Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 1988 Feb;42(2):217–226.

Uniparental disomy as a mechanism for human genetic disease.

J E Spence 1, R G Perciaccante 1, G M Greig 1, H F Willard 1, D H Ledbetter 1, J F Hejtmancik 1, M S Pollack 1, W E O'Brien 1, A L Beaudet 1
PMCID: PMC1715272  PMID: 2893543

Abstract

A female with cystic fibrosis and short stature was investigated for molecular or cytogenetic abnormalities that might explain the combined phenotype. Analysis with polymorphic DNA markers indicated that the father did not contribute alleles to the propositus for markers near the CF locus or for centromeric markers on chromosome 7. High-resolution cytogenetic analysis was normal, and the result could not be explained on the basis of nonpaternity or a submicroscopic deletion. All of the data indicate that the propositus inherited two identical copies of maternal sequences for much or all of chromosome 7. The occurrence of uniparental disomy could be explained by models postulating postfertilization error, gamete complementation, monosomic conception with subsequent chromosome gain, or trisomic conception followed by chromosome loss. Uniparental disomy in an individual with a normal chromosome analysis is a novel mechanism for the occurrence of human genetic disease.

Full text

PDF
220

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aldridge J., Kunkel L., Bruns G., Tantravahi U., Lalande M., Brewster T., Moreau E., Wilson M., Bromley W., Roderick T. A strategy to reveal high-frequency RFLPs along the human X chromosome. Am J Hum Genet. 1984 May;36(3):546–564. [PMC free article] [PubMed] [Google Scholar]
  2. Cattanach B. M., Kirk M. Differential activity of maternally and paternally derived chromosome regions in mice. Nature. 1985 Jun 6;315(6019):496–498. doi: 10.1038/315496a0. [DOI] [PubMed] [Google Scholar]
  3. Cavenee W. K., Dryja T. P., Phillips R. A., Benedict W. F., Godbout R., Gallie B. L., Murphree A. L., Strong L. C., White R. L. Expression of recessive alleles by chromosomal mechanisms in retinoblastoma. 1983 Oct 27-Nov 2Nature. 305(5937):779–784. doi: 10.1038/305779a0. [DOI] [PubMed] [Google Scholar]
  4. Cox D. M., Birnie S., Tucker D. N. The in vitro isolation and characterization of monosomic sublines derived from a Colcemid-treated Chinese hamster cell population. Cytogenet Cell Genet. 1976;17(1):18–25. doi: 10.1159/000130683. [DOI] [PubMed] [Google Scholar]
  5. Engel E. A new genetic concept: uniparental disomy and its potential effect, isodisomy. Am J Med Genet. 1980;6(2):137–143. doi: 10.1002/ajmg.1320060207. [DOI] [PubMed] [Google Scholar]
  6. Estivill X., Farrall M., Scambler P. J., Bell G. M., Hawley K. M., Lench N. J., Bates G. P., Kruyer H. C., Frederick P. A., Stanier P. A candidate for the cystic fibrosis locus isolated by selection for methylation-free islands. 1987 Apr 30-May 6Nature. 326(6116):840–845. doi: 10.1038/326840a0. [DOI] [PubMed] [Google Scholar]
  7. Estivill X., Schmidtke J., Williamson R., Wainwright B. Chromosome assignment and restriction fragment length polymorphism analysis of the anonymous DNA probe B79a at 7q22 (HMG8 assignment D7S13). Hum Genet. 1986 Nov;74(3):320–322. doi: 10.1007/BF00282558. [DOI] [PubMed] [Google Scholar]
  8. Eves E. M., Farber R. A. Expression of recessive Aprt- mutations in mouse CAK cells resulting from chromosome loss and duplication. Somatic Cell Genet. 1983 Nov;9(6):771–778. doi: 10.1007/BF01539479. [DOI] [PubMed] [Google Scholar]
  9. Hassold T. J., Jacobs P. A. Trisomy in man. Annu Rev Genet. 1984;18:69–97. doi: 10.1146/annurev.ge.18.120184.000441. [DOI] [PubMed] [Google Scholar]
  10. Hassold T. Mosaic trisomies in human spontaneous abortions. Hum Genet. 1982;61(1):31–35. doi: 10.1007/BF00291327. [DOI] [PubMed] [Google Scholar]
  11. Hejtmancik J. F., Harris S. G., Tsao C. C., Ward P. A., Caskey C. T. Carrier diagnosis of Duchenne muscular dystrophy using restriction fragment length polymorphisms. Neurology. 1986 Dec;36(12):1553–1562. doi: 10.1212/wnl.36.12.1553. [DOI] [PubMed] [Google Scholar]
  12. Hubbard V. S., Davis P. B., di Sant'Agnese P. A., Gorden P., Schwartz R. H. Isolated growth hormone deficiency and cystic fibrosis: a report of two cases. Am J Dis Child. 1980 Mar;134(3):317–319. doi: 10.1001/archpedi.1980.02130150071018. [DOI] [PubMed] [Google Scholar]
  13. Kirkels V. G., Hustinx T. W., Scheres J. M. Habitual abortion and translocation (22q;22q): unexpected transmission from a mother to her phenotypically normal daughter. Clin Genet. 1980 Dec;18(6):456–461. doi: 10.1111/j.1399-0004.1980.tb01794.x. [DOI] [PubMed] [Google Scholar]
  14. Knowlton R. G., Cohen-Haguenauer O., Van Cong N., Frézal J., Brown V. A., Barker D., Braman J. C., Schumm J. W., Tsui L. C., Buchwald M. A polymorphic DNA marker linked to cystic fibrosis is located on chromosome 7. 1985 Nov 28-Dec 4Nature. 318(6044):380–382. doi: 10.1038/318380a0. [DOI] [PubMed] [Google Scholar]
  15. Lusher J. M., Zuelzer W. W., Evans R. K. Hemophilia A in chromosomal female subjects. J Pediatr. 1969 Feb;74(2):265–271. doi: 10.1016/s0022-3476(69)80075-2. [DOI] [PubMed] [Google Scholar]
  16. Martin R. H. Chromosomal abnormalities in human sperm. Basic Life Sci. 1985;36:91–102. doi: 10.1007/978-1-4613-2127-9_6. [DOI] [PubMed] [Google Scholar]
  17. Meisler M. H., Spence J. E., Dixon J. E., Caldwell R. M., Minth C. D., Beaudet A. L. Exclusion of close linkage between the loci for cystic fibrosis and neuropeptide Y on human chromosome 7. Cytogenet Cell Genet. 1987;44(2-3):175–176. doi: 10.1159/000132367. [DOI] [PubMed] [Google Scholar]
  18. Myers J. C., Chu M. L., Faro S. H., Clark W. J., Prockop D. J., Ramirez F. Cloning a cDNA for the pro-alpha 2 chain of human type I collagen. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3516–3520. doi: 10.1073/pnas.78.6.3516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Nakamura Y., Leppert M., O'Connell P., Wolff R., Holm T., Culver M., Martin C., Fujimoto E., Hoff M., Kumlin E. Variable number of tandem repeat (VNTR) markers for human gene mapping. Science. 1987 Mar 27;235(4796):1616–1622. doi: 10.1126/science.3029872. [DOI] [PubMed] [Google Scholar]
  20. Neufeld E. F., Liebaers I., Epstein C. J., Yatziv S., Milunsky A., Migeon B. R. The Hunter syndrome in females: is there an autosomal recessive form of iduronate sulfatase deficiency? Am J Hum Genet. 1977 Sep;29(5):455–461. [PMC free article] [PubMed] [Google Scholar]
  21. Niikawa N., Kajii T. The origin of mosaic Down syndrome: four cases with chromosome markers. Am J Hum Genet. 1984 Jan;36(1):123–130. [PMC free article] [PubMed] [Google Scholar]
  22. Orkin S. H. Reverse genetics and human disease. Cell. 1986 Dec 26;47(6):845–850. doi: 10.1016/0092-8674(86)90799-3. [DOI] [PubMed] [Google Scholar]
  23. Overhauser J., Beaudet A. L., Wasmuth J. J. A highly polymorphic locus in 5p15.2-5p15.3 (213-274EC) revealed by an anonymous single copy DNA fragment. Nucleic Acids Res. 1987 Feb 11;15(3):1345–1345. doi: 10.1093/nar/15.3.1345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Palmer C. G., Schwartz S., Hodes M. E. Transmission of a balanced homologous t(22q;22q) translocation from mother to normal daughter. Clin Genet. 1980 Jun;17(6):418–422. doi: 10.1111/j.1399-0004.1980.tb00173.x. [DOI] [PubMed] [Google Scholar]
  25. Rotwein P., Yokoyama S., Didier D. K., Chirgwin J. M. Genetic analysis of the hypervariable region flanking the human insulin gene. Am J Hum Genet. 1986 Sep;39(3):291–299. [PMC free article] [PubMed] [Google Scholar]
  26. Scambler P. J., Wainwright B. J., Watson E., Bates G., Bell G., Williamson R., Farrall M. Isolation of a further anonymous informative DNA sequence from chromosome seven closely linked to cystic fibrosis. Nucleic Acids Res. 1986 Mar 11;14(5):1951–1956. doi: 10.1093/nar/14.5.1951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Searle A. G., Beechey C. V. Noncomplementation phenomena and their bearing on nondisjunctional effects. Basic Life Sci. 1985;36:363–376. doi: 10.1007/978-1-4613-2127-9_25. [DOI] [PubMed] [Google Scholar]
  28. Spence J. E., Rosenbloom C. L., O'Brien W. E., Seilheimer D. K., Cole S., Ferrell R. E., Stern R. C., Beaudet A. L. Linkage of DNA markers to cystic fibrosis in 26 families. Am J Hum Genet. 1986 Dec;39(6):729–734. [PMC free article] [PubMed] [Google Scholar]
  29. Tsui L. C., Buchwald M., Barker D., Braman J. C., Knowlton R., Schumm J. W., Eiberg H., Mohr J., Kennedy D., Plavsic N. Cystic fibrosis locus defined by a genetically linked polymorphic DNA marker. Science. 1985 Nov 29;230(4729):1054–1057. doi: 10.1126/science.2997931. [DOI] [PubMed] [Google Scholar]
  30. Wainwright B. J., Scambler P. J., Schmidtke J., Watson E. A., Law H. Y., Farrall M., Cooke H. J., Eiberg H., Williamson R. Localization of cystic fibrosis locus to human chromosome 7cen-q22. 1985 Nov 28-Dec 4Nature. 318(6044):384–385. doi: 10.1038/318384a0. [DOI] [PubMed] [Google Scholar]
  31. Waye J. S., England S. B., Willard H. F. Genomic organization of alpha satellite DNA on human chromosome 7: evidence for two distinct alphoid domains on a single chromosome. Mol Cell Biol. 1987 Jan;7(1):349–356. doi: 10.1128/mcb.7.1.349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. White R., Woodward S., Leppert M., O'Connell P., Hoff M., Herbst J., Lalouel J. M., Dean M., Vande Woude G. A closely linked genetic marker for cystic fibrosis. 1985 Nov 28-Dec 4Nature. 318(6044):382–384. doi: 10.1038/318382a0. [DOI] [PubMed] [Google Scholar]
  33. Willard H. F., Skolnick M. H., Pearson P. L., Mandel J. L. Report of the Committee on Human Gene Mapping by Recombinant DNA Techniques. Cytogenet Cell Genet. 1985;40(1-4):360–489. doi: 10.1159/000132180. [DOI] [PubMed] [Google Scholar]
  34. Willard H. F., Waye J. S., Skolnick M. H., Schwartz C. E., Powers V. E., England S. B. Detection of restriction fragment length polymorphisms at the centromeres of human chromosomes by using chromosome-specific alpha satellite DNA probes: implications for development of centromere-based genetic linkage maps. Proc Natl Acad Sci U S A. 1986 Aug;83(15):5611–5615. doi: 10.1073/pnas.83.15.5611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Wramsby H., Fredga K., Liedholm P. Chromosome analysis of human oocytes recovered from preovulatory follicles in stimulated cycles. N Engl J Med. 1987 Jan 15;316(3):121–124. doi: 10.1056/NEJM198701153160301. [DOI] [PubMed] [Google Scholar]
  36. Yunis J. J. High resolution of human chromosomes. Science. 1976 Mar 26;191(4233):1268–1270. doi: 10.1126/science.1257746. [DOI] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES