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Summary

A Bayesian solution for making inferences about segregation parameters with no information about the
ascertainment is presented. Inferences about the segregation probability and the probability of being
sporadic are made through the posterior marginal distribution of these parameters after integrating out the
ascertainment probability, the nuisance parameter. The method was tested with real and simulated data
and performed well. Original Fanconi anemia data, for which no information about the ascertainment was

available, were then analyzed, with results that confirmed a monogenic autosomal recessive mode of inher-
itance.

Introduction

Human genetic data and ascertainment are tightly
interconnected. Fisher (1934) was the first to define
the probability of ascertainment, ar, noticing that the
segregation probability, p, is dependent on this ancil-
lary parameter. Assuming a constant ascertainment
probability (or a partition of the data set with differ-
ent but constant ascertainment probabilities in each
subset) and that the probands were independently
ascertained, he proposed an estimator of a. These
assumptions of constancy and independence of ascer-

tainment have since been criticized as unrealistic
(Stene 1977; Ewens and Shute 1986a, 1986b; Green-
berg 1986). Nevertheless, the models adopting these
assumptions generally produce consistent results.
Haldane (1938) presented the classical model of
segregation analysis with p and nr, deriving the for-
mula for the limiting cases of 7r (-rr -> 0, ar = 1).
Morton (1959) introduced the probability of being
sporadic, x, into Haldane's model to estimate the fre-
quency of sporadic cases, in which the affected status
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is due to mutation, phenocopies, polygenic com-
plexes, etc.
The genetic parameters of main interest are p and

x. The nuisance parameter is nr, although its estimate
may provide information about the prevalence of
the disorder. The usual way of eliminating nuisance
parameters, by large-sample theory, is to estimate the
nuisance parameter away and substitute the un-
known parameter sr by its estimated value *p. There-
fore, to have a successful analysis, it is necessary to
gather information not only about the number of sib-
ships of size s with r affected sibs (SR table) but also
about -r itself. Under the assumptions of constant and
independent x, information about the ascertainment
probability can be provided by the number of sib-
ships with r affected sibs when a of them are pro-
bands (RA table) or, if there are independent sources
of ascertainment (such as physicians, hospitals, birth
and death certificates, and patient associations), by
the number of t ascertainments that a proband has
(T table).
Because of the inherent problems in human genet-

ics of collecting data, sometimes the only information
available is the SR table. Under these circumstances,
the solution of conditioning the data on the limiting
values of -r and concluding that the most likely true
values of p and x are bounded by these estimates is of
difficult statistical interpretation. Another possibility
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is to maximize the joint distribution of p, x, and rr,
but this procedure is not supported theoretically be-
cause wr is ancillary to this information (Stene 1981)
and because, in practice, -r generally converges to a
boundary value.
To solve the problem of lack of information about

the ascertainment, a Bayesian method for making in-
ferences about the segregation parameters is pre-
sented. The performance of the method is tested with
data with known ar (cystic fibrosis and simulated
data). In these cases, by assuming that -a is unknown,
the agreement of the recovered estimates with the
true values can be examined. After the evaluation of
the method, it is applied to Fanconi anemia (FA)
data, for which no information about al is available.
The investigation of whether FA might be defined by
a cellular marker in homozygous cells was the pri-
mary motivation for the development of the method
here presented. The question to be answered is
whether classification of patients on the basis of this
marker results in groups that may be considered as
distinct entities on the basis of genetic segregation.

Material and Methods

Cystic Fibrosis

Cystic fibrosis data from the studies of Crow
(1965), Danks et al. (1965), and Wright and Morton
(1968) are used to test the performance of the
method because, in addition to the SR tables, infor-
mation about mr is also available. In the Crow paper
71 affected individuals are reported and the RA table
is presented. In the Danks et al. paper 213 affected
individuals and both RA and T tables are available.
In the Wright and Morton paper 21 affected individ-
uals and both RA and T tables are reported. Data
from the three studies are summarized in the Wright
and Morton paper.

Simulated Data

Deterministic and pseudorandom simulated sam-
ples are also utilized to test the performance of the
method. Segregation distributions of affected individ-
uals were generated by formula (1) (see below),
choosing particular values of s, p, x, and Tr. Deter-
ministic samples are obtained by multiplying the gen-
erated probabilities by an arbitrary sample size N.
Pseudorandom simulated samples are obtained by

using the segregation probabilities in a multinomial
random deviate generator from the IMSL Library
(1982) for a given N.

Fanconi Anemia

FA is an autosomal recessive disorder character-
ized by pancytopenia, congenital abnormalities,
chromosome instability, and increased predisposition
to cancer (Schroeder et al. 1964; Fanconi 1967; Alter
and Potter 1983). The FA phenotype is highly vari-
able, and the diagnosis of the syndrome on the basis
of clinical manifestations alone is often difficult
(Glanz and Fraser 1982). On the other hand, sensitiv-
ity to the clastogenic effect of DNA cross-linking
agents such as diepoxybutane (DEB) is remarkable in
homozygous FA cells (Auerbach and Wolman 1976;
Auerbach et al. 1981). Therefore, clastogen-induced
chromosomal breakage can be used as a cellular
marker for the diagnosis of FA in presymptomatic
cases or even prenatally (Auerbach et al. 1985,
1986).
The FA data analyzed came from two sources:

the International Fanconi Anemia Registry at The
Rockefeller University (Auerbach et al. 1988) and
literature data from Schroeder et al. (1976). The In-
ternational Fanconi Anemia Registry consists of pos-
sible FA cases reported mainly by physicians at med-
ical centers specializing in the treatment of aplastic
anemia. The probands and all siblings are tested for
sensitivity of cultured lymphocytes to DEB and are
classified as DEB+ or DEB -. On the basis of clinical
evidence (Auerbach et al. 1988), we are classifying
DEB+ patients as affected with FA and DEB- pa-
tients as nonaffected. In the literature data, FA is
defined primarily on the basis of clinical symptoms.
The partition of affected individuals in the FA data

is 88 in the DEB' group, 31 in the DEB- group, and
86 in the LITERATURE group. The SR tables for the
three groups are given in table 1.

Posterior Marginal Distributions

If one assumes a constant -r and that the probands
were independently ascertained, the probability of r
affected individuals, given a sibship of size s and
given p, x, and 7r (Morton 1959), is

Pr{rls,p,x,-rr} =

sp'n [x + (1 -X) (1 -P)S for r
xspTr + (1 - x) [1 - (1 - )S]

(1 X) () pr (1 - p)S rr[ - (1 - r)r]
xsp1T + (1 - x) [1 - (1 - p1T)S]

(1)
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Table I

Number of r Affected among s Observed Sibs, for DEB',
DEB-, and LITERATURE

r

S AND GROUP 1 2 3 6

2:
DEB+ ................. 35 6
DEB . ................ 12 5
LITERATURE ......... 22 4

3:
DEB+ ................. 14 11
DEB . ................ 9 1
LITERATURE ......... 12 4 2

4:
DEB+ ................. 8 7 2
DEB . ................ 2
LITERATURE .........5 4 1

5:
DEB+ 2
DEB . ................ 1
LITERATURE .........5 6 3

6:
LITERATURE .......5..

7:
DEB.
LITERATURE ......... 2 4 3

8:
DEB + 2
DEB.
LITERATURE. 1

9:
DEB. 1

10:
LITERATURE ......... 1

12:
LITERATURE. 1

14:
LITERATURE .

Let S be the maximal sibship size in the sample and

a, be the sampled number of sibships of size s, each
with r affected sibs. The likelihood of the sample, the
triangular matrix a, (the SR table), given p, x, and Tr,
is proportional to

S S

Pr{a'-Ipvx,-rr} 0C I7 I Pr{rIs,px,'r}sa_
s=2 r=1

In Bayesian theory, the unknown prameters to be
estimated are associated with a probability distribu-
tion that represents our uncertainty about them.
Technically speaking, unknown parameters receive
the same treatment as random variables. Our aim is
to make inferences on the parameters p and x. This

can be achieved by analyzing either their joint distri-
bution or the two univariate distributions of p and x
alone. If one is to obtain the joint posterior marginal
distribution (PMD) of p and x, 'a is the nuisance
parameter to be eliminated. If one is to obtain the
univariate PMD of p, the nuisance parameters are x
and ir. To get the univariate PMD of x, both p and -a

ought to be eliminated. The Bayesian method to elim-
inate nuisance parameters (Basu 1977) is as follows:
fix a prior distribution, compute the posterior distri-
bution, integrate out the nuisance parameter from the
posterior distribution to obtain the PMD of the pa-
rameter of interest, and make inferences on the basis
of the PMD. Let Pr{p,x,-r} be the prior distribution
for p, x, and ur. Therefore, the posterior distribution
for p, x, and rr is Pr{p,xyrlar5} o Pr{a,,Ip,x,1T}
Pr{p,x,rr}. The joint PMD of p and x is

Prfp,xla,5} = Prfp,x,-rrMars} do.

The univariate PMD of p is

Pr{pIa,.} =
0

Pr{px,7rlars} dx dTr,

and the univariate PMD of x is

Pr{xlars} = Pr{p,x,nrrlars} dp do.

To obtain the standardized PMD, the PMD is divided
by the scale factor

Pr{p,x,irua1.} dp dx duT.

All the integrations are performed numerically by an
adaptive Romberg quadrature (Boor 1971).
When information about ar is available (RA or T

tables), informative priors may be used. If one as-
sumes a constant wr and that the probands were inde-
pendently ascertained, the distribution of a probands
among r affected in ascertained sibships, given x, is a
truncated binomial (Fisher 1934):

Pr{alrr} =
1 (1 a)r

In the case of independent ascertainments from many
sources, the probability that a proband has t ascer-
tainments, when a truncated Poisson distribution
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Table 2

Analysis of Cystic Fibrosis Data

Approach Used and Information Considered p x

Bayesian:a
SR ....................................... .25 (.20,.33) .02 (0,.20)
SR + RA ...................................... .26 (.22,.31) .04 (0,.17)
SR + T ....................................... .27 (.23,.32) .03 (0,.14)
SR + RA + T ................................. .26 (.22,.31) .03 (0,.15)

Classical:b
SR + RA + T ................................. .26 (.23,.29) -.02 (-.11,.07)

a Modal values and 95% credible intervals (in parentheses) for the univariate PMD of p and x.
b Joint estimates and asymptotic 95% confidence interval (in parentheses).

(Morton 1959) is assumed, is

Pr{tlsiT} I[ln(1 - A)](1 - n)

Making Inferences

Inferences about the parameters of interest can be
made through point estimates and through the mea-
sure of uncertainty of the point estimates as evaluated
on the basis of the PMD. The point estimate
is the modal value of the PMD and can be obtained
by finding the argument for the maximum of the dis-
tribution. The measure of uncertainty is the credible
region (or highest-density region), the Bayesian
counterpart for the confidence region (Box and Tiao
1973). The credible region of level oa is the smallest
subset (3a of the parameter space 0 such that, in the
PMD, the event 0 E 0a has probability a. In spite of
the analogy between the credible region and the
confidence interval of the classical statistics, they are
conceptually different. A credible region a means
that the true value of the parameter has a probability
a of belonging to the set 0a. On the other hand, a
confidence interval a means that, if the construction
method has been applied to all possible samples,
100a% of the confidence intervals thus calculated
should contain the true value of the parameter. In the
univariate case the credible region is called the cred-
ible interval. General definitions, properties, and al-
gorithms for evaluating the credible regions can be
found in Pereira and Rogatko (1984) and Rogatko et
al. (1986).

Results

Cystic Fibrosis

Table 2 shows the results of the Bayesian and clas-
sical approaches as applied to the cystic fibrosis data.

To make the comparison easier, only the univariate
PMD are evaluated for p and x in the Bayesian ap-
proach. The modal values and the 95% credible in-
tervals are calculated in the Bayesian approach, and
the unconstrained joint maximum-likelihood esti-
mates and the asymptotic 95% confidence intervals
are evaluated in the classical approach. In the first
line of table 2 (information from the SR table only),
uniform priors are assigned for p, x, and m. Informa-
tive prior distributions are assigned for -r according
to the type of information incorporated (RA, T, or
RA and T tables) from the second to the fourth lines;
uniform priors are assigned for p and x. A truncated
binomial distribution model is considered in the case
of the RA table, and a truncated Poisson distribution
model is utilized for the T table. The total amplitude
of the credible or confidence interval for p and x,
obtained by adding the individual amplitudes of p
and x, is greater if no information about ar is pro-
vided (SR table alone). It is worth noting that the
total amplitude when one uses all the information is
the same with the two approaches. When the Bayes-
ian approach is used with these particular data, the
modal values seem to be insensitive to the amount
of information incorporated in the prior distribution
for rr.

Simulated Data

Deterministic samples are generated with various
values of 'n. The univariate estimates of p and x when
one assumes an unknown ar are shown in table 3. It
can be seen that p is overestimated when -rr---0 and is
underestimated when ar-- 1. Conversely, x is overes-
timated when ar--> 1 and probably is underestimated
when r---+0. However, the hypotheses of p = .25 and
x = 0 were accepted in all cases by the 95% credible-
interval inclusion criterion.
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Table 3 Table 4

Estimation of p and x through Deterministic Samples Estimation of p through Deterministic Sampling, When x Is
when ia Is Assumed to Be Unknown Assumed to Be Zero and nr Is Assumed to Be Unknown, for

Various Values of Sibship Size (s) and Sample Size (N)
IRUE T

.0001 .2 .5 .8 1.0

N= 100:
p.... .30 .28 .26 .23 .23
X ..... .00 .00 .01 .04 .11

N= 500:
p.... .28 .26 .25 .23 .23
X...... .00 .00 .00 .04 .12

NOTE.-True p = .25; true x = 0; s =5.

To study the consistency of the estimator for pI
deterministic samples were generated, fixing x = 0,
for various values of ir, s, and N. Table 4 shows that
for small N (e.g., N = 50), p is underestimated if
rr- >1 and overestimated if T--)0, whatever s. For
large samples it is shown that s plays an important
role, a finding that agrees with the intuition. It can be
shown empirically that for s = 2 the estimator of p is
inconsistent. For s > 5, however, it seems that p is
consistent. Rigorous analytical proofs are still under
investigation.
An evaluation of the effective type I error for some

representative cases is displayed in table 5. Pseudo-
random samples were generated fixing p = .25 and x
= 0, and varying ir and the sample size. One hundred
samples were generated for each pair of Tr and N. The
univariate PMDs of p and x were evaluated assuming
,a to be unknown. Mode and 95% credible intervals
were calculated, and the hypotheses of p = .25 and x
= 0 were tested using the 95% credible-interval in-
clusion criterion. The frequency of acceptance of
both hypotheses p = .25 and x = 0 is higher when ir
is close to .5, lower for p = .25 when T-*+O, and
lower for x = 0 when Tr- 1.
The effective type II error can be evaluated using

tables 6 and 7. When the same decision procedure
described previously was used, 100 pseudorandom
samples of size 100 were generated for each pair of
true ar and true p (table 6) and for each of true it and
true x (table 7). Table 6 shows the over- and underes-
timation of p for low and high values of it, respec-
tively. The frequency of type II errors, ,B, decreases
faster from the maximum value (which varies with rr)
if p increases above the maximum than if p decreases
below the maximum. For example, for true it = .8,
the maximum 13 is given when the true p = .25, i.e.,

7r

S AND N .0001 .2 .5 .8 1.0

2:
50 . .30 .30 .25 .20 .18
100 . .31 .28 .25 .21 .18
500 . .29 .26 .23 .20 .17

1,000 . .28 .26 .23 .19 .16
2,000 . .27 .25 .22 .18 .16
3,000 . .26 .25 .22 .18 .16
4,000 . .26 .25 .22 .18 .16

3:
50 . .30 .29 .25 .22 .18
100 . .30 .27 .24 .21 .19
500 . .28 .26 .23 .20 .18

1,000 . .27 .25 .22 .19 .23
2,000 . .27 .25 .22 .24 .23
3,000 . .26 .25 .22 .24 .24
4,000 . .26 .24 .21 .25 .24

4:
50 . .31 .29 .24 .21 .18
100 . .30 .27 .25 .22 .20
500 . .28 .26 .23 .23 .23

1,000 . .27 .25 .22 .25 .24
2,000 . .27 .25 .22 .25 .24
3,000 . .26 .24 .25 .25 .24
4,000 . .26 .24 .24 .25 .24

5:
50 . .29 .28 .24 .21 .20
100 . .29 .27 .24 .21 .21
500 . .27 .25 .23 .25 .24

1,000 . .27 .25 .24 .25 .24
2,000 . .27 .25 .25 .25 .24
3,000 . .26 .24 .25 .25 .24
4,000 . .26 .24 .25 .25 .25

6:
50 . .30 .29 .24 .21 .20
100 . .29 .27 .26 .23 .23
500 . .27 .25 .24 .25 .24

1,000 . .27 .25 .24 .25 .24
2,000 . .26 .25 .25 .25 .25
3,000 . .26 .24 .25 .25 .25
4,000 . .26 .25 .25 .25 .25

7:
50 . .30 .27 .24 .23 .21
100 . .28 .27 .25 .22 .22
500 . .27 .26 .25 .25 .24

1,000 . .27 .25 .25 .25 .24
2,000 . .26 .24 .25 .25 .25
3,000 . .26 .24 .25 .25 .25
4,000 . .26 .26 .25 .25 .25

8:
50 . .30 .27 .25 .22 .21
100 . .29 .28 .25 .23 .23
500 . .29 .25 .25 .25 .24

1,000 . .27 .25 .25 .25 .24
2,000 . .27 .26 .25 .25 .25
3,000 . .26 .25 .25 .25 .25
4,000 . .26 .25 .25 .25 .25

NOTE.-True p = .25.
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Table 5

Frequency of Acceptance of the Hypotheses p = .25 and
x = 0, When 11 Is Assumed to Be Unknown, in 100 Trials
for Each Pair of Values of True ir and N

FREQUENCY OF ACCEPTANCE
(%)

TRUE1TAND N P X

.001:
50 .................. 68 96
100 ...................... 67 97
500 ...................... 65 99

.2:
50 .................. 92 95
100 ...................... 93 100
500 ...................... 97 97

.5:
50 .................. 96 96
100 ...................... 99 99
500 ...................... 100 98

.8:
50 .................. 97 92
100 ...................... 98 90
500 ...................... 96 91

1.0:
50 .................. 98 83
100 ...................... 99 80
500 ...................... 82 75

NOTE.-True p = .25; true x = 0.

13.8(.25) = .98 is maximum for i = .8; and P.8(.25 -
5) < 0.8(.25 + 8), for 8 = .05, .1, .15. Table 7 shows
the overestimation of x for high values of -a. When
tables 5 and 6 are compared, for the same at, the rate
that 13 decreases for x is smaller than the rate that it

increases for p when they vary by an equivalent
amount from the maximum. This was expected, since
the information about x, for a given sample size, is
smaller than that for p. The last line of table 7 dis-
plays the 1P's for x = .40, but with a smaller sample
size, N = 30, comparable with the sample size of the
DEB- group in the FA data.

Fanconi Anemia

The joint and the univariate PMD for the three
groups of FA cases are obtained by assuming uni-
form prior distributions for p, x, and Tr.

Figure 1 shows the joint PMD of p and x, the
modal values, and the 95% credible region for the
three samples. The modal value (p, x) for DEB+ is
(.24, .00); for DEB- it is (.23, .2 1); and for LITERA-
TURE it is (.29, .13). The credible regions of the three
samples include the point (.25, .00), which defines a

monogenic autosomal recessive mode of inheritance.
Figures 2 and 3 show the univariate PMDs (stan-

dardized likelihood) of p and x, respectively. The
modal values and the 95% credible intervals (in pa-

rentheses) are also indicated. The credible intervals of
the three samples include the point p = .25 (fig. 2)
and x = 0 (fig. 3).

Therefore, p and x are not significantly different
from .25 and 0, respectively, in the three samples,
which can thus be considered as homogeneous with
respect to these two parameters. However, the modal
values suggest that x might be greater in the DEB-
group, intermediate in the LITERATURE group, and
zero only in the DEB+ group. As it was shown in
table 7, the probability of accepting the hypothesis x

Table 6

Frequency of Acceptance of the Hypotheses p = .25 and x = 0, When ir Is Assumed to Be
Unknown, in 100 Trials for Each Pair of Values of True iT and True p

FREQUENCY OF ACCEPTANCE AT TRUE IT OF
(%)

.001 .2 .5 .8 1.0

TRUE P p X P X P X P X P X

.10 ........

.12 ........

.15 ........

.20 ........

.25 ........

.30 ........

.35 ........

.40 ........

28
51
90
100
67
6
0

0

90
90
94
99
97
95
94
99

27
41
80
100
93
23
1
0

89
89
95
99
100
97
97
96

13
28
51
96
99
99
14
0

84
85
92
94
99
99
92
89

19
26
41
80
98
90
38
3

75
78
85
70
90
92
92
91

25
26
62
72
99
95
62
7

56
60
85
78
80
84
85
91

NOTE.-True x = 0; s = 5; N = 100.
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Table 7

Frequency of Acceptance of the Hypotheses p = .25 and x = 0 When if Is Assumed to Be
Unknown, in 100 Trials for Each Pair of Values of True 27 and True x

FREQUENCY OF ACCEPTANCE AT TRUE Tr OF
(%)

.001 .2 .5 .8 1.0

TRUE X P X P X P X P X P X

.00 ...... 67 97 93 100 99 99 98 90 99 80

.OS ...... 83 93 91 97 99 92 98 88 91 62

.10 ...... 89 89 97 92 98 82 98 69 95 61

.15 ...... 84 71 94 78 98 67 92 68 93 43

.20 ...... 81 62 98 66 95 59 93 41 95 35

.25 ...... 86 48 94 50 95 36 94 37 89 24

.30 ...... 90 40 96 24 96 24 88 22 92 9
35 ...... 89 48 93 28 98 21 87 17 88 9
.40 ...... 91 12 97 9 95 12 88 16 85 5

.40 ...... 86 48 99 40 98 19 99 16 99 11

NOTE.-True p = .25; s = 5; N = 100, except for the last row, in which N = 30.

= 0 when x 0 is high. For true x = .15 and N =

100 (comparable with the LITERATURE values), it
is 43%-78%; and for true x = .40 and N = 30
(comparable with the DEB- values), it is 1 1%-48%.
Thus, on the basis of the modal values, (a) DEB+

>. .244

zs .29

co2c .2

°D .37
C .40

u,
cc

* DEB +
--- DEB

ilrrsasarrgr

__ H LlltP~~~~~~~~~~~~Il

L\\II

RAITURE

follows a monogenic autosomal recessive mode of
inheritance, (b) DEB- likely is a heterogeneous
group, consisting of genetic and nongenetic entities,
and (c) LITERATURE can be interpreted as a mix-
ture of DEB+ and DEB - groups.

Discussion

The analysis of the conditional distribution of p
and x for a given is a reasonable approach when

ii

In
(D
CO

J

B5
J

Cc

IS-

0.253 (0.18, 0.32)

0.287 (0.21, 0.36)

PROBABILITY OF BEING SPORADIC

Figure I Joint maximum-likelihood estimates of the segre-
gation probability, probability of being sporadic, and 95% cred-
ible region of the joint PMD for DEB + (0,-), DEB - (A, ---), and
LITERATURE (*, -).

SEGREGATION PROBABILITY

Figure 2 Standardized PMD of the segregation probability
for DEB+ (-), DEB- (---), and LITERATURE (-). Maximum-
likelihood estimates and 95% credible intervals (in parentheses)
are indicated for each curve.
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I(0.00 0.21)

.3

0.133 (0.00, 0.37)

0

.15 .40 .70

PROBABILITY OF BEING SPORADIC

Figure 3 Standardized PMD of the probability of being
sporadic for DEB' (-), DEB- (---), and LITERATURE (-).
Maximum-likelihood estimates and 95% credible intervals (in pa-

rentheses) are indicated for each curve.

the uncertainty about the ascertainment is small.
However, when the information about the ascertain-
ment is poor, the conditional approach is inadvisable
because it assumes a precise knowledge of ar. It is the
equivalent, in a Bayesian approach, of concentrating
all the mass of the prior distribution in a single point.

Stene (1981) showed that rn is ancillary to the dis-
tribution of affected individuals (formula [1]) and
that maximizing p, x, and rr together has no statisti-
cal support. Ewens and Shute (1986b) proposed "a
resolution of the ascertainment sampling problem"
when it is possible to divide the genetic information
into two parts, one that is relevant to ascertainment
and one that is not. In the case of rare recessive disor-
ders, all the genetic information is related to an ascer-

tainment scheme; thus their method cannot be used.
Stene (1975) suggested a more general model for

the ascertainment, Cra, a > 0. Ewens and Shute
(1986b) generated examples of quadratic ascertain-
ment (a = 2), which can happen when a two-stage

selection of the families occurs. We considered the
usual model of a = 1 for the cystic fibrosis and FA
data, since there was no indication of multistage
selection of the families. In other instances it might be
necessary to include a in the model, a decision that
will result in the need to eliminate another nuisance
parameter.

In the Bayesian approach, the elimination of n by
integrating it out may be interpreted as the evaluation

of the expected distribution of the parameters of in-
terest weighted by the prior distribution. We have
used uniform prior distributions in every case in this
paper; that is, we have considered the information
contained in the likelihood function only. However,
when the researcher has an idea about the ascertain-
ment, it can be translated into a suitable prior distri-
bution.
The Bayesian approach for eliminating mi is a valid

statistical solution which provided reliable results. In
the cystic fibrosis data the estimated values of p and x
did not vary with the amount of information consid-
ered for r. In the simulated data, the recovery of the
true values of p and x were within an acceptable level
of tolerance. Convergence problems did not occur in
any case. On the other hand, multiple integration
may be time consuming, but fast machines are avail-
able and the progress in computing speed is impres-
sive. Also, parallel computers will greatly reduce the
computing time required for multiple integrations,
since algorithms for integration can be structured in a
parallel fashion. Today algorithms and implementa-
tions are available to integrate as many as 20 vari-
ables simultaneously (Naylor and Shaw 1985).
Therefore the procedure advocated here may be used
in more complex models of segregation analysis to
avoid the frequent problems of convergence that are
due to flat likelihood surfaces.
Although the method did perform well when a

noninformative uniform prior distribution for nT was
used, it is still preferable to design carefully the data
collection and to gather information on a. Since ar is
ancillary to p, the lack of information about ar will
always increase the uncertainty in p. However, when
the ascertainment scheme is uncertain and when the
assumptions of independent and constant ascertain-
ment are reasonable, we claim that the method here
presented is the best valid statistical procedure that
can be used.

Acknowledgments
This work was supported in part by U.S. Public Health

Service grants GM36295 (to A.R.) and HL32987 (to
A.D.A.) from the National Institutes of Health, Basil
O'Connor Starter Research Grant 5-446 from the March of
Dimes Birth Defects Foundation (to A.D.A.), General Clin-
ical Research Center grant RROO102 from the National
Institutes of Health to The Rockefeller University Hospital,
and support from the Pew Memorial Trust to the Labora-
tory for Investigative Dermatology.

896



Uncertain Ascertainment 897

References

Alter, B. P., and N. U. Potter. 1983. Long-term outcome in
Fanconi's anemia: description of 26 cases and review of
the literature. Pp. 43-62 in J. German, ed. Chromosome
mutation and neoplasia. Alan R. Liss, New York.

Auerbach, A. D., B. Adler, and R. S. K. Changanti. 1981.
Prenatal and postnatal diagnosis and carrier detection of
Fanconi anemia by a cytogenetic method. Pediatrics
67:128-135.

Auerbach, A. D., A. Rogatko, and T. Schroeder. 1988.
International Fanconi Anemia Registry (IFAR): first re-
port. In T. M. Schroeder, A. D. Auerbach, and G. Obe,
eds. Clinical and experimental aspects of Fanconi
anemia. Springer, Heidelberg (in press).

Auerbach, A. D., M. Sagi, and B. Adler. 1985. Fanconi
anemia: prenatal diagnosis in 30 fetuses at risk. Pediat-
rics 76:794-800.

Auerbach, A. D., and S. R. Wolman. 1976. Susceptibility
of Fanconi's anemia fibroblasts to chromosome damage
by carcinogens. Nature 261:494-496.

Auerbach, A. D., M. Zhang, R. Ghosh, E. Pergament, Y.
Verlinsky, H. Nicholas, and J. Boue. 1986. Clastogen-
induced chromosomal breakage as a marker for first
trimester prenatal diagnosis of Fanconi anemia. Hum.
Genet. 73:86-88.

Basu, D. 1977. On the elimination of nuisance parameters.
J. Am. Stat. Assoc. 72:355-366.

Boor, C. 1971. CADRE: an algorithm for numerical quadra-
ture. Pp. 32-35 in J. R. Rice, ed. Mathematical software.
Academic Press, New York.

Box, G. E. P., and G. C. Tiao. 1973. Bayesian inference in
statistical analysis. Addison-Wesley, Reading, MA.

Crow, J. F. 1965. Problems of ascertainment in the analysis
of family data. Pp. 23-44 in J. V. Neel, M. W. Shaw, and
W. J. Schull, eds. Genetics and the epidemiology of
chronic diseases. U.S. Department of Health, Education
and Welfare, Washington, DC.

Danks, D. M., J. Allan, and C. M. Anderson. 1965. A
genetic study of fibrocystic disease of the pancreas. Ann.
Hum. Genet. 28:323-356.

Ewens, W. J., and N. C. E. Shute. 1986a. The limits of
ascertainment. Ann. Hum. Genet. 50:399-402.

. 1986b. A resolution of the ascertainment sampling
problem. I. Theory. Theor. Popul. Biol. 30:388-412.

Fanconi, G. 1967. Familial constitutional panmyelocy-
topathy, Fanconi's anemia (F.A.). I. Clinical aspects.
Sem. Hematol. 4:233-240.

Fisher, R. A. 1934. The effect of methods of ascertainment
upon the estimation of frequencies. Ann. Eugenics 6:13-
25.

Glanz, A., and F. C. Fraser. 1982. Spectrum of anomalies
in Fanconi anemia. J. Med. Genet. 19:412-416.

Greenberg, D. A. 1986. The effect of proband designation
on segregation analysis. Am. J. Hum. Genet. 39:329-
339.

Haldane, J. B. S. 1938. The estimation of the frequencies of
recessive conditions in man. Ann. Eugenics 14:33-341.

IMSL library. 1982. IMSL, Inc., Houston.
Morton, N. E. 1959. Genetic tests under incomplete ascer-

tainment. Am. J. Hum. Genet. 11:1-16.
Naylor, J. C., and J. E. H. Shaw. 1985. Bayes four-user

guide. Tech. rep. 9-85. Department of Mathematics, Uni-
versity of Nottingham, Nottingham.

Pereira, C. A. B., and A. Rogatko. 1984. The Hardy-
Weinberg equilibrium under a Bayesian perspective.
Braz. J. Genet. 7:689-707.

Rogatko, A., C. A. B. Pereira, and 0. Frota-Pessoa. 1986.
A Bayesian method for the estimation of penetrance:
application to mandibulofacial and fronto-nasal dysos-
toses. Am. J. Med. Genet. 24:231-246.

Schroeder, T. M., F. Anschultz, and A. Knoff. 1964. Spon-
tane Chromosomenaberrationen bei familidrer Panmy-
elopathie. Humangenetik 1:194-196.

Schroeder, T. M., D. Tilgen, J. Kruger, and F. Vogel. 1976.
Formal genetics of Fanconi's anemia. Hum. Genet.
32:257-288.

Stene, J. 1975. Sampling methods in human genetics with
applications to Down's syndrome. Ph.D. thesis, Univer-
sity of Copenhagen, Copenhagen.

1977. Assumptions for different ascertainment
models in human genetics. Biometrics 33:523-527.

. 1981. Probability distributions arising from the as-
certainment and the analysis of data on human families
and other groups. Pp. 233-264 in C. Taillie, G. P. Patil,
and B. A. Baldessari, eds. Statistical distributions in
scientific work. Vol. 6. D. Reidel, Dordrecht.

Wright, S. W., and N. E. Morton. 1968. Genetic studies on
cystic fibrosis in Hawaii. Am. J. Hum. Genet. 20:157-
169.


