nonrandom ascertainment
is coming into increased use. The LRC family stud-
ies (Lipid Research Clinics Program Family Study
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Committee 1984) and the Honolulu Heart Study
(Gulbrandsen et al. 1977) are typical examples of
nonrandom ascertainment. Such studies require ap-
propriate methods of analysis. A systematic max-
imum-likelihood method for multifactorial analysis
of family data ascertained specifically through trun-
cation has recently been presented elsewhere (Rao
and Wette 1987). On the other hand, a prevailing
method of analysis (Boehnke and Lange 1984), ap-
plied especially in variance-components analysis, uses
a likelihood function conditional on the proband’s
actual phenotypic value. The primary purpose of the
present article is to present a comparative evaluation
of both approaches under single ascertainment by
means of analytical and numerical methods.

In what follows, we shall first briefly review the
likelihood theory for a random sample of families, a
theory that plays an important role in both methods.
This will be followed by a discussion of the two
methods of analysis, an analytical evaluation, and,
finally, the results of comparative simulation studies.



Multifactorial Analysis

The Likelihood Method for a Random Sample

Consider a random sample of # nuclear families
with variable sibship sizes. For one nuclear family
with s children, let X' = (X131, X12, X21, X22, - - -» X25)
denote the row vector of phenotypes of father (X;,),
mother (X1,), and children (X5, k = 1,...,s), which
are assumed to be adjusted for the effects of concomi-
tant variables such as age and sex. For simplicity,
assume a common mean (p) and a common variance
(0?) for the phenotypes of fathers, mothers, and chil-
dren. Define three familial correlations as follows:
marital, p; = p(X11, X1,); parent-child, p1; = p(Xis
Xy)fork =1,2,andl =1,...,s; and sibling, p, =
p(Xop, Xoy) for R # 1 = 1, ..., s. Denote the
covariance matrix of the s + 2 variables (X) by 3.
Assuming that the phenotypes X of the family mem-
bers jointly follow an (s + 2)-variate normal distri-
bution with joint-density function f(X), the log-
likelihood function for the family may be written as

InL

In f(X)
Va3 + (X - )21 (X - p)

+ constant,

1

where ' = (i, ..., p) is the mean vector of X, |3| is
the determinant of and 3~ is the inverse of the
covariance matrix 3. If In L; is used to denote the log
likelihood for the ith of # families, the total log-
likelihood function for the entire random sample of #
families is

InL= > InL . (2)
i=1

The five unknown parameters (w, 62, p1, p12, and
p2) may be estimated simultaneously by maximizing
In L, and tests of hypotheses on the parameters may
be performed using likelihood-ratio tests (LRT). Al-
ternatively, the familial correlations (p;, p12, and p,)
may be expressed as functions of the parameters
of a transmission model, such as the simple one
defined by the following three parameters: p = corre-
lation between parental phenotypes; h* = genetic
heritability (defined as the proportion of phenotypic
variance due to genetic effects); and ¢ = cultural
heritability (defined here as the proportion of phen-
otypic variance due to a common sibship environ-
ment). This model, obtained as a special case of a

507

more general model (Rao et al. 1984), defines unique
expectations for the following three correlations:
p1 = P, p12 = b* (1 + p)/2,and p, = b (1 + ph*)12
+ c%. Estimating mean, variance, and all three model
parameters under the full model results in a value of
In L in equation (2), say In Ls. Under the null hy-
pothesis of, say, no marital correlation (p = 0), set-
ting p = 0 and estimating the remaining four param-
eters yields another In L value, say In L,. Then,

le =2 (ln L5 hd ln L4) (3)

provides the LRT statistic for the null hypothesis
p = 0. This test statistic follows asymptotically a
x? distribution with 1 df (McGue et al. 1987). Similar
tests can be developed for other hypotheses of inter-
est. Properties of such tests, evaluated using
simulated random samples of family data, have been
presented elsewhere (McGue et al. 1987), which cor-
roborate the distributional assumption of the LRT.

Single Ascertainment through Direct Truncation

In the context of multifactorial studies, we define
direct truncation as the case in which probands are
ascertained from a certain region of the phenotypic
distribution, such as from the upper decile (Rao and
Wette 1987). Typically, this selection type is real-
ized when, in a random sample, individuals are first
measured for a certain phenotype (e.g., the high-
density-lipoprotein cholesterol [HDL-C]), and only
those individuals whose phenotypic values are, say,
in the upper decile of the age-sex-specific distribu-
tion are selected as “probands” for family studies.
Examples include the kindreds ascertained for
hyperalphalipoproteinemia, defined by the upper-decile
HDL-C (Glueck et al. 1975), and for hypoalphalipo-
proteinemia, defined by the bottom-decile HDL-C
(Third et al. 1984).

Two other cases of ascertainment through trunca-
tion, in addition to that of direct truncation, were
also considered by Rao and Wette (1987). In one
case, probands are ascertained from a certain region
of the distribution of a correlated quantitative trait,
referred to as indirect truncation. In the other case,
probands are ascertained through an associated dis-
ease, referred to as latent truncation. The compara-
tive evaluation presented in the present paper per-
tains only to the case of direct truncation.

Consider a sample of # families ascertained from
the upper tail through direct truncation. Denote by X
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the vector of phenotypes of all s + 2 members of a
nuclear family with s children, with the parameteriza-
tion as defined in the previous section. Recall that,
under single ascertainment, each family has only one
proband. Let X, denote the proband’s phenotype
(which is a component of X) and let X, be the re-
duced vector of phenotypes of all nonproband mem-
bers. Assume that X has been sampled from a mul-
tivariate normal distribution only because X, = T for
each family, where T represents the point of trunca-
tion.

Generic Method

For statistical inference under this type of selection,
Boehnke and Lange (1984) proposed, in what may be
termed a “‘generic” approach, to condition the likeli-
hood function of a particular family with s children
on the actual phenotypic value of the proband, i.e.,

Lo(X,IX,) = % : 4)

where f, is the v-variate normal density function (see
also Cannings and Thompson 1977; Hopper and
Mathews 1982). This method is termed generic only
in the context of single ascertainment. For other types
of ascertainment, this method ceases to be generic,
since some desirable properties no longer hold (W. J.
Ewens and R. Green, unpublished data).

Note that equation (4) is equivalent to

LG(Xplxp) = f*s+1(Xp) s $)

where the density function is now an (s + 1)-variate
normal with the (s + 1)-dimensional mean vector p*
= u + (x, — w)B, where x, is the proband’s actual
value and B is the vector of regression coefficients of
the nonproband values on the proband value, and
with the (s + 1) X (s + 1)—dimensional covariance
matrix 3* = 3,,; — BB’ o, where 3, is the
covariance submatrix of 3 for the nonproband vari-
ables. In the above, note that x,, enters the likelihood
function as a parameter (of known value), not as a
variable. Obviously, the form of equation (5) is valid
for any arbitrary distribution of the proband values,
truncate or otherwise, since it holds equivalently for
any (s + 2)-dimensional density function f,,, (X)
subject to the condition that the density in equation
(5)is (s + 1)-variate normal. However, pn.* and 3* as
given above are necessary and sufficient for f;,, (X)
to be (s + 2)-variate normal if f*;, 1 (X,) is (s + 1)-
variate normal.
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Specific Method

In contrast to the above method, Rao and Wette
(1987) proposed, in what may be termed a “specific”
approach, to condition the likelihood function on the
event (X, = T) that a proband value is contained in
the specific region from which the probands are se-
lected under direct truncate selection; i.e.,

LsX,IX, > T) = __-__Q{;;;g‘g) . ®

where Q(X, = T) = Q (T — p)/o] is the upper-
tail probability of the standard normal distribution
function corresponding to the normal deviate Z =
(T — p)/o. Note that when the actual value of Q is
known, the denominator in equation (6) enters the
likelihood function only as a constant and is of no
further interest. However, the value of Z is also then
known (as the value Z of the standard normal deviate
corresponding to Q), which fact imposes the linear
constraint

w=T-o0cZ (7)

on the relationship among p, o2, T, and Z. Thus, p is
not estimated as an independent parameter but only
according to equation (7).

For either method, the total log-likelihood function
for a sample of n families is obtained by summing
the log-likelihood functions over the # individual
families. In comparing the two approaches, may it
first be noted that the specific approach is explicitly
geared to the particular type of selection in that it
stipulates that probands are sampled from the upper
tail X,, = T of a univariate normal distribution and is
therefore not applicable to other sampling schemes.
On the other hand, the generic approach does not
involve such a restriction; and it follows that statisti-
cal inference based on it is validly applicable not only
to direct truncation but to a wider class of situations
(see, e.g., Simpson et al. 1981; Hopper and Mathews
1982; Beaty and Liang 1987), so long as we confine it
to single ascertainment. By the same token, one may
expect that, when used in a particular situation, the
(or any) generic approach will be less efficient for
estimation and less powerful for hypothesis testing
than the (or any) specific approach tailored to that
particular situation. Whether the loss in efficiency
and power is of practical significance is, of course, a
different issue, which will be addressed in a later sec-
tion.
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A Theoretical Evaluation

The likelihood functions L and Lg, defined respec-
tively by equations (4) and (6) for the generic and
specific approaches, clearly satisfy the relation

Ls = Lg X [L(Xp)Q(X, = T)] . (8)

This relation provides the information needed to
compare the variances of the estimators under the
two approaches, the key observation being that the
term in brackets on the right-hand side of equation
(8) is a proper density function (viz., the conditional
density function of the proband’s value, given that
this value exceeds T). Thus, equation (8) can be re-
written as

where Ls, L, and L, are all proper likelihood func-
tions; and this observation continues to be true when
the sample contains many families and we form
likelihood functions from the products of likelihood
functions over individual families. We may now rein-
terpret the terms in equation (9) as these products.

Since the “information” matrix for any maximum-
likelihood procedure can be found by taking expecta-
tions of appropriate second derivatives (with respect
to the various parameters) of the total log-likelihood
function, equation (9) yields the following result on
the information matrices from the three terms in
equation (9):

Ig=1Ig+1, . (10)

Because each L in equation (9) is a proper likeli-
hood function, all three I matrices in equation (10)
are positive definite, and this implies that more infor-
mation is extracted from the data under the specific
method than under the generic method. The inverse
of any I matrix provides the asymptotic variances
and covariances of parameter estimates, and the rela-
tionship in equation (10) proves (Rao 1973) that the
variance of the specific estimator of any parameter is
necessarily less than that of the generic estimator. To
this extent we would prefer the specific estimation
procedure, although, as will be noted later, this result
applies only when the selection region (= Q) is well
defined.

Both the specific and the generic estimation ap-
proaches are maximum-likelihood procedures, so we
expect standard maximum-likelihood theory to apply
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for both. In particular, both procedures should lead
to asymptotically (as » — ) unbiased estimators.
There is no theory to indicate whether, in small sam-
ples, the bias arising under one approach is smaller
than that arising under the other, so we would expect
in practice that there would be an unsystematic pat-
tern of bias comparison between the two approaches.

Although the theory outlined above shows that the
variance—and hence the SE—of the estimator of any
parameter under the specific approach is less than
that under the generic approach, it does not indicate
how large the difference between the SEs might be.
To get some information on this point we resort to
Monte Carlo simulations. The results of these simula-
tions are described in the next section.

Finally, the foregoing result—i.e., that the specific
approach will always produce parameter estimates
with smaller SEs than those produced under the ge-
neric method—relies on the fact that the bracketed
term on the right-hand side in equation (8) is a proper
density function. A corresponding result holds under
complete ascertainment as well (W. J. Ewens and
R. Green, unpublished data).

Comparative Evaluation of the Methods
by Means of Simulation

The performance of each of the two methods dis-
cussed above for parameter estimation and hy-
pothesis testing was evaluated by means of the Monte
Carlo method, which was implemented on a Harris
100 computer system (for details, see Rao and Wette
1987). Each family consisted of two parents and a
variable number (s = 2, 3, or 4) of offspring (a
minimum of two offspring ensures that all families
contribute information on the sibling correlation).
The sibship-size distribution, generated according to
a geometric distribution, was held constant over mul-
tiple replications of a simulation condition so as not
to disturb the sampling properties of estimators and
test statistics by extraneous variation (see Rao and
Wette 1987). The proband’s position in the family
was determined at random, with each family member
being equally likely to become proband\. The family
data for such a family were generated'so that the
proband’s selection variable (X,) was in the upper
100Q% tail, with Q = .10, .05, or .01, and for
p=0,02=1,p=0,h*=0.6,and 2 = 0.2 (values
for p, b?, and ¢* were chosen so as to correspond to
highly heritable phenotypes such as some lipid vari-
ables).

Samples of n families, each generated this way,
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were analyzed by maximizing the total log likelihood
under each of the two methods. Specifically, In L was
maximized to estimate all relevant parameters under
the alternative (full-model) hypothesis, as well as
under the null hypothesis p = 0, in which only the
remaining parameters were estimated. The LRT sta-
tistic was then evaluated for testing the null hy-
pothesis. The entire process of simulation of a sample
of n families and analysis of the data was replicated
1,000 times for each value of Q. The sampling prop-
erties of the parameter estimates and of the LRT sta-
tistic were then evaluated over the N replications.

In every experimental condition, more than the
targeted number of replicate samples had to be gener-
ated since some of them were regarded as unsuitable
for an automated analysis. A particular replication
was unacceptable—and therefore the generated sam-
ple was rejected and replaced with a new sample—if
any of the following situations pertained to either of
the two methods of analysis: (1) a boundary solution
(i.e., =1 for p, and 0 or 1 for b and c) resulted
despite two attempts at numerical optimization; (2)
optimization did not converge owing to numerical
difficulties; (3) the variance-covariance matrix of pa-
rameter estimates was not positive definite; or (4) the
LRT statistic was not positive. The latter three situa-
tions were responsible for 97% of all sample rejec-
tions in our simulations. In all, 8,673 replications
were generated to yield 8,500 acceptable replications
(4,000 in table 1, 3,000 in table 3, 1,000 in table 4,
and 500 in table 5), with an overall sample rejection
rate of 2.0%. For any of the nine simulation condi-
tions presented in tables 1 and 3-S5, this rate ranged
between 0.8% and 4.1%. For an automated proce-
dure involving large numbers of replications, these
sample rejection rates are regarded as negligible. In
any case, they could not have affected our results to
any considerable degree.

Parameter Estimates and Hypothesis Tests

Table 1 presents the main results obtained using
the two methods both in small samples (7 = 50) at
three levels of truncation (Q = .01, .05, and .10) and
in large samples (n = 200) at an extreme level of
truncation (Q = .01). In each case, the three model
parameters b, ¢, and p (in addition to other relevant
parameters) were estimated by means of maximum-
likelihood iteration, and the three familial correla-
tions (py, P12, and p,) were computed as functions of
the estimates of b, ¢, and p. Although parameter esti-
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mates under the null hypothesis of p = 0 might be
more appropriate to present (unless the null hy-
pothesis is rejected), we chose to present the estimates
under the alternative hypothesis so as to present esti-
mates of all parameters. In any case, parameter esti-
mates and SEs were very comparable under the two
hypotheses (except for p). Results presented include
(1) the average parameter estimates; (2) two types
of SD, where SD1 is the observed SD of estimates
among replications and SD2 is the root-mean-
squared average of the asymptotic SEs obtained from
the likelihood method; and (3) the average LRT sta-
tistic (reported as a x> with 1 df) for testing the null
hypothesis of p = 0. It may be noted that the SE of an
average parameter estimate is given by SD/V'N and
not by SD itself. We prefer to present the SD as the
appropriate measure of precision for family studies
because it is (an estimate of) the “SE” of a parameter
estimate as obtained from just one such study. It may
be noted that SD1, which is not available in single
studies, never exceeds SD2 appreciably, which fact
indicates that the SE obtained under the likelihood
methods is a valid estimate of the sampling variation
of the estimates even in small samples.

Although bias, as estimated by the difference be-
tween average estimate and true value of a parame-
ter, is systematic and often significant under both
methods, especially in small samples, it should pose
no real concern, for the following two reasons: First,
it is small compared with the SE of the parameter
estimate from single studies (e.g., SD1 in table 1).
Second, the significance of bias is artificial in the
sense that it depends on the number N chosen. Be-
yond a certain N (such as 100), the effect of increas-
ing the N has been seen to reduce primarily the SE
but not the bias, thus rendering the otherwise unim-
portant bias “significant” (Rao and Wette 1987).
We employed a large N primarily to investigate the
distribution of the LRT statistic as validly as possible.
We conclude that the parameter estimates are, under
either method, sufficiently accurate even in small
samples. The large bias observed by Boehnke and
Lange (1984) for the generic method perhaps may be
attributable to random variation, since they used
small N values.

Although bias is negligible under both methods,
the SEs are considerably larger under the generic
method than under the specific method. They are of-
ten almost twice as large—and, in fact, four times as
large for the mean. A clear exception is that of the
estimate of ¢* (which parameter enters only the p,



Table |

Parameter Estimates, SDs, and Tests of Hypotheses, Using the Specific (eq. [6]) and Generic (eq. [5]) Likelihood Methods

Q
.01 (upper 1%)
.05 (upper 5%) .10 (upper 10%)
n = 50 Families® n = 200 Families® n = 50 Families® n = 50 Families?
PARAMETER (true value)
AND ESTIMATE Specific Generic Specific ~ Generic Specific  Generic Specific ~ Generic
p (.0):
Average .........oiiiiiiiiinn -.019 -.011 —.004 .001 -.017 -.009 -.019 -.018
SD1 ittt .091 .180 .043 .085 .097 172 .108 172
SD2 . .086 .168 .043 .085 .096 167 .103 165
b? (.6):
Average .........ciiiiiiiinnnn 578 559 595 594 577 Se61 578 557
SD1 Lt .092 .170 .044 .073 .103 .170 114 176
SD2 it .091 174 .043 .072 .102 171 .110 .182
A (.2):
Average ..........oiiiiiinnnn. .196 195 .200 .199 192 .190 .192 192
SD1 oottt .049 .054 .023 .025 .061 .065 .066 .070
SD2 .ttt .050 0585 .024 .026 .061 .067 .071 .072
p1 (:0):
Average .......coiiiiiiiiannnn -.019 -.011 —.004 .001 -.017 —.009 -.019 -.018
SDI ..t e 091 .180 .043 .085 .097 172 .108 172
P12 (:3):
Average ..........coiiiiiiannn .286 293 297 301 .286 293 .286 287
SD1 .ttt .056 119 .027 .058 .059 115 .062 .109
p2 (:5):
Average ..........oiiiiiiinnnn 488 494 498 501 485 491 .486 .488
SD1 .ottt .059 .091 .029 .045 .063 .092 .069 .089
n (0):
Average .........ciiiiiiiinnn .038 -.062 .010 -.020 .032 —.042 .024 -.016
R .143 565 .071 236 .097 427 .076 330
SD2 .. NA 647 NA 236 NA 443 NA .349
o2 (1):
Average ........ciiiiiiiinnn 977 1.005 994 1.001 977 999 984 997
SD1 .ottt 122 .170 .060 .076 116 161 116 .148
SD2 .t i 121 .205 .061 .078 119 178 119 167
LRT of Hy: p = 0:
Average X33 «ieiviriiniinnans 1.15 1.14 1.02 .96 1.04 1.07 1.11 1.12
Distribution of N = 1,000
X2 et 10.32 9.68 37 4.55 2.65 3.22 6.72 9.52
LRT values: x* vs. gamma
P oo .006 .008 .83 .10 27 .20 .03 .01

NoTe.—The number of replications is 1,000 for each simulation condition. SD1 = the square root of the empirical variance among the
N estimates of a parameter. SD2 = the root-mean-squared average of the asymptotic SEs obtained on the basis of the likelihood method.
NA = not available (since p was calculated using eq. [7]).

2 In each replication, there were 28, 12, and 10 families with 2, 3, and 4 children, respectively.

b In each replication, there were 110, 63, and 27 families with 2, 3, and 4 children, respectively.

¢ In each replication, there were 25, 15, and 10 families with 2, 3, and 4 children, respectively.

9 In each replication, there were 26, 16, and 8 families with 2, 3, and 4 children, respectively.
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correlation). A plausible explanation is that, even
when a child is the proband, sibs of the proband (for
s > 2) still provide information on ¢?; and if a parent
is the proband, the full sibship contributes informa-
tion on c%. Perhaps this is more readily evident from
the SEs of the correlation estimates; that is, whereas
the SE for p; or p;, is nearly doubled, that of p, is only
50% larger.

When each method is considered on its own merits,
the relative efficiency of the parameter estimates is
high, as indicated by the closeness of SD1 and SD2;
the latter may underestimate the actual SE slightly in
small samples. In comparison, however, the specific
approach evidently provides, when the sampling is
done under direct truncation, considerably higher
efficiency than does the generic approach. This fact
substantiates the argument forwarded earlier—
namely, that a method specifically geared to direct
truncation should be more efficient.

We note that all of these conclusions agree with the
theoretical predictions made in the previous section.
The SEs of all generic estimators are always larger
than those of the corresponding specific estimators,
the simulations showing that the excess is usually by
a factor of approximately two. Further, as predicted
theoretically, there is no systematic pattern to the
bias, with sometimes one estimator and sometimes
the other having the smaller bias. Two further gen-
eral theoretical predictions are also confirmed by the
results in table 1. First, under both estimation proce-
dures the bias decreases as 7 increases. Second, the
SEs of parameter estimates (again under both estima-
tion procedures) obtained from #» = 200 should be
half of those from n» = 50, and this is again
confirmed by the simulations.

The LRT statistic for testing the null hypothesis
p = 0 was computed in each of the replications. Its
sampling distribution was investigated to see whether
it attains the x? distribution with 1 df, as predicted on
the basis of asymptotic theory. This was done by
testing for x* against a two-parameter gamma distri-
bution with an LRT yielding a x* with 2 df (e.g., see
Rao and Wette 1987). The results are given at the
bottom of table 1. Under the specific method, the null
distribution of the LRT statistic approximates a x>
distribution reasonably well even in samples as small
as 50 families—except, perhaps, for extreme trunca-
tion (i.e., Q = .01). A similar conclusion holds under
the generic method also, with, perhaps, one excep-
tion. Under extreme truncation, the parameter esti-
mates are accurate under either method and almost
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fully efficient under the specific method even in small
samples, whereas it may appear that the sampling
distribution of the LRT statistic under either method
attains a x? distribution only in larger samples. It
should be noted, however, that the LRT is likely to be
sensitive against small deviations from the x? distri-
bution because it is based on a large N.

Empirical Rejection Rates and Power

The empirical rejection rates at several nominal
significance levels (o) are presented in table 2 for each
of the four conditions of table 1. The empirical rates
correspond rather closely to the nominal levels under
either method.

As noted earlier, one may expect reduced power
for the generic method. Power was evaluated under
each method by generating data corresponding to
the following three combinations of »* and x:
b* = .6 with n = 50 and h> = .2 with n = 100
and # = 200. The hypothesis »> = 0 was tested us-
ing the LRT statistic described above. The estimated
power, given by the empirical rejection rate obtained
from 1,000 replications each, is presented in table 3
for Q = .05. It is evident that, as anticipated, the
generic method is considerably less powerful than the
specific one in all situations.

Table 2

Empirical Rejection Rates (i.e., Observed Type | Error)

Corresponding to Several a’s under the Specific
and Generic Likelihood Methods

EMPIRICAL LEVEL
CORRESPONDING TO AN a0 OF

Q(n
AND METHOD .01 .05 .10
.01 (50):
Specific ............. .020 .065 123
Generic ........o.0.n .014 .063 127
.01 (200):
Specific ............. .012 062 .097
Generic ............. .007 .042 .087
05 (50):
Specific ............. .008 .064 .105
Generic ............. 016 .059 .105
10 (50):
Specific ............. 017 .064 120
Generic ............. .015 .064 124

Note.—The SEs of empirical rejection rates, evaluated at nomi-
nal levels (on the basis of 1,000 replications) are .003, .007, and
.010, respectively, at a values of .01, .05, and .10.
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Table 3

Empirical Power of the LRT for the Null Hypothesis h? = 0,
Evaluated under Both the Specific and the Generic
Likelihood Methods, for Q = .05 and Using N = 1,000

PoOwER CORRESPONDING

TO AN a OF
b? (n) AND METHOD .01 .05 .10
.2 (100%):
Specific ...ttt 0.50 0.74 0.84
Generic ....oovviinnennnnn. 0.18 0.38 0.51
.2 (200%):
Specific ........iiiiiinnn... 0.86 0.95 0.98
Generic ......ccvvvvennnnn., 0.39 0.64 0.75
.6 (50°):
Specific ........c.iiiiiin... 0.99 1.00 1.00
Generic ......oovvvveinaan.. 0.75 0.89 0.94

NoOTE.—The results for b> = .2 and # = 50, which resulted in
many boundary solutions, are regarded as unreliable and are there-
fore not presented. The sample rejection rate due to boundary
solutions, which never exceeded 0.2% in any other simulation
condition, was >50% for this case.

* In each replication, there were 53, 32, and 15 families with 2,
3, and 4 children, respectively.

® In each replication, there were 110, 59, and 31 families with 2,
3, and 4 children, respectively.

¢ In each replication, there were 26, 15, and 9 families with 2, 3,
and 4 children, respectively.

Truncation Region Unknown

We have seen that whenever the exact value of Q is
known, the specific method yields more efficient pa-
rameter estimates and provides greater power for hy-
pothesis testing than does the generic method. Since
knowledge of the actual value of Q plays a funda-
mental role in formulating the likelihood function
under the specific method (see eq. [7]), it is impor-
tant to investigate the performance of the method
when Q is unknown (or known with error), for the
following reasons: First, if truncation is applied to
raw phenotypes irrespective of concomitant varia-
tion, the actual value of Q will be unknown for the
phenotype after adjustment for concomitant varia-
tion. Second, even if a specified level of truncation is
postulated at the level of, say, age-sex-specific
phenotypic distributions, deviations from strict ad-
herence, as have occurred in the Lipid Research
Clinics Program (1984a), will result in somewhat am-
biguous values of Q for the final data. Third, at a
theoretical level, one may question how much of the
increased efficiency and power associated with the
specific method are attributable to the knowledge of
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the actual value of Q. For these reasons, we per-
formed another simulation experiment, generating
samples of # = 200 with actual values of Q = .05, h*
= .6, = .2,and p = 0. Each of the 1,000 repli-
cations was analyzed in seven different ways: once by
using the generic method; once by using the specific
method without making use of the actual value of Q
(i.e., by maximizing the likelihood function in eq. [6]
but without using the constraint given in eq. [7]); and
in the remaining five cases by using the specific
method with one of five different values of Q (.03,
.04, .05, .06, and .07). The latter five cases, which
include the true value of .05 for comparison, enable
an assessment of the performance of the specific
method when a precise value of Q is unknown.

The results are summarized in table 4, which pre-
sents the average estimates of the three correlations,
their SD1’s, average LRT x? values for testing the null
hypothesis p = 0, and the empirical rejection rates
corresponding to @ = .0S. Several important features
emerge. First, when a specific value of Q is not as-
sumed—and therefore the constraint in equation (7)
not utilized—both methods give very similar results
(see the first two rows in table 4). Second, so long as a
specific value of Q—and therefore equation (7)—is
utilized, the specific method yields considerably more
efficient parameter estimates (as judged by SD1) even
if an incorrect value of Q is used. Third, use of an
incorrect value of Q results in a considerably higher
type I error and introduces appreciable (systematic)
bias into the parameter estimates; the bias is within
~1 SD if the error in Q is <20% (Q = .04 or .06),
and it is within ~2 SDs if the error in Q is <40%
(Q = .03 or .07). Fourth, the absolute bias and the
average likelihood-ratio x* value are both U-shaped
as functions of Q, with the minimum values occur-
ring at the true value of Q = .05; it is not known
whether this observation would also apply to single
studies, which reflect greater sampling variability, as
opposed to averages over many replications, which
are more stable. To investigate these properties under
more extreme truncation, we repeated the experi-
ment with a true value of Q = .01 and using only
500 replications. As seen in table 5, essentially the
same conclusions hold even under extreme trunca-
tion.

Discussion
We have discussed two alternative maximum-
likelihood methods, both based on the assumption of
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Table 4

Rao et al.

Average Estimates of the Three Familial Correlations, Their SD1’s, Average x2, for Testing the Null Hypothesis p = 0,

and Empirical Rejection Rate at a = .05 in 1,000 Replications

AVERAGE ESTIMATES (SD1?)

METHOD OF ANALYSIS

(LRT oF Hyp: p = 0) EmpIRICAL REJECTION

AND Q P P12 P2 AVERAGE x%; RATE AT a = .05

Generic ......vevvviiinniennns —.000 (.083) .299 (.056) 499 (.045) 0.95 .046
Specific:

Unknown .................. .000 (.080) 299 (.054) 499 (.044) 0.93 .038

03 e .118 (.046) .381 (.027) 555 (.029) 8.00 754

04 o .052 (.047) 335 (.028) 523 (.031) 2.29 .208

05 e —.003 (.048) 297 (.029) .497 (.032) 1.02 047

06 i —.050 (.049) .264 (.029) .476 (.033) 2.03 .164

07 e —.090 (.050) .236 (.030) 458 (.034) 4.24 435

Note.—Each replication, consisting of # = 200 families, contained 107, 54, and 39 families with 2, 3, and 4 children, respectively. Each
replication, generated with p; = 0, py, = .3, p, = .5 and Q = .05, was analyzed using each of seven methods of analysis.

2 See Note to table 1.

multivariate normality, for multifactorial analysis of
family data ascertained through truncation on the
phenotypic distributions of probands. The generic
method simply conditions the likelihood function
of the phenotypes of nonprobands on the actual
phenotypic value(s) of the proband(s) (see, e.g.,
Boehnke and Lange 1984). The specific method, on
the other hand, conditions the likelihood function on
the actual event that the proband’s value is in a
specific Q, such as beyond a certain threshold (Rao
and Wette 1987).

We have seen that, when ascertainment is based on
truncation and the actual value of Q is known, both
methods yield nearly (asymptotically) unbiased esti-
mates of parameters; and the empirical rejection rates

Table 5

(estimates of type I error rates) under either method
are comparable to the nominal levels. On the other
hand, the SEs of parameter estimates are approxi-
mately twice as large under the generic method—
with a corresponding decrease in the power of hy-
pothesis tests—as compared with those under the
specific method. However, these conclusions apply
only when the actual value of Q is known, for (1)
when this value is not known, we have seen that both
methods perform equally well and (2) when an inac-
curate value is assumed, depending on the extent of
error involved, the specific method can yield appre-
ciable bias and high empirical rejection rates (type I
error). The foregoing conclusions hold under both
moderate and extreme levels of truncation. Finally,

Average Estimates of the Three Familial Correlations, Their SDI’s Average x?, for Testing the Null Hypothesis p = 0,

and Empirical Rejection Rate at a = .05 in 500 Replications

AVERAGE EsTIMATES (SD1?)

METHOD OF ANALYSIS AVERAGE x%, EMPIRICAL REJECTION
AND Q P1 P12 P2 (LRT oF Hyp: p = 0) RATE AT @ = .05

Generic ......oevvveenennnnn. .001 (.088) .301 (0.060) 499 (.044) 1.04 .042
Specific:

Unknown ................. —.000 (.085) .300 (0.058) 499 (.044) 1.05 .052

005 i .104 (.039) .373 (0.025) .549 (.026) 7.64 702

0075 oo .042 (.041) .329 (0.026) .519 (.027) 2.01 176

L N —.005 (.042) .297 (0.026) 496 (.028) 0.94 .036

0125 ..ot —.042 (.042) .270 (0.027) 479 (.028) 1.82 156

0150 . .cvviniinnennnnnnnn —.074 (.042) .248 (0.027) 464 (.029) 3.64 392

Note.—Each replication, consisting of # = 200 families, contained 105, 62, and 33 families with 2, 3, and 4 children, respectively. Each
replication, generated with p; = 0, p;; = .3, p, = .5 and Q = .01, was analyzed using each of seven methods of analysis.

2 See Note to table 1.
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although the results presented here pertain only to
direct truncation on the phenotypic distribution, we
verified that the conclusions apply to the case when
truncation is applied not to the phenotypic distribu-
tion directly but to that of a correlated quantitative
trait (i.e., indirect truncation; Rao and Wette 1987).

The results must be put into perspective. The spe-
cific method clearly provides more efficient parame-
ter estimates and increased power for hypothesis
tests, so long as truncation is strictly enforced and the
value of the truncation region is known accurately.
However, the generic method is easier to implement
and is therefore more appealing, especially when
truncation is applied to correlated traits. As a more
general method capable of handling a wider range of
situations under single ascertainment, the generic
method is clearly more robust to deviations from the
purported sampling method. At a practical level, ac-
tual family studies are less likely to enforce trunca-
tion strictly and accurately, thus giving rise to poten-
tially inaccurate estimates of the truncation region. In
conclusion, then, the specific method should be re-
served for those cases in which the truncation region
is known with minimum error. Finally, the simula-
tions presented here are somewhat limited in scope,
especially since we used only one set of parameter
values. Therefore, extrapolation of the results to
other situations may not readily apply.
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