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Summary

Using genetic marker data, we have developed a general methodology for estimating genetic relationships
between a set of individuals. The purpose of this paper is to illustrate the practical utility of these methods
as applied to the problem of paternity testing. Bayesian methods are used to compute the posterior proba-
bility distribution of the genetic relationship parameters. Use of an interval-estimation approach rather than
a hypothesis-testing one avoids the problem of the specification of an appropriate null hypothesis in cal-
culating the probability of paternity. Monte Carlo methods are used to evaluate the utility of two sets of
genetic markers in obtaining suitably precise estimates of genetic relationship as well as the effect of the
prior distribution chosen. Results indicate that with currently available markers a "true" father may be
reliably distinguished from any other genetic relationship to the child and that with a reasonable number of
markers one can often discriminate between an unrelated individual and one with a second-degree relation-
ship to the child.

Introduction

Use of the paternity index or likelihood ratio in pater-
nity determination has become a somewhat contro-
versial subject. Aickin (1984) and Li and Chakravarti
(1985) have discussed what they consider to be fal-
lacies and inconsistencies inherent in the paternity
index. These criticisms have been rebutted to varying
degrees by, among others, Brenner (1985), Walker
(1985), Elston (1986), Mickey et al. (1986), and
Thompson (1986). Part of this debate centers on
whether the alleged father's phenotype is relevant to
the question of paternity in any way other than sim-
ple determination of inclusion or exclusion. Incorpo-
ration of a prior probability of paternity has also
been debated, although (1) there now seems to be a
general consensus that incorporation of prior infor-
mation is desirable and (2) Elston (1986) has shown
that for any probability of paternity to be valid it
must incorporate an appropriate prior probability.
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The purpose of the present paper is to formulate the
problem in such a way that many of the controversial
issues become irrelevant.
The paternity-index approach requires an appro-

priate null hypothesis for construction of the likeli-
hood ratio. As pointed out by Aicken (1984), Li and
Chakravarti (1985), and others, the usual interpreta-
tion of the denominator of the likelihood ratio as
being the genotype probability for a "random indi-
vidual" suffers from serious deficiencies. On the
other hand, ignoring the information contained in the
putative father's marker phenotypes (except from the
standpoint of exclusion/inclusion), as proposed by Li
and Chakravarti (1985), is not an optimal solution
either. In this paper we abandon the odds or hy-
pothesis-testing approach in favor of an interval-
estimation approach. In particular, a Bayesian ap-
proach is used to estimate genetic relationships
between individuals. Bayesian analysis has several
advantages over the standard-likelihood approach,
largely because it incorporates prior knowledge or
belief in the accused individual's relationship to the
child. In addition, the Bayesian approach avoids cer-
tain statistical problems at parameter boundaries as
well as reliance on large-sample distributional theory.
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Because the problem of paternity determination is,
after all, a special case of determining the genetic
relationship between individuals, methods based on
the theory of genetic relationships and kinship co-
efficients are applicable to paternity testing. Cotter-
man's (1940) first description of the use of k-
coefficients for specifying the relationship between
individuals has been extended by numerous other in-
vestigators (Edwards 1967; Yasuda 1968; Thomp-
son 1974, 1975). In particular, Thompson (1975)
examined the question of estimation and testing
of pairwise relationships from a likelihood point of
view. A theoretical overview of identity by descent,
kinship coefficients, estimating genetic relationships,
and reconstructing genealogies is provided by
Thompson (1985, pp. 16-71). In the past, these
methods have been applied largely toward identifi-
cation of population structure, estimation of levels of
population inbreeding, and reconstruction of com-
plex genealogies. Our aim is to estimate the genetic
correlation (kinship coefficient) of a putative father
to a child-or, more precisely, to the true biological
father of the child. Construction of confidence inter-
vals for the true genetic relationship provides a pater-
nity-testing method that is not dependent on a partic-
ular null hypothesis. Thus, on the basis of confidence
intervals, various relationships between the true
father and the alleged father can be excluded.

In this paper the conditional likelihood of a child's
phenotype given the phenotypes of two hypothetic-
ally related individuals is derived as a function of a
set of parameters that represent the degree of genetic
relationship of these individuals to the child and to
each other. This formulation allows for estimation,
formation of confidence intervals, and hypothesis
tests of the relationship parameters. Results of a
study of the distribution of this likelihood function
within the framework of the usual paternity-testing
situation are presented.

Derivation of the Likelihood

It is assumed that marker-phenotype information
is available on three individuals-a child and two
individuals whose relationship to the child we wish to
investigate. These two individuals are assumed to be
unilineally related to the child, one through the ma-
ternal line and one through paternal descent. Exten-
sion of the method to more than two potentially re-
lated individuals is relatively simple; for clarity it will

not be dealt with in this paper. The two individuals
are assumed to be noninbred but may be related in
either a unilineal or bilineal fashion. The basic idea,
then, is to write the conditional probability of the
child's phenotypes for a battery of genetic markers,
given the phenotypes of the two individuals, as a
function of the coefficients of relationship between
these three individuals and the marker-allele frequen-
cies. The coefficient of relationship between two indi-
viduals, which we denote by R, was first proposed by
Wright (1922) and, if it is assumed that neither indi-
vidual is inbred, is defined to be twice their kinship
coefficient, T. Here T denotes the probability that
two homologous genes drawn at random, one from
each of two individuals, are identical by descent. In
terms of Cotterman (1940) k-coefficients, we have
ko = (1 - R)2, 2k1 = 2R(1 - R), and
k2= R2 for the simplest bilineal relationships and ko
= (1 - 2R), 2k1 = 2R, and k2 = 0 for unilineal
relationships. Although it is true that not all pairwise
genealogical relationships can be specified by the sin-
gle parameter R, all unilineal relationships are al-
lowed for, in addition to those bilineal relationships
satisfying 4k2ko = 4k 2. Thus we allow for relation-
ships such as self, sib, and double first cousin but
cannot specify quadruple half-first cousins, for ex-
ample. Formally, the parameters of the likelihood are
as follows:
RMp is the coefficient of relationship between the

maternal and paternal individuals. This is typically
assumed to be known, and for many situations it will
be zero.
Rmc (RPC) is the coefficient of relationship between

the maternally (paternally) related individual and the
biological mother (father), .0 < Rmc, Rpc, Rmp - 1.0
p = {psn} is the set of population frequencies of allele
s at marker locus n.
To derive the likelihood function for a single locus,

let Pm, Pp, and PC be the phenotypes of the maternal
and paternal individuals and of the child, respec-
tively, and let G, be the jth of g genotypes at this
locus; j = 1, 2, . . . , g; bhb = prob[phenotype
hIgenotype j] = 0 or 1; and j = 1, 2, .. . , g; h = m,
p, c. By means of this notation the relationships be-
tween the individuals under study are shown in the
path diagram in figure 1. Note again that in our
model R is the relationship between the tested indi-
vidual and the biological parent of the child and that
R/2 is the relationship between the individual and the
child. Given the combined relationships It = (Rpc3
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Either g, is derived from the paternal relative and g2
from the maternal or the opposite is true. We have

Rmp Pr(GilGj,,G) =

15gl Gj; Rm.cn p) * fAg2, Gk; Rp,. p)
ifg1 = 92;
and

A~gi, Gj; Rmc, p) * fAg2, Gk; Rpc, P)
+ f(g1, Gk; Rp, p) * f(g2, Gj; Rmc, p,
if g1 g292

(2)

c

Figure I Path diagram of the relationships between the
tested individuals (m, p, and c). Pm, Pp. and PC refer to the pheno-
types of these individuals, and Gm5 Gp, and GC are their corre-

sponding genotypes. The coefficients bm, BP5 and bC represent the
relationships between genotype and phenotype, and the R1, values
are the coefficients of relationship between these individuals.

Rmc, Rmp), the probability of the child's phenotype
conditional on the maternally and paternally related
individuals' phenotypes can be written as

g

Pr(PctPm3 Pp) = ZPr(pcIGj) * Pr(GilPM. Pp)

= ZZZr rPcIGi * Pr(GijGj, Gk)
ik

Pr(G,, GkIPMn, Pp) = > CiPr(GijGj Gk)
i j k

bjm bkp Pr(G,, Gk)

bj'nmskpPr(Gj', Gk')

j' k'

(1)

where all Pr (probabilities) are computed under the
relationship R.
Now we require the child's genotype probability

given the maternal and paternal individuals' geno-

types, Pr(GilG,, Gk), as a function of the parameters

Rmc and Rpc, and the allele frequencies p. Let the
child's genotype, Gi, consist of alleles g, and g2.

where the functions f(g, G; R, p) depend on the allele
g and the genotype G and are shown in table 1. The
derivation of these functions is straightforward. For
example, for the child's allele Ai and for the mater-
nally related individual with genotype AiAi, the Ai
allele in the child is either identical by descent to that
contributed by the maternal relative (with probability
R = Rmc) or is derived from the population at large
with probability (1 - R)pi. This results in the table
entry of R + (1 - R)pi. Other table entries are de-
rived similarly.

In addition, we need the joint probability of the
maternal and paternal individuals' genotypes, Pr(G-,
Gk), expressed as a function of Rmp and p. These
functions, f(Gi, Gk; R, p), which express the joint
probability of pair genotypes as a function of the
genetic correlation, R, and the gene frequencies, p,
may be obtained by transformating corresponding re-
sults for k-coefficients (Crow and Kimura 1970, p.
137; Kimberling and Goldgar 1980).

Substitution of these functions in equation (1) al-
lows calculation of the probability of any triplet of
maternal, paternal, and child marker phenotypes for
a given locus at specific values of Rmc, Rpc Rmpv and

Table I

Conditional Parent-Child Genotype Probabilities Expressed
as a Function of R and Gene Frequency

Parental Genotype Child's Allele F(R, p)

A,Ai ................ Ai R + (1 + R)p
Ai (1 - R)pi

AAj ................ Ai 1/2R + (1 - R)pi
A½1/2R + (1 - R)pi

Ak (1 - R)pk

Em
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p; that is, it allows calculation of the likelihood func-
tion for the parameters. For a battery of genetic
markers, the corresponding likelihood is the product
of the likelihoods for each locus, if free recombina-
tion and no linkage disequilibrium between loci are
assumed. Standard likelihood theory is used to obtain
point and interval estimates and to test hypotheses
about the unknown relationship parameters.

Application of this method to the specific problem
of paternity determination allows for several simplifi-
cations of the likelihood function specified in equa-
tions (1) and (2). First, we will assume that the two
ancestral individuals are not related (i.e., Rmp = O).
Inspection of equation (1) shows, however, that even
if this assumption is violated, the likelihood does not
depend on Rmp if there is a one-to-one correspon-
dence between marker phenotypes and marker geno-
types. In this case, the likelihood for each marker
locus reduces to equation (2); that is, Pr(P I P,,m, Pp) =
Pr(GclGm, Gp). In the paternity-determination formu-
lation we naturally assume that the woman tested is
the true mother of the child (i.e., Rmc = 1) and exam-
ine the likelihood as a function of a single unknown
parameter, Rpc Under this parameterization, the
paternity index can be expressed as the ratio of the
likelihood function given by equations (1) and (2)
evaluated at RPC = 1 to the same likelihood evaluated
at Rpc = 0. However, we prefer to take a Bayesian
interval-estimation approach to the problem.

Bayesian Estimation of RM,
In a paternity-testing context, we are concerned

with estimation of the genetic relationship Rpc be-
tween the child's true father and the accused father.
In the following treatment, R (without subscript) will
denote Rpc. In a Bayesian analysis, one must first de-
cide on an appropriate prior distribution for the pa-
rameter(s) of interest. For the prior distribution of the
genetic relationship parameter, R, we chose to use the
beta distribution-g(R) = B(a, 13) R-1(l -

R)9-1-owing to its ability to take on a variety of
forms depending on the values of the parameters a
and 1. Two sets of values of a and 1 were chosen for
presentation in this paper: (1) a = 1.0, P = 1.0 and
(2) a = .1, P = .05. The first of these corresponds to
a uniform prior and was chosen for comparison with
the standard likelihood approach since in this case
the posterior density of R is simply the likelihood
function normalized to integrate to one. The second
prior, which we will denote the empirical prior, was

chosen to represent the typical situation in which we
have a fairly strong prior belief that the accused indi-
vidual is the true father, a somewhat lesser belief that
he is unrelated to the child, and we allow for the
possibility that he is related to the true father. The
empirical posterior distribution of R for a given set of
marker phenotypes and a given prior, g(R), is ob-
tained in the following manner: We first evaluate the
likelihood function-L(Pm, Pp, PJIR)-for a given
mother-child-man trio at a large number of points in
the parameter space (in this case the interval [0, 1]);
in our analyses we typically evaluated the likelihood
at .01 intervals. Next we evaluate g(R) and compute
L(R) * g(R) at each point. This function is then nor-
malized to a probability density function, p(R), by
integrating and dividing each point value by the re-
sultant integral. A posterior Bayes estimate (PBE) of
R is the mean of p(R) and is obtained by numerical
integration. The cumulative posterior distribution of
R, Q(R), is given by Q(R) = fl p(R')dR'. A 100y%
Bayesian interval estimate of R is found by examining
the cumulative posterior distribution for the smallest
interval (R1, R2) for which the difference Q(R2) -
Q(R1) , -y. The procedure can be extended to obtain
joint estimates and confidence regions for two pa-
rameters, e.g., Rep and RPC.

Simulation Methods

Rather than examining the likelihood under an
artificial special case such as N markers each with n
equally frequent alleles, we chose to look at situa-
tions likely to be encountered in practice. Two sets of
markers were used. The first (STD) corresponds to
the standard blood-group/enzyme/protein battery
used by many paternity-testing laboratories. The 24
markers that constitute this battery had heterozygos-
ity frequencies ranging from 6% to 69%, with a
mean heterozygosity of 37.5%. The second marker
battery (COM) was a group of 44 markers consisting
of those in the first battery with the addition of 20
RFLPs. Although not currently used for paternity
testing, these are expected to supplement or replace
standard markers in the near future (Balazs et al.
1984; Smouse and Chakraborty 1986). RFLPs were
selected from the 100 or so available markers on the
basis of their informativeness and diversity of chro-
mosomal location. Heterozygosity in these 20 mark-
ers ranged from 46% to 78%, with a mean of 56.8%.
Although it was impossible to avoid some degree of
linkage between markers, the overall effect on our
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analyses is probably negligible. To maximize compu-
tational efficiency in the simulation study, availability
of genotype data was assumed for all marker loci.
Use of a single highly polymorphic system such as
HLA was not considered.
For each marker, genotypes of the four grand-

parents were randomly simulated according to allele
frequencies. The genotype of the mother was ob-
tained by randomly choosing one allele from each
maternal grandparent. From the paternal grand-
parents, genotypes of the "true" father and his
brother were similarly obtained. The child's genotype
was then obtained by randomly selecting one allele
from the mother and one from the true father. In
addition, one random individual was generated. This
procedure was repeated for each marker in the bat-
tery under consideration. Thus, for each paternity
"case," there were three putative fathers: the true
father, his brother, and an individual drawn at ran-
dom from the population, providing us with the abil-
ity to look at true Rpc values of 1.0, .5, and .0, respec-
tively. Two hundred case sets were independently
simulated for each marker battery.
For each of the 200 cases, the value of the likeli-

hood function was obtained for each putative father
for Rpc values of .00, .01, .02, . . ., 1.00. From this
empirical likelihood function, the cumulative poste-
rior distribution, PBE of Rpc, and 95% Bayesian in-
terval estimates were obtained as described above for
each prior. All simulation and analysis were per-
formed on a Compaq Deskpro microcomputer by
means of a set of TURBO PASCAL programs that were
specifically written for this purpose.

Results

Results of the analyses of the simulated paternity
cases are summarized in table 2 and figure 2. Table 2
describes the distribution of the point and interval
estimates of Rpc among the 200 simulated cases for
each true value of Rpc considered in the simulation.
Data presented are the mean + SD and range of the
PBE of Rpc, the average upper and lower 95%
confidence limits, and the percentage of cases in
which the interval contained the values of .0, .5, and
1.0. The results are presented for both sets of markers
and both prior distributions of RPC that were used.
Figure 2 shows the average cumulative posterior dis-
tributions for the combined marker battery and the
uniform prior for each simulated value of RpC: 1.0, .5,
and .0.

When the man tested is, in fact, the biological
father of the child (i.e., RPC = 1.0; table 2A), the
average estimates of Rpc are .903 and .950 for the
combined set of markers and for uniform and empir-
ical priors, respectively. From table 2A we also see
that for the combined marker set, all 200 cases had
lower 95% limits of >.5. This was true irrespective
of the prior distribution and indicates exclusion (with
95% probability) of all standard genealogical rela-
tionships other than true father! For the standard
marker battery, the proportion of cases with lower
Bayesian probability limits >.5 was 55% for the uni-
form prior and 88% for the empirical prior. Under
the empirical prior, the mean lower limits of these
intervals were .85 and .65 for the combined and stan-
dard marker sets, respectively; corresponding figures
for the uniform prior were .75 and .49.
When the putative father is the brother of the true

father (i.e., Rpc = .5; table 2B), the average estimates
of Rpc are very close to the simulation values for both
priors and both sets of markers. Moreover, 94% of
the interval estimates using the uniform prior and
combined marker set contained the true value of .5,
and 76.5% of these intervals included neither R = 0
nor R = 1. Results for the empirical prior show a
reduced frequency of confidence intervals containing
the true value, and in only 47% of the intervals could
both extremes be excluded, even when the larger
marker battery was used, a result illustrative of the
fact that the empirical prior gives low weight to
values of RPC near .5.

Finally, we examined the distribution of estimates
and confidence intervals when the putative father is
genetically unrelated to the child (i.e., Rpc = 0; table
2C). The upper confidence limits for this case tell us
to what degree other relationships can be ruled out
when the putative father is unrelated to the child. For
the combined marker battery using the empirical
prior, relationships of RPC > .50 could be excluded
with 95% confidence in 87.5% of the cases, whereas
in 39.0% of the cases relationships of R ¢ .25 could
be so excluded. Even with the standard battery,
62.5% of intervals had upper limits of <.5.

Discussion

The methods described in this paper were devel-
oped as an application of general methodology for
investigation, on the basis of marker phenotype data,
of the genetic relationships between a set of individ-
uals. In addition to the usual paternity problem, these
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Table 2

Characteristics of the PBE and 95% Bayesian Interval Estimates of ReP

PRIOR

Standard Marker Battery Combined Marker Battery

PARAMETER Uniform Empirical Uniform Empirical

A. RPC= 1.0

PBE:
Mean ± SD ................. .81 ± .05 .90 ± .04 .90 ± .02 .95 ± .01
Range ...................... .54-.89 .59-.95 .85-.93 .93-.96

95% Bayesian interval estimates:
Average limits ............... .49-1.00 .65-1.00 .75-1.00 .85-1.00
% Of intervals containing:

.00 ...................... 0.0 0.0 0.0 0.0

.50 ...................... 45.0 12.0 0.0 0.0
1.00 ...................... 100.0 100.0 100.0 100.0

B. RPC = .5

PBE:
Mean ± SD ................. .50 ± .16 .49 ± .23 .48 ± .15 .47 ± .19
Range ...................... .20-.89 .11-.88 .15-.90 .08-.95

95% Bayesian interval estimates:
Average limits ............... .09-.82 .11-.83 .12-.74 .09-.75
% Of intervals containing:

.00 ...................... 43.0 63.5 20.5 46.5

.50 ...................... 98.0 87.5 94.0 86.5
1.00 ...................... 15.5 30.5 3.0 6.0

C. RPC = .0

PBE:
Mean ± SD ................. .25 ± .10 .16 ± .11 .18 ± .08 .11 ± .07
Range ...................... .11-.68 .06-.80 .07-.51 .04-.50

95% Bayesian interval estimates:
Average limits .........0-...... .,55 .00-.47 .00-.39 .00-.31
% Of intervals containing:

.00...................... 95.5 98.5 96.0 100.0

.50 ...................... 58.5 37.5 18.0 12.5
1.00 ...................... 0.5 1.0 0.0 0.0

methods could be applied, for example, to the more
general problem of estimating relationships for re-
mote ancestries (a problem recently addressed from
the point of view of exclusion by Darlu and Cavalli-
Sforza [1985]) or could be used as a statistical test for
consanguinity. In this paper, however, we have con-
centrated on the standard paternity-testing situation
because of both its widespread application and the
recent controversies surrounding its implementation.
Parameterization of the likelihood in terms of the
single genetic correlation Rp, is attractive for several
reasons. First, under this parameterization it is quite
obvious that, contrary to the claim of Li and Chak-
ravarti (1985), the standard paternity index is a true

likelihood ratio. It also allows tests of more general
hypotheses than do previous approaches, and, more
important, it allows one to discard the hypothesis-
testing approach altogether. By computing the likeli-
hood of the observed marker phenotypes as a func-
tion of the parameter R and by assuming a prior
distribution for R, one can easily compute the poste-
rior distribution of R. The posterior distribution can
be used to derive certain probabilities relevant to the
paternity issue and to obtain both point and interval
estimates of R.
The advantage of the confidence-interval approach

is partially one of semantics. Both the paternity index
and odds of paternity compare the probability of the
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Figure 2 Mean estimated cumulative posterior distribution of RPC for the combined marker battery when a uniform prior is used. (a),
RPC = 1.0; (b), Rpc = .5; and (c) Rpc = .0.

child's phenotype, given the mother and putative
father phenotypes, compared with the analogous
probability for a "random" male. This interpretation
of what is in fact a likelihood ratio for two alternative
relationships has caused some confusion in the litera-
ture. By phrasing the paternity issue as one of es-
timating the genetic relationship of the accused man
to the child, this issue is avoided. The confidence in-
terval for the genetic relationship provides for the
possibility of reliable exclusion of any biological rela-
tionships other than father-or, at the other end of
the scale, could show that the accused individual has
no close biological relationship to the child in ques-
tion. Conversely, if the confidence interval was (.2,
.8), for example, this could be indicative of the puta-
tive father being related to the true father of the child.
In addition, an interval of this type may point to the
presence of laboratory error, chimerism, null alleles,
or sample mislabeling.

Use of the methods outlined in this paper require
an assumption regarding the prior distribution of the
parameter to be estimated. On the basis of our study
several general observations can be made. First, as
the amount of data (in this case number of markers)
increases, the effect of the prior distribution becomes
diluted. The effect of the prior distribution was also
largest when the true value of Rpc was small (e.g., .0).
The reason for this is evident in figure 2, which shows
the average likelihood function for the three simu-
lated putative fathers. The likelihood function is con-
siderably steeper in the vicinity of the true value of
Rpc for the case Rpc = 1.0 than it is for the case
Rpc = 0. Thus, changes in the prior distribution will
have a greater effect on the posterior distribution for
the unrelated case. The choice of prior distribution in
estimating genetic relationships depends on the par-
ticular application in which they are used. For the
problem of genealogy reconstruction, for example,
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one might choose a prior on the basis of general
knowledge regarding the biology of the population or
species, whereas for the typical paternity-testing situ-
ation, one would perhaps use a U-shaped prior simi-
lar to that analyzed in our study. If one wanted to
consider solely the genetic evidence at hand for a
particular case, then the uniform prior might be ap-
propriate. The actual parameter values will often be
chosen to fit some empirical criteria that may differ
across populations.

Results of the simulation show that, for a wide
variety of priors, if the alleged father is the true
father, the standard markers do a reasonably good
job of excluding other relationships with -95%
Bayesian posterior probability. For unrelated individ-
uals, it appears that only with the empirical prior and
combined marker battery do we get a large propor-
tion of intervals of desirable width (i.e., 0 - R < .5).
The results also indicate that with a reasonable num-
ber of markers, it is often possible to discriminate
between the two cases R = .5 and R = .0. To esti-
mate other relationships reliably, however, a larger
or more polymorphic marker battery would be re-
quired. Recent articles (Olson et al. 1986; Smouse
and Chakraborty 1986) have described the use of Q-
band chromosomal heteromorphisms and RFLPs in
paternity testing, and the approach presented in this
paper could also be used to analyze data obtained
from Jeffreys et al.'s (1986) probes.
We do not expect that this approach will find im-

mediate general use in paternity cases, since it has
taken considerable time and effort on the part of ge-
neticists to gain acceptance for the use of probability
statements (i.e., odds of paternity, paternity index,
etc.) as admissible evidence in paternity disputes. We
do feel, however, that the approach that we have
taken in this paper allows for more informative deci-
sions to be made regarding the paternity issue.
Clearly, as the number of markers routinely available
for such analyses increases, an interval-estimation ap-
proach will shed important light on questions of dis-
puted parentage.
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