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Summary

Having found evidence for segregation at a major locus for a quantitative trait, a logical next step is to
identify those pedigrees in which major-locus segregation is occurring. If the quantitative trait is a risk fac-
tor for an associated disease, identifying such segregating pedigrees can be important in classifying families
by etiology, in risk assessment, and in suggesting treatment modalities. Identifying segregating pedigrees
can also be helpful in selecting pedigrees to include in a subsequent linkage study to map the major locus.
Here, we describe a strategy to identify pedigrees segregating at a major locus for a quantitative trait. We
apply this pedigree selection strategy to simulated data generated under a major-locus or mixed model
with a rare dominant allele and sampled according to one of several fixed-structure or sequential sampling
designs. We demonstrate that for the situations considered, the pedigree selection strategy is sensitive and
specific and that a linkage study based only on the pedigrees classified as segregating extracts essentially all
the linkage information in the entire sample of pedigrees. Our results suggest that for large-scale linkage
studies involving many genetic markers, the savings from this strategy can be substantial and that, com-

pared with fixed-structure sampling, sequential sampling of pedigrees can greatly improve the efficiency for
linkage analysis of a quantitative trait.

Introduction

An important question in genetics is whether a trait
of interest is under the influence of a major locus, that
is, a single gene with large effect. For simple Mendelian
traits, such as cystic fibrosis or Huntington disease, an-
swering this question is relatively straightforward. For
familial traits with more complex etiologies, such as
hemochromatosis, diabetes, or coronary heart disease,
or for associated quantitative traits such as serum iron,
fasting plasma glucose, or serum cholesterol concen-
trations, establishing the existence of a major locus is
more difficult.
Having found evidence for segregation at a major

locus for a quantitative trait, we may then attempt to
map the major locus to a particular chromosome using
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linkage analysis. A useful intermediate step is to iden-
tify the subset of pedigrees in which major-locus segre-
gation is occurring; for a locus with a rare dominant
allele, this corresponds to pedigrees in which the domi-
nant allele is present. Only segregating pedigrees can
provide linkage information. There is a close analogy
here to the case of mapping a simple Mendelian dis-
ease. In that case, a disease is identified, pedigrees are
ascertained in which the disease is segregating, and a
linkage study is carried out on only those segregating
pedigrees. The key difference is that establishing major-
locus segregation and selecting segregating pedigrees
is more difficult for traits with complex etiologies.

In this paper, we describe a statistical strategy to iden-
tify segregating pedigrees. This strategy compares the
likelihood of each pedigree under a model allowing for
a major locus with the likelihood of the pedigree ac-
cording to the model that results when major-locus vari-
ability is excluded. Pedigrees are classified as segregat-
ing if their trait values are more likely under the
major-locus model than under the model without the
major locus.
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Using computer simulation, we explore the validity
of this pedigree selection strategy to classify pedigrees
as segregating or not and compare the efficiency of a
linkage study based only on the pedigrees classified as
segregating with that of a linkage study using the entire
sample of pedigrees. These properties of the pedigree
selection strategy are compared across several major-
locus and mixed models, all having a rare dominant
allele, as well as across several pedigree sampling designs.
Our results suggest that (a) the pedigree selection

strategy is sensitive and specific, particularly if sam-
pled pedigrees include at least 3 generations; (b) a link-
age study based on the selected pedigrees extracts es-
sentially all the linkage information present in the entire
sample, while requiring marker information on only
a fraction of the pedigrees; (c) linkage analysis of quan-
titative traits can be successful even with modest-sized
samples; and (d) compared with fixed-structure sam-
pling, sequential sampling of pedigrees can significantly
improve the efficiency of linkage analysis of a quantita-
tive trait.

Material and Methods

Models

For most of this paper, we consider the case of a quan-
titative trait determined by a major locus with a rare
dominant allele, a case henceforward referred to as the
dominant major-locus model. This model includes a
two-allele major locus and normally distributed in-
dividual-specific environmental exposures. The quan-
titative trait value is the sum of a major-locus mean
and a normally distributed environmental term. Thus,
the population trait distribution is a mixture of nor-
mals. Parameters of the major-locus model include the
frequency q of the rare dominant allele A, means ga
and AlAa = .lAA for the major-locus genotype distribu-
tions, and the within-distribution SD a. The model that
results when the gene frequency q = 0 we shall call
the random model. Under the random model, the trait
is normally distributed, and each individual may be
thought of as having the same major-locus genotype aa.

In the Discussion, we also consider the mixed genetic
model (Elston and Stewart 1971; Morton and MacLean
1974). The mixed model may be considered as an ex-
tension of the major-locus model according to which
a fraction b2 of the within-distribution variability is
due to the effects of additive polygenes. The model that
results when the gene frequency q for the mixed model
is set to zero is called the polygenic model (Fisher 1918).

Strategy to Detect Segregating Pedigrees
For the rest of this section and the Results section,

consider the case of a quantitative trait determined by
a dominant major-locus model. In samples of pedigrees
in which a major locus is segregating, there will be some
pedigrees in which the rare major-locus allele A is pres-
ent and others in which it is absent. The pedigrees in
which the rare major-locus allele A is absent will have
all individuals with the same major-locus genotype aa.
In these pedigrees, the quantitative trait can be thought
of as following a random model. Thus, the distribu-
tion of the quantitative trait has a different etiologic
basis in the two types of pedigrees.
To distinguish these two types of pedigrees, we cal-

culate for each pedigree a test statistic and classify the
pedigree as segregating or not depending on the value
of the test statistic. The rationale for the pedigree test
statistic is that it compares the likelihood of the pedi-
gree under the best-fitting model if the rare major-locus
allele A is present (so that the pedigree is segregating)
with the likelihood of the pedigree under the best-fitting
model if the rare major-locus allele A is absent (so that
the pedigree is nonsegregating). We define the pedigree
test statistic S as

.A. A A.)A (

S = log LM (P,;, gAa ,q ,;x) - log LR(4Pa;x)
(1)

where x is the vector of trait values for the pedigree
members, LMI. and LR are the dominant major-locus-
model likelihood and the random-model likelihood for
the pedigree, respectively, and indicates maximum
likelihood estimate (MLE) for the dominant major-
locus model.
We classify a pedigree as segregating if the pedigree

test statistic S > 0, corresponding to greater likelihood
under the major-locus model; we classify a pedigree
as nonsegregating if S 4 0, corresponding to greater
or equal likelihood under the random model.

Properties of the Pedigree Selection Strategy
We consider four different properties of our strategy

to detect segregating pedigrees. Two of these proper-
ties, sensitivity and specificity, are standard epidemio-
logic measures of the validity of a classification scheme
(Fleiss 1981, p. 4). The two other properties, overall
and per-person linkage efficiencies, are measures of the
relative efficiency of a linkage study for the quantita-
tive trait based only on those pedigrees classified as
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segregating compared with a linkage study based on
all the sampled pedigrees.

In the context of the present study, sensitivity is esti-
mated by the proportion of segregating pedigrees
(pedigrees with at least one carrier of the rare major-
locus allele A) correctly classified as segregating on the
basis of a pedigree test statistic S > 0. Similarly,
specificity is estimated by the proportion of nonsegregat-
ing pedigrees (pedigrees with no carriers of the rare
major-locus allele A) correctly classified as nonsegregat-
ing on the basis of a pedigree test statistic S < 0. Clearly,
the higher the sensitivity and specificity, the more valid
the pedigree selection strategy.

Since a key reason to identify segregating pedigrees
is to use the selected pedigrees in a subsequent linkage
analysis, we consider two measures of the efficiency of
this strategy. We define the overall linkage efficiency as
the expected maximum lod score for the selected
pedigrees divided by the expected maximum lod score
for the entire sample of pedigrees. We define the per-
person linkage efficiency as the expected maximum lod
score per person for the selected pedigrees divided by
the expected maximum lod score per person for the
entire sample of pedigrees. The overall linkage efficiency
reflects the absolute proportion of the expected lod score
that remains when the pedigrees classified as non-
segregating are excluded from the linkage analysis. The
per-person linkage efficiency measures the proportion
of the expected per-person maximum lod score that
remains. Though these definitions of efficiency differ
from the standard statistical definition of the term, they
are useful in the current context.

Outline of the Simulation Study
For each sample, we generated quantitative trait values

for pedigree members under a major-locus model;
linked marker phenotypes were also simulated. For each
pedigree, if the trait value of the potential proband (see
below) was in the upper 5% tail of the quantitative trait
distribution, the pedigree was ascertained. Relatives of
the proband were then sampled based on a fixed-
structure or sequential sampling design. Simulation and
sampling of pedigrees continued until the desired total
sample size of 450 individuals was reached. The major-
locus model was fit to each simulated sample of
pedigrees, pedigree test statistics were calculated using
the resulting MLEs, and the properties of the pedigree
selection strategy were estimated.

dominant major-locus models. For these models, the
genotype means were separated by k = 1.5 or 2.0
within-distribution SDs, and 2.5% of the population
was in the upper distribution (q = .0126), so that the
major locus was responsible for 5.2% or 8.9% of trait
variability, respectively.

Genetic marker genotypes were also simulated for
each pedigree member. Markers were assumed to be
fully informative, that is, so highly polymorphic that
all unrelated individuals had different heterozygous
genotypes. To that end, every pedigree original was as-
signed a different heterozygous marker genotype by as-
suming Hardy-Weinberg and linkage equilibria, and
cosegregation of the trait and marker loci was simu-
lated. For most of the simulations, the recombination
fraction 0 between the trait and marker loci was as-
sumed to be .10.
We considered the four pedigree structures illustrated

in figure 1 (Burns 1982; Burns et al. 1984; Boehnke
et al. 1988). These structures included a nuclear family
of size five, 3-generation pedigrees of sizes nine and 15,
and an extended pedigree of size 45. Each pedigree
structure included only one potential proband, desig-
nated by an arrow, ensuring that ascertainment was sin-
gle. For each pedigree, if the trait value of the potential
proband was in the upper 5% tail of the quantitative
trait distribution, the pedigree was ascertained. Ascer-
tainment was solely on the basis of the quantitative trait;
marker phenotypes were not considered.

For fixed-structure sampling, each sample comprised
multiple pedigrees of one of these four structures. For
sequential sampling (Cannings and Thompson 1977),

STRUCTURE 45

STRUCTURE 5 STRUCTURE 9

STO

STRUCTURE 15

Simulation and Sampling

Simulation and data analysis were carried out for two

Figure I Pedigree structures for the simulated data. Numbers
refer to the number of people in each pedigree. Arrows designate
the potential probands.
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we simulated pedigrees of size 45 and then sampled
a subset of each pedigree according to the following
nuclear family sequential sampling rule (Thompson
1986; Boehnke et al. 1988): (a) If the potential pro-

band has trait value greater than the ascertainment
threshold T, sample the proband and all first-degree
relatives and spouses of the proband. b) If any currently
sampled individual has trait value greater than T, sam-
ple any first-degree relatives and spouses of that in-
dividual that have not yet been sampled. (c) Return to

step (b) until no further such relatives and spouses re-

main. (d) Continue sampling new pedigrees until the
desired total sample size of 450 is obtained. Details of
the simulation and sampling process for the quantita-
tive trait are as described by Boehnke et al. (1988).

Calculation of the Pedigree Test Statistics

The simulated samples of pedigrees were analyzed
under the dominant major-locus model. Pedigree log
likelihoods for this model were calculated using the com-
puter program PAP (Hasstedt and Cartwright 1981),
and the sum of these pedigree log likelihoods was max-
imized to obtain maximum likelihood parameter esti-
mates using the program GEMINI (Lalouel 1979). Since
ascertainment was necessarily single (see Simulation and
Sampling above), we corrected for ascertainment by con-

ditioning on the quantitative trait value of the proband

(Hopper and Mathews 1982; Boehnke 1983; Boehnke
and Lange 1984). While this ascertainment correction
is not quite as statistically efficient as conditioning on

the fact that the trait value of the proband is greater
than the ascertainment threshold T (Rao et al. 1988),
it does correspond to the approach that on both practi-
cal and theoretical grounds should almost always be
used in the analysis of pedigree data (Young et al. 1988).
Pedigree log likelihoods conditional on the proband trait
values were then evaluated at both the best-fitting major-
locus model and the corresponding random submodel
using PAP, with pedigree test statistics calculated as the
difference in these pedigree log likelihoods.

Linkage analysis was carried out using the computer
program LIPED (Ott 1974, 1976) using the MLEs for
the major-locus model. Lod scores were calculated at
recombination fractions .01, .05, .10, .15, .20, .25, .30,
and .40; maximum lod scores and MLEs of the recom-
bination fraction were then estimated by quadratic in-
terpolation.

Results

Sensitivity and Specificity

Table 1 presents estimates of sensitivity and specificity
for the pedigree selection strategy for each combina-

Table I

Sensitivity and Specificity of the Pedigree Selection Strategy to Detect Segregating Pedigrees

Proportion of Pedigrees
Proportion of Pedigrees Classified as

k and Sample Design Actually Segregating Segregating Sensitivity Specificity

1.5:
5 ............. .225 .347 .710 .759
9 ............. .248 .329 .803 .828
15 ............ .280 .325 .772 .849
45 ............ .417 .422 .746 .810
SS............. .242 .290 .800 .873

2.0:
S ............. .313 .324 .741 .866
9 ............. .329 .364 .900 .899
15 ............ .360 .360 .858 .921
45 ............ .508 .477 .862 .921
SS............. .329 .334 .897 .943

NOTE.-Each set of estimates was based on results pooled over 100 simulated samples of 450 in-
dividuals. The data were generated under a dominant major-locus model with genotype means 100 and
100 + 10k, within-distribution SD 10, and 2.5% of the population in the upper distribution. Pedigrees
were singly ascertained through probands in the upper 5% tail of the distribution. Numbered sample
designs are fixed-structure designs based on the pedigree structures shown in fig. 1; SS = sequential
sampling based on the 45-person pedigree (see text for sampling designs).
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tion of genetic model and sampling design. In each case,
these estimates were based on pedigree test statistics
pooled over 100 replicate data sets of 450 individuals
each. Thus, for each model there were 9,000, 5,000,
3,000, and 1,000 pedigrees of structures 5, 9, 15, and
45, respectively. For the nuclear family sequential sam-
pling rule, there were 4,264 pedigrees for k = 1.5 and
3,870 pedigrees for k = 2.0. The distribution of the

A. Segregating Pedigrees

pedigree test statistics for sequential sampling and k
= 2.0 is given in figure 2.
The pedigree selection strategy appears to be sensi-

tive and specific for both models considered. It is not
surprising that sensitivity and specificity estimates were
greater when the separation between genotype means
was greater (k = 2.0 vs. k = 1.5). Pedigree size and
structure appeared to play a more limited role. The
proportion of pedigrees classified as segregating tended
to be greater than the proportion actually segregating,
at least for k = 1.5 (table 1).

0
Al~ ~ ~ ~~-

Pedigree
3 4 5 6 7

Test Statistic

B. Non-Segregating Pedigrees

2723

3~4 6 7I

Pedigree Test Statistic

Figure 2 Distribution of the pedigree test statistics. A, Distri-
bution for the segregating pedigrees. B, Distribution for the non-

segregating pedigrees. The data were generated under a dominant
major-locus model with genotype means 100 and 120, within-
distribution SD 10, and 2.5% of the population in the upper distri-
bution. The pedigrees were singly ascertained through probands in
the upper 5% tail of the distribution.

Linkage Efficiency of the Pedigree Selection Strategy
For the models and sampling designs considered, our

pedigree selection strategy proved to be extremely
efficient in selecting a subset of the data for subsequent
linkage analysis (table 2). In every situation considered,
overall linkage efficiency was greater than 90%; in ev-
ery situation but k = 1.5 for pedigree structure 5, over-
all efficiency was at least 95%. This high overall
efficiency was obtained even though the pedigrees
selected for linkage analysis typically constituted only
one-third of the pedigrees in the sample-except for
structure 45, where they constituted just under half the
sample (table 1). Sampling variability may have been
responsible for the estimated overall linkage efficiency
greater than one (structure 15, k = 1.5).
The high overall efficiency based on a relatively mod-

est subset of the data yielded impressive per-person link-
age efficiencies ranging from 2.08 to 3.10 (table 2). That
is, on a per-person basis, a linkage study based only
on the selected pedigrees was two to three times as
efficient as one based on the entire sample of pedigrees.

This information also allows us to estimate the num-
ber of people required to detect linkage to a quantita-
tive trait when the pedigree selection strategy is used
(table 2). Dividing the mean maximum lod score for
the selected pedigrees by the mean number of individu-
als selected, then dividing the result into the value 3.0
customarily accepted as conclusive evidence for link-
age (Morton 1955), yields the estimates in the final
column of table 2. For both models, fixed-structure sam-
pling based on intermediate-sized pedigrees of nine or
15 individuals resulted in greater efficiency for linkage
analysis and smaller sample sizes to obtain conclusive
evidence for linkage than nuclear families of size five
or extended pedigrees of size 45. Sequential sampling
using the nuclear family rule was significantly more
efficient still: 40% more efficient than the best fixed-
structure design (structure 15) for k = 1.5 and 39%
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Table 2

Efficiency of Linkage Analysis Based on the Pedigree Selection Strategy, Compared with
Using All Pedigrees (Recombination Fraction 0 = .10)

MEAN MAXIMUMMENMAIU
MEAN NO. ESTIMATED NO.

LOD SCORE EFFICIENCY
OF PEOPLE OF PEOPLE FOR A

k AND SAMPLE DESIGN All Selected Overall Per Person SELECTED LOD SCORE OF 3.0

1.5:
5 ............... .333 .301 .902 2.60 156 1557
9 ............... 1.191 1.136 .954 2.90 148 391
15 .............. 1.206 1.215 1.007 3.10 146 361
45 .............. 1.163 1.145 .984 2.33 190 498
SS .............. 2.275 2.233 .982 2.73 162 218

2.0:
5 ............... 1.307 1.241 .950 2.93 146 353
9 ............... 3.512 3.482 .991 2.72 164 142
15 .............. 3.411 3.360 .985 2.74 162 145
45 .............. 3.754 3.730 .994 2.08 215 173
SS .............. 7.308 7.148 .978 2.16 204 86

NOTE.-Each set of estimates was based on results pooled over 100 simulated samples of 450 in-
dividuals. The data were generated under a dominant major-locus model with genotype means 100 and
100 + 10k, within-distribution SD 10, and 2.5% of the population in the upper distribution. Pedigrees
were singly ascertained through probands in the upper 5% tail of the distribution. Numbered sample
designs are fixed-structure designs based on the pedigree structures shown in fig. 1. SS = sequential
sampling based on the 45-person pedigree(see text for sampling designs).

more efficient than the best fixed-structure design (struc-
ture 9) for k = 2.0.

Discussion

Previous Methods to Identify Segregating Pedigrees

Several investigators have previously addressed the
issue of identifying pedigrees segregating at a major lo-
cus for a quantitative trait. Burns (1982) in a simula-
tion study, Lalouel et al. (1983) in a study of red cell
and plasma magnesium concentrations, and Moll et
al. (1984) in a study of serum cholesterol levels all used
a strategy similar to the pedigree selection strategy de-
scribed here. With the mixed genetic model as the com-
plete model, they calculated test statistics for each ped-
igree, on the basis of comparison of the best-fitting
mixed model for the entire sample and the best-fitting
polygenic model for the entire sample. If the major-
locus model rather than the mixed model had been the
complete model, their approach would have cor-
responded to comparing the best-fitting major-locus
model and best-fitting random model, by using the ped-
igree test statistic

S= log LML( aa, iAaqa;X) - log LR(PIaa5O;X),
(2)

where ^ and- indicate MLEs under the major-locus and
random models, respectively. In contrast, we used the
best-fitting major-locus model and the subset of the
MLEs for that model that were required by the random
model (eq. [1]).
The simulation results of Burns (1982) suggest that

the strategy of comparing the best-fitting models is nei-
ther sensitive nor specific for identifying segregating
pedigrees. She found that the test statistics for the
segregating pedigrees were scattered rather uniformly
among those for the nonsegregating pedigrees, except
at the extreme positive end of the distribution; there,
a small excess of segregating pedigrees was found.
Burns's results suggest that while their strategy (eq. [2])
is likely to correctly identify a few segregating pedigrees,
as in the Moll et al. (1984) study, our pedigree selection
strategy (eq. [1]) will provide a much more sensitive and
specific means to identify most of the segregating
pedigrees in a sample.
We hypothesize that the reason for the greater sensi-
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tivity and specificity of our pedigree selection strategy
is that it employs parameter estimates that more ac-
curately reflect the two different etiologies present in
the samples of segregating and nonsegregating pedi-
grees. The true model for the segregating pedigrees is
the major-locus model with means and SD equal to
those that generated the sample. The true model for
the nonsegregating pedigrees is the random model with
mean and SD equal to the lower mean and SD used
to generate the sample. By using (a subset of) the MLEs
for the major-locus model (eq. [1]), we come as close
to these true models as possible. In contrast, using the
best-fitting random model (eq. [2]) results in MLEs for
the lower mean and SD that are biased upward from
the true values for the nonsegregating pedigrees.

Beaty (1980), Williams and Lalouel (1982), Beaty and
Boughman (1986), and Moll et al. (1989) also com-
pared the best-fitting versions of two competing models
to identify segregating pedigrees. In each of these studies,
the models compared were nonnested; that is, neither
model was a submodel of the other. Boehnke (1983)
and Boehnke and Lange (1984) used pedigree test statis-
tics devised by Hopper and Mathews (1982) to detect
pedigrees inconsistent with the polygenic model, as a
means of detecting segregating pedigrees. Their method
was neither as sensitive nor as specific as the pedigree
selection strategy described here.

Identifying Pedigrees Segregating in the Context of
the Mixed Model

Our pedigree selection strategy can be used for any
model including a major locus. For the mixed model,
one could calculate pedigree test statistics comparing
the best-fitting mixed model and the polygenic sub-
model using the appropriate mixed-model MLEs.

Indeed, the mixed-model case is of particular impor-
tance, given its wide use in human genetics. The com-
putational complexity of the mixed model (Hasstedt
1982), particularly in the linkage analysis, led us to
choose the major-locus model for our large-scale simu-
lations. However, we also carried out less extensive simu-
lations for the mixed model. For these simulations, we
used a modified version of the k = 2.0 model, one in
which half the variability among individuals with the
same major-locus genotype was due to additive poly-
genes (h2 = .50), and considered two sampling de-
signs: (1) fixed-structure sampling based on structure
9 and (2) sequential sampling using the nuclear family
rule. We then calculated test statistics for each pedigree
on the basis of the best-fitting mixed model, as well

as pedigree test statistics based on the best-fitting major-
locus model. We used the MLEs for the major-locus
model in the subsequent linkage analysis because of
the computational difficulty of linkage analysis with
the mixed model.
The results for the mixed-model data analyzed using

pedigree test statistics comparing the major-locus and
random models (i.e., assuming h2 = .00 when in fact
h2 = .50) were similar to those for the major-locus
data. The primary difference was that while sensitivity
remained high (.855 and .872 for structure 9 and se-
quential sampling, respectively), specificity was substan-
tially reduced (.691 and .721, respectively; see table 1
for comparison). Because of the decreased specificity,
although overall linkage efficiency remained high (.979
and .969), per-person linkage efficiency was reduced
(2.00 and 1.63; see table 2 for comparison). When ped-
igree test statistics were calculated that compared the
mixed and polygenic models, specificity improved to
.856 and .834; per-person linkage efficiency should
similarly improve if the mixed model were used to carry
out the linkage analysis. Even without such improve-
ment, these simulation results demonstrate that, under
the situations simulated, our pedigree selection strategy
provides an efficient basis for a linkage study of a quan-
titative trait whose distribution is determined by both
a major locus and polygenes.

Modifications and Extensions of the Strategy

Our pedigree selection strategy could be modified in
several ways. One possibility would be to change the
cut point for classifying a pedigree as segregating from
zero to some positive number. This modification ini-
tially seems attractive since using zero often results in
too many pedigrees being classified as segregating (ta-
ble 1). Arguing against a change in cut point is that
it is not clear a priori what that cut point should be,
and it seems likely that any attempt to optimize the
choice of cut point would yield a result that is model
dependent. Since using zero resulted in good sensitivity
and specificity for the models and sampling designs con-
sidered, a change seems unnecessary.
An alternative strategy to identify segregating pedi-

grees would be to classify pedigrees as segregating if
at least one individual has a high probability of carry-
ing the rare major-locus allele. This probability may
be estimated as [L(x,AA)+L(x,Aa)]/[L(x,AA)+L(x,Aa)
+L(x,aa)], where L(xg) is the likelihood of the pheno-
types x of the pedigree members evaluated at the MLEs
for the major-locus or mixed genetic model, assuming
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the individual in question has major-locus genotype
g. However, simulation results for a mixed model with
a rare dominant allele (Odenheimer 1985) suggest that
this approach has poor sensitivity and specificity for
assigning individual genotypes when the separation be-
tween major-locus genotypes means is 2.0 or less within-
distribution SDs. An additional problem is that there
is no obvious numerical definition of high probability
of carrying the rare major-locus allele. If this latter prob-
lem could be solved, one might combine individual
genotype probabilities with pedigree test statistics in

some overall strategy. Given the success of our pedigree
selection strategy for subsequent linkage analysis, this
additional complexity would appear unnecessary for
the models considered in the present study. A different
decision might be appropriate if, rather than linkage
analysis, we were interested in determining disease eti-
ology and appropriate treatment modalities for specific
individuals.

Linkage Analysis of a Quantitative Trait

Lange et al. (1976) used computer simulation to dem-
onstrate the feasibility of linkage analysis of a quan-

titative trait. They also considered the case of a domi-
nant major-locus trait and a linked codominant marker.
Our more extensive simulation results confirm their
findings and demonstrate that linkage analysis of a

quantitative trait can be feasible even with k = 1.5 SDs
between the major-locus genotype means, given an

efficient sampling design. Mean sample sizes to dem-
onstrate linkage of course will be greater with a less
informative marker, but smaller for a more tightly linked
marker. When our pedigree selection strategy was ap-

plied to pedigrees sequentially sampled using the nu-

clear family rule in which a quantitative trait influenced
by a major locus with a rare dominant allele (k = 2.0)
was cosegregating with a totally linked (0 = .00), fully
informative marker, the mean lod score for 100 sam-

ples of average size 199 individuals was 14.27; using
pedigrees of structure 9 in the same situation yielded
a mean lod score of 7.17 for 100 samples of average

size 164 (data not shown). Thus, as few as 42 or 70
individuals may yield a lod score of 3.0 in this situation.
An interesting additional observation from our simu-

lation study was that the recombination fraction of .10
was generally overestimated (data not shown). Mean
estimates for the selected pedigrees ranged from .115
to .149 for k = 1.5 and from .108 to .119 for k = 2.0;
results for the entire samples of pedigrees were nearly
identical. Whether the upward bias in the estimate of

the recombination fraction was due to small sample
size, the use of parameter estimates from the segrega-
tion analysis in the subsequent linkage analysis (Clerget-
Darpoux et al. 1986), or some other factor is unclear.

Sequential Sampling and the Detection of Segregation
and Linkage

Comparison of the results for the different sampling
designs suggests that pedigree sampling design plays
an important role in the efficiency of the subsequent
linkage analysis (table 2). For the situations considered,
fixed-structure sampling designs based on intermediate-
sized pedigrees of nine or 15 individuals provided sub-
stantial linkage information, much more than was
provided by fixed-structure designs based on nuclear
families of size five or extended pedigrees of size 45.
Pedigrees sampled sequentially using the nuclear fam-
ily rule provided the most linkage information of all.

These results are completely parallel to our findings
(Boehnke et al. 1988) and those of Burns (1982) and
Burns et al. (1984) on the effects of sampling design
on the power of complex segregation analysis. Thus,
for planning a study to detect major-locus segregation,
linkage, or both for a quantitative trait influenced by
a rare dominant allele, our nuclear family sequential
sampling rule appears to be a highly efficient sampling
strategy.

Conclusion

The pedigree selection strategy described here pro-
vided a sensitive and specific method to identify pedi-
grees segregating at a rare dominant major locus for
a quantitative trait for the cases considered. From the
point of view of a subsequent linkage analysis, the
selected pedigrees contained nearly all the information,
but at a fraction of the effort of considering the entire
sample of pedigrees. For large-scale linkage studies in-
volving many genetic markers, the savings in using this
strategy can be substantial, and should make linkage
studies of quantitative traits much more efficient.
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