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Summary

We are concerned here with practical issues in the appli-
cation of extreme sib-pair (ESP) methods to quantitative
traits. Two important factors-namely, the way ex-
treme trait values are defined and the proportions in
which different types of ESPs are pooled, in the analy-
sis-are shown to determine the power and the cost
effectiveness of a study design. We found that, in gen-
eral, combining reasonable numbers of both extremely
discordant and extremely concordant sib pairs that were
available in the sample is more powerful and more cost
effective than pursuing only a single type of ESP. We
also found that dividing trait values with a less extreme
threshold at one end or at both ends of the trait distribu-
tion leads to more cost-effective designs. The notion of
generalized relative risk ratios (the X method, as de-
scribed in the first part of this series of two articles) is
used to calculate the power and sample size for various
choices of polychotomization of trait values and for the
combination of different types of ESPs. A balance then
can be struck among these choices, to attain an optimum
design.

Introduction

In the detection of human quantitative-trait loci (QTLs),
the selected sib-pair methods are known to be more
powerful than random samples of sib pairs, especially
when the heritability is low (Carey and Williamson
1991; Fulker et al. 1991; Eaves and Meyer 1994; Risch
and Zhang 1995; Gu et al. 1996). It also has been shown
that the power to detect linkage to QTLs is concentrated
in three types of extreme sib pairs (ESPs)-those with
extremely discordant (ED) trait values, those with ex-
tremely high-concordant (HC) trait values, and those
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with extremely low-concordant (LC) trait values (e.g.,
see the studies by Risch and Zhang [1995] and Gu et
al. [1996]). Among these, ED sib pairs have the greatest
power in the detection of linkage to QTLs, under most
relevant genetic models, although ED sib pairs are hard
to find in human linkage studies.
The availability problem of ED sib pairs and a recent

work by Elston (1992) on the cost consideration of a
two-stage procedure for genomewide mapping (also see
Elston 1994) motivated our current work in design opti-
mization of human QTL studies based on ESP methods.
We proposed a test (called "the EDAC test," which is
an extension of Blackwelder and Elston's [1985] t2 test;
see Gu et al. 1996) that combines ED pairs with ex-
tremely concordant (EC) sib pairs that are available in
the same sampling pool from which the ED sib pairs are
selected. The EDAC design offers a compromise between
the powerfulness and the availability of ESPs, and, as
compared with the study designs pursuing solely ED sib
pairs, the EDAC test is more likely to be cost effective
(Gu et al. 1996). A different type of compromise is to
relax the extremeness of ESPs; namely, the method of
dividing the trait values can be altered to make more
ED sib pairs available in a certain population. But, how
far can we relax the extremeness without compromising
on power? And how does this strategy compare with
the EDAC design? An optimization algorithm is much
needed.
To utilize linkage information from different types of

ESPs, we believe that an optimum design should answer
the following questions: (1) Is it necessary to combine
ED and EC sib pairs? (2) Will such a combination en-
hance the power? (3) What is the most cost-effective
combination? At the outset, since the ED pairs are the
most powerful, it seems appealing to include all the
available ED pairs, for genotyping and linkage analysis,
regardless of whether a solely ED-pair design or a com-
bined EDAC design is used. However, Gu et al. (1996)
showed that too few of either type of the sib pairs actu-
ally could reduce the power, when combined by use of
the EDAC test. Depending on the model, the necessary
sample size for a particular power could differ by hun-
dreds (see tables 5 and 6 in Gu et al. 1996). This, plus
the fact that random fluctuation also may result in too
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few ED sib pairs, makes the answering of question (2)
listed above essential in the search for the optimum de-
sign. In the first article of this series (Gu and Rao 1997
[in this issue]), we developed the generalized relative risk
ratio (X) method for quantitative traits and showed that,
without direct inference of the underlying model, the
power and the necessary sample sizes for ESP tests may
be calculated via Xs (for sib pairs) and Xo (for parent-
offspring pairs), for various types of ESPs. Therefore,
we can answer all of the three questions listed above,
using estimates of the X's to determine if a combined
EDAC design is warranted. Furthermore, when the
EDAC design is indicated, we may apply the method to
all possible combinations of ED and EC sib pairs, to
select the one that costs the least and/or is the most
powerful (i.e., to optimize).

Concerning relaxation of the extremeness of the sib
pairs, an optimum design should address the "best" way
to define extreme phenotypes; namely, a pair of so-called
optimum thresholds should be given to define extreme
trait values. This also can be done by application of the
X method. Since a different polychotomy of the trait
values should result in a different set of values of the
X's, its effect on power and/or on sample size can be
estimated by use of the new values of the X's (see equa-
tions [17] and [18] in Gu and Rao 1997). We then could
find the optimum polychotomization by comparing all
plausible ways of dividing the trait values.

In this article, we first will give a brief introduction to
the concept of generalized X's and will refer to our previ-
ous article (Gu and Rao 1997) for the detailed discussion
and equations. We then demonstrate the effect of poly-
chotomization, by calculating the necessary sample sizes
for a power of 80% at the significance level (a) of .001,
using Risch and Zhang's (1995) ED-only sib-pair (EDSP)
test, over a few combinations of upper thresholds and
lower thresholds, for extreme trait values. Among these
designs, a lower threshold at 30% and an upper threshold
at 5%, that is, (30%, 5%), is shown to be consistently
more cost effective than the other thresholds, under the
genetic models tested. To show the effect of combining
different numbers of ED and EC pairs, using the EDAC
test, we fix the thresholds at (50%, 5%) and compare
the power of various combinations of ED and HC pairs.
The optimization for the so-called best combination is
depicted by a graph of power contours and lines repre-
senting costs (fig. 1). A form of the optimization algo-
rithm is presented in detail, to illustrate application of
the X method. Examples are given at the end, by use of
three different sampling methods, to describe the optimi-
zation of designs for a hypothesized QTL study, across
a variety of underlying genetic models.
Methods and Results
As we discussed elsewhere (Gu et al. 1996; Gu and

Rao 1997), the quantitative phenotype X derives from

an additive effect of a biallelic major locus, a residual
term e, and the overall phenotypic mean ,i: X = ,u + g
+ e. The two alleles, A1 (corresponding to higher risk)
and A2, at the major locus have frequencies of p and q
= 1 - p, respectively, and g takes the values -a, d, and
a for trait genotypes A2A2, A1A2, and A1Al, respectively.
The residuals are allowed to be correlated (with correla-
tion p) among relatives. The overall heritability is de-
noted by H. The trait values are divided into a certain
number of intervals with specified probabilities. The
generalized X for a relative pair of type R, with trait
values in the hth and Ith intervals, was defined (for p =
0) as follows:

XR(hI) - KR(Ih)
K(l) (1)

where K(l) is the probability that a randomly selected
person has a trait value in the Ith interval and where
KR(I h) is the probability that a person has a trait value
in the Ith interval given that the trait value of this per-
son's type-R relative is in the hth interval. See our previ-
ous article (Gu and Rao 1997) for a definition of
XR(h,l) when p > 0. Under the assumption that the resid-
ual correlation p is the same for all relative pairs, we
have shown how the generalized XR(h,l) can be used to
calculate the power or the necessary sample size of ESPs,
to detect linkage to QTLs.
Two types of ESP methods are discussed in this article.

One is Risch and Zhang's ESP test, which uses only
one type of ESP (discordant or concordant) and will be
referred to as the "ESP test" (e.g., "EDSP" refers to the
ED-only sib-pair test). The other is our EDAC test (Gu
et al. 1996), which combines both ED and EC (HC or
LC or both) sib pairs. Equations for the calculation of
power and sample sizes, by use of estimated values of
the X's, were presented in our previous article (Gu and
Rao 1997). The notation used here is the same as that
used in our previous article (Gu and Rao 1997); in par-
ticular, the subscript "R" is used to denote type-R rela-
tives, with an "S" used for sib pairs and an "O" used
for parent-offspring pairs.

Effect of Polychotomization on the ESP Test
In the previous article (Gu and Rao 1997), we noted,

in an example, how the values of the X's (hence, the
power) depended on a trichotomization of trait values.
We now systematically investigate how the division of
trait values affects sample sizes of different types of
ESPs, as well as the cost effectiveness of a study design.
Only three types of ESPs, namely, ED, HC, and LC sib
pairs, will be considered. The trait values will be divided
into three intervals, by use of two thresholds, T, < Th,
and the trait values of X > Tb are considered to be
extremely high and the values ofX - T1 to be extremely
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Figure 1 Optimization of the combination of HC and ED sib pairs, for the additive model with p = .2, p = .4, and H = .3. The power

contours (solid lines) are plotted for 70%, 80%, 90%, and 95% power (at a = .001), for various combinations of HC and ED pairs. The
dashed lines denote the cost computed as C = max(N~d, Nhj) + ned + nhc-

low. We refer to a trichotomy with P(X T1) = x%
and P(X > Th) = y% as an (x%, y%) design. We use

"h" and "I" to denote the higher and the lower intervals,
respectively.

In general, by increasing the distance between the two
thresholds, one increases the extremeness of the resulting
ED sib pairs and, consequently, increases the power of
a given number of ED pairs, but, naturally, the increased
extremeness of the ED sib pairs makes them even harder
to find. On the other hand, a decreased distance between
the two thresholds will generate more ED sib pairs, but
the reduced extremeness makes the same number of ED
sib pairs less powerful. Will the increased number of
available ED sib pairs make up for the power loss? Alter-
natively, with a fixed distance between the two thresh-
olds, where is the best place to put them? For example,
is the (20%, 10%) design better than the (10%, 20%)
design? What will be the best design that will give the
most throughput at a minimum cost? We will answer

these questions later, under the subject of optimum de-
signs. First, we will show here that a choice must be
made among various divisions of trait values, because
the effect on cost effectiveness could be dramatic.

In tables 1-3, we display, for a few additive, domi-
nant, and recessive models (p = .2, H = .3, and p

= .4), the sample sizes of ED sib pairs required for a
power of 80%, at a = .001, using different pairs of
thresholds. The thresholds are placed at points so that
the first and the last interval each has a probability (P[l]
and P[h]) of .05, .10, .20, or .30. That is, T, will be
varied among the 5th, 10th, 20th, or 30th percentiles,

Table 1

Sample Sizes for the EDSP Test Having 80% Power at a = .001,
under an Additive Model

SAMPLE SIZE FOR ED PAIRS/TOTAL SAMPLING POOL
(X5[h,l]/Xo[h]), FOR Th =

T. 95% 90% 80% 70%

5% 19/4,628 27/4,621 46/5,166 74/6,178
(.40/.28) (.45/.37) (.54/.50) (.60/.58)

10% 22/1,954 33/2,068 58/2,502 95/3,188
(.42/.32) (.48/.42) (.57/.54) (.63/,62)

20% 28/847 43/968 80/1,299 138/1,797
(.46/.38) (.52/.48) (.611.59) (.68/.67)

30% 35/539 55/655 107/953 191/1,404
(.491.43) (.56/.52) (.651.64) (.71/.71)

NoTE.-p = .20; H = .30; and p = .40.
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Table 2

Sample Sizes for the EDSP Test Having 80% Power at a = .001,
under a Dominant Model

SAMPLE SIZE FOR ED PAIRS/TOTAL SAMPLING POOL
(Xs[h,l]IXo[h,l]), FOR Th =

T. 95% 90% 80% 70%

5% 36/8,706 41/6,652 53/5,651 72/5,840
(.551.57) (.561.59) (.59/.61) (.621.65)

10% 39/3,269 45/2,712 62/2,565 88/2,874
(.561.58) (.57/.60) (.61/.63) (.651.67)

20% 45/1,253 54/1,154 79/1,248 121/1,545
(.57/.60) (.59/.62) (.641.66) (.68/.70)

30% 52/744 66/742 102/886 163/1,180
(.591.61) (.61/.64) (.661.68) (.71/.73)

NOTE.-P = .20; H - .30; and p = .40.

and Th will be varied among the 70th, 80th, 90th, or
95th percentiles. For each combination, values of Xs(h,l)
and XO(h,l) follow the necessary ED-pair sample size and
the expected total number of sib pairs that need to be
screened (i.e., phenotyped) to obtain the number of ED
sib pairs, which we will refer to as the "total sampling-
pool size," in this article (see equation [2], presented
later, and also equations [3]-[6] in Gu et al. 1996). We
assumed, for these calculations, that selective sampling
from the upper tail of the trait distribution was used;
that is, probands were sampled from a subpopulation
with extremely high trait values, and their siblings were
screened, to form ED sib pairs. Although in some studies
large sampling pools may have been already phenotyped
prior to the design of the linkage analysis, one cannot
always take that for granted.
Under the additive model, for a fixed Th, when T. is

relaxed from the 5th percentile to the 30th percentile,
the ED-pair sample size is roughly doubled, and the total
sampling-pool size typically is reduced by 5-7-fold; for
a fixed Tb, when Th is relaxed from the 95th percentile
to the 70th percentile, the ED-pair sample size is more
than quadrupled, and the total sampling-pool size also
is increased by 1.5-2-fold. Under the dominant model,
relaxation of T1, as described above, increases the ED-
pair sample size by 1.5-2-fold and reduces the total
sampling-pool size by 5-10-fold; relaxation of Th in-
creases the ED-pair sample size by 2-3-fold and may
reduce the total sampling-pool size when P(l) is small
(.5 and .10) or may increase it when P(l) is large (.20
and .30). As for the recessive model, the total sampling-
pool size is reduced by 3-6-fold and the ED-pair sample
size is increased from just slightly to -3-fold, when T1
is relaxed as described above; relaxation of Th, on the
other hand, increases the total sampling-pool size by
15-35-fold while increasing the ED-pair sample size by
12-40 fold.

Among these cases, the (30%, 5%) design appears to
be the most cost-effective way to divide the trait values,
for an EDSP design. Therefore, it seems that probands
with extremely high trait values and their siblings with
not-so-extremely low trait values constitute a better de-
sign. We also did the same calculations with p = 0 and
reached the same conclusions.
Of course, the conclusions depend on the risk-allele

frequency (p), as well as the sampling method. A much
larger value of p and/or a different way to select the
ESPs may yield different results (see the examples in the
following sections).

Effect of the Combination of ED and EC Sib Pairs,
in the EDAC Test
As an alternative study design, Gu et al. (1996) pro-

posed to utilize the EC sib pairs available in the same
sampling pool with the ED sib pairs and provided a
combined EDAC test. This type of study design deals
with the availability problem of ED sib pairs, from a
different perspective; namely, without compromising on
the extremeness (i.e., powerfulness) of the ED pairs, one
also utilizes the linkage information in the less but still
fairly powerful EC sib pairs, which are readily available.
We showed that, when a reasonable number of EC sib
pairs are combined with ED sib pairs, the EDAC design
is more cost effective than the EDSP design. We also
noted that there were so-called power dips in the EDAC
test, which were caused by too few ED sib pairs or too
few EC sib pairs being available (see figs. 1-4 in Gu et
al. 1996).

Here, we consider the version of the EDAC test that
combines only HC sib pairs with ED sib pairs, so that
the power of the EDAC test can be listed in a two-way
table. In reality, the combination of LC or of both HC
and LC sib pairs could be more cost effective, which is
discussed later.

Table 3

Sample Sizes for the EDSP Test Having 80% Power at a = .001,
under a Recessive Model

SAMPLE SIZE FOR ED PAIRS/TOTAL SAMPLING POOL
(Xs[h,1]IXo[ h,1]), FOR Tb =

T. 95% 90% 80% 70%

5% 52/2,882 79/5,520 233/17,950 670/46,524
(.671.84) (.71/.86) (.81/.90) (.88/.94)

10% 54/1,375 94/2,957 333/10,765 1,017/29,169
(.681.84) (.731.87) (.831.92) (.901.95)

20% 58/668 123/1,663 524/6,820 1,677/19,234
(.691.84 (.761.88) (.861.93) (.921.96)

30% 62/444 154/1,230 728/5,418 2,370/15,606
(.691.85) (.77/.89) (.88/.94) (.931.96)

NOTE.-P = .20; H = .30; and p = .40.
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Table 4

Power of Various Combinations of the Numbers of ED and HC Sib Pairs, by Use of the EDAC Test, under an Additive Model

POWER, FOR ned = b

nhc 7 (.03) 14 (.09) 21 (.20) 28 (.34) 35 (.47) 42 (.60) 49 (.71) 56 (.80) 63 (.86)

13 (.03) .09 .19 .26 .31 .34 .37 .39 .40 .41
26 (.10) .13 .32 .46 .56 .63 .68 .72 .74 .77
39 (.20) .15 .38 .57 .69 .77 .82 .86 .89 .91
52 (.32) .16 .42 .63 .76 .84 .89 .92 .94 .96
65 (.44) .16 .45 .67 .81 .89 .93 .95 .97 .98
78 (.56) .17 .47 .70 .84 .91 .95 .97 .98 .99
91 (.66) .17 .49 .72 .86 .93 .96 .98 .99 .99
104 (.75) .17 .50 .74 .87 .94 .97 .98 .99 1.00
117 (.82) .18 .51 .75 .88 .95 .98 .99 .99 1.00

NOTE.-P = .20; H =.30; p = .40; and (Tb, T.) = (50%, 5%).
a The nos. in parentheses indicate the power when only HC sib pairs are used.
b The nos. in parentheses indicate the power when only ED sib pairs are used.

For the same set of models for which we analyzed, in
the previous section, the effects of dividing the trait val-
ues, we now fix the (50%, 5%) design and calculate the
numbers of ED and HC sib pairs, Ned and Nh,, respec-
tively, that are necessary for a nominal power of 80%,
when the ESP test is based solely on ED or HC sib pairs.
If the number of available ED pairs in a sample is larger
than Ned or if that of HC pairs is larger than Nhc, then
a single-type ESP test will have the necessary power,
and the combination of the sib pairs for EDAC is not
necessary (although it could yield more power). So, we
will focus on the EDAC test that combines the number
of ED pairs that is less than Ned and the number of HC
pairs that is less than Nhc. For the purpose of demonstra-
tion, we increase the sample sizes of ED and HC sib
pairs in nine equal increments, until they just surpass
Ned and Nhc, respectively. The power of the EDAC test
that combines these numbers of ED and HC pairs is
displayed in tables 4-6.

In tables 4-6, we also display, in parentheses after
the various numbers of ED or HC sib pairs, the power
of the ESP test based on the ED pairs only or on the
HC pairs only, so that one can compare the power of
these tests with the power of the combined EDAC test,
to see which combinations enhance the power. We see
that use of a combination of sib pairs will result in a
higher power than use of either type of sib pairs alone,
as long as enough numbers of both types of pairs are
combined. For example, with the additive trait displayed
(table 4), if the number of ED sib pairs is <21, pooling
of ED and HC sib pairs will never yield a power >75%,
regardless of the number of HC pairs (i.e., even when
use of the HC pairs alone could have a power >80%).
On the other hand, use of a combination of 21 ED pairs
and 39 HC pairs has 57% power, which is much better

than that for use of the ED pairs only (20%) or the HC
pairs only (20%), and use of the combination of 21 ED
pairs and 65 HC pairs has 67% power, which is a big
improvement over that for use of the ED pairs only
(20%) or the HC pairs only (44%). Interested readers
may refer to the study by Gu et al. (1996) for the results
for a broader range of models. Note that the combina-
tions near the diagonal in the tables always have en-
hanced power, over the ESP test based on either type of
sib pair alone. Also, when approximately one-half of
Ned and one-half of Nh, are combined, the power of the
combined EDAC will surpass the nominal 80% power,
and the gain in power, over the ESP test, is nearly max-
imized (also see fig. 1 and the examples described below,
for optimum combinations).

Effect of Polychotomization, on the EDAC Test
We also calculated, for the same set of models with

the same set of trait-value divisions, the sample sizes of
ED and EC sib pairs, for the EDAC design, when the
ED and HC pairs are combined according to their ex-
pected ratio of availability in a selective sample. The
ratio can be estimated via the use of recurrence risks
derived from reliable population studies (see equation
[3] below).
The patterns of effects are similar to those of the EDSP

test (tables 1-3). However, the sampling-pool size for
the EDAC design is reduced further for the same trait-
value divisions, whereas the combined sample size (ED
plus HC pairs) is not always reduced. We present the
results only for the additive trait, in table 7. We see that
the (30%, 5%) EDAC design will reduce the screening
(i.e., phenotyping) burden (and hence the cost), as well
as the combined-sample size (for genotyping) by -4-
fold, as compared with the (10%, 10%) EDAC design.
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Table 5

Power of Various Combinations of the Numbers of ED and HC Sib Pairs, by Use of the EDAC Test, under a Dominant Model

POWER, FOR ned = b

nhca 9 (.02) 18 (.08) 27 (.17) 36 (.28) 45 (.41) 54 (.53) 63 (.65) 72 (.74) 81 (.81)

25 (.03) .08 .18 .26 .33 .37 .41 .44 .46 .48
50 (.10) .10 .27 .42 .54 .62 .68 .73 .77 .79
75 (.20) .10 .31 .50 .64 .74 .81 .85 .89 .91
100 (.32) .11 .34 .55 .70 .80 .87 .91 .94 .95
125 (.44) .11 .35 .58 .74 .84 .90 .94 .96 .97
150 (.55) .11 .37 .60 .76 .86 .92 .95 .97 .98
175 (.66) .12 .37 .62 .78 .88 .93 .96 .98 .99
200 (.74) .12 .38 .63 .80 .89 .94 .97 .98 .99
225 (.81) .12 .39 .64 .81 .90 .95 .98 .99 .99

NoTE.-p = .20; H - .30; p = .40; and (Tb, TV) = (50%, 5%).
a The nos. in parentheses indicate the power when only HC sib pairs are used.
b The nos. in parentheses indicate the power when only ED sib pairs are used.

Also, compared with the (30%, 5%) EDSP design (table atic algorithm is needed, to search for the optimum de-
1), this hybrid design reduces the total sampling-pool sign.
size by 253 (almost 2-fold), while it increases the sample Of course, without any knowledge about the disease
size for genotyping by 47. Therefore, both the relaxation etiology, optimization of study designs would not be
of extremeness and the utilization of EC sib pairs con- possible. Fortunately, as we demonstrated in the first
tribute to a more efficient and more cost-effective design. article of this series (Gu and Rao 1997), if estimates of

various recurrence risks (and, hence, estimates of the
Optimization of Study Designs, Using the X Method Xt's) are available, one may calculate statistical power

In the preceding discussion, we observed the follow- and necessary sample sizes, as well as the cost of differ-
ing: (1) An EDAC design is likely to be more cost effec- ent designs, without knowing the parameters of the un-
tive than a single-type ESP design, when enough num- derlying genetic model. Equations for sample size and
bers of both ED and EC sib pairs are available in the power were given in the previous article (Gu and Rao
sample, and some combinations are better than others. 1997), and the total sampling-pool size may be calcu-
(2) For either design, some trichotomies of trait values lated via the estimated recurrence risk Ks(h,l) as follows
are more cost effective than others. Therefore, a system- (also see equations [3]-[6] in Gu et al. 1996):

Table 6

Power of Various Combinations of the Numbers of ED and HC Sib Pairs, by Use of the EDAC Test, under a Recessive Model

POWER, FOR Ned = b

nhca 9 (.01) 18 (.06) 27 (.15) 36 (.28) 45 (.43) 54 (.57) 63 (.70) 72 (.80) 81 (.87)

3 (.02) .07 .09 .10 .11 .11 .11 .11 .11 .12
6 (.08) .17 .26 .31 .33 .35 .36 .37 .38 .38
9 (.18) .25 .43 .51 .56 .58 .61 .62 .63 .64
12 (.30) .32 .56 .66 .72 .75 .78 .79 .80 .81
15 (.43) .38 .65 .77 .83 .86 .88 .89 .90 .91
18 (.55) .42 .73 .84 .89 .92 .94 .95 .95 .96
21 (.66) .46 .78 .89 .93 .95 .97 .97 .98 .98
24 (.76) .49 .82 .92 .96 .97 .98 .99 .99 .99
27 (.83) .51 .85 .94 .97 .98 .99 .99 1.00 1.00

NOTE.-P = .20; H = .30; p = .40; and (Tb, T.) = (50%, 5%).
a The nos. in parentheses indicate the power when only HC sib pairs are used.
b The nos. in parentheses indicate the power when only ED sib pairs are used.
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Table 7

Sample Sizes of Ed and HC Sib Pairs for the EDAC Test Having 80% Power at a = .001,
under an Additive Model

SAMPLE SIZE FOR ED PAIRs/HC PAIRS/TOTAL SAMPLING POOL
(X4[h,h]/Xo[h,h]), FOR Th =a

T. 95% 90% 80% 70%

5% 9/520/2,328 15/746/2,482 27/1,239/3,023 46/1,918/3,868
(1.89/1.81) (1.59/1.56) (1.33/1.33) (1.21/1.21)

10% 11/217/971 17/329/1,094 33/589/1,437 58/969/1,955
(1.89/1.81) (1.59/1.56) (1.33/1.33) (1.21/1.21)

20% 14/96/429 23/155/517 46/305/745 84/543/1,094
(1.89/1.81) (1.59/1.56) (1.33/1.33) (1.21/1.21)

30% 18/64/286 30/108/361 62/227/555 117/426/860
(1.89/1.81) (1.59/1.56) (1.33/1.33) (1.21/1.21)

NOTE.-P = .20; H = .30; and p = .40.
a The values for the X's refer to the HC pairs.

P[(h,l)s] = Ks(h,l)P(h)

and

N = P(h) Ned

(2) pairs, and n2 HC pairs; for example, a design using ni
ED pairs only is denoted by (0, n1, 0).

Algorithm for Optimization
The algorithm to be used with pre-existing phenotypic

(3) data is as follows.

where P[(h,l)s] is the probability of a sib pair having
trait outcome (h,l), P(h) is the probability of a randomly
selected person having the trait value in the hth interval,
and Ned is the ED sample size required for the preset
power.
Applying this theory, we now can develop an opti-

mum design by answering the following questions: (1)
Is the combination of different types of sib pairs going
to increase power? (2) Is relaxation of extremeness
going to improve cost effectiveness? (3) What is the
best combination of ED and EC sib pairs, and what is
the best way to divide the trait values? We will describe
below an algorithm that answers these questions in
steps and that eventually will lead us to an optimum
study design.
We will deal with only those instances in which phe-

notypic data already have been collected for a certain
number of families or sib pairs and for which the task
is to determine the numbers of the different types of
ESPs to be used for genotyping and linkage analysis. We
may need to minimize the cost, to achieve a desired
power 1 - A, at some a, or to achieve maximum power
at a given cost. When a new study is designed in the
absence of any phenotypic data, attention must be paid
to sampling and to balancing of the costs of phenotyping
and genotyping. In the algorithm presented below, (no,
n1, n2) denotes a combination with no LC pairs, n1 ED

1. For each plausible division of trait values (or, at least
for the more promising divisions), get estimated val-
ues of the generalized X's for sib pairs and for parent-
offspring pairs, from the existing data set or from
previous population studies.

2. Then, for each division, calculate the necessary sam-
ple sizes, So, S1, and S2, of LC, ED, and HC sib pairs,
respectively, to achieve the desired power 1 - A, if
the ESP-test design is to be used for analysis.

3. Let No, N1, and N2 be the numbers of available LC,
ED, and HC sib pairs in the sample. If Ni : Si for
any i, calculate the cost for use of only that type of
sib pairs in the analysis. Retain the number with the
least cost.

4. For each combination (no, n1, n2), when ni S Ni,
calculate the power of the combined EDAC test.

5. If the power is less than desired, ignore that combina-
tion; if the power is not less than desired, compare
its cost, (no + n, + n2) CG, where CG is the genotyping
cost of one sib pair, with that of the previously re-
tained combination. If it costs less, retain this combi-
nation; otherwise, reject it.

6. Consider the next combination.
7. After all possible combinations have been exhausted,

the retained combination attains the desired power
with the least cost.

When designing a new study in the absence of pheno-
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typic data, the cost function discussed in step (5) above
takes the form NCp + (no + ni + n2) CG, where Cp
is the unit phenotyping cost and where N is the total
sampling-pool size. Then, minimization of the cost is
equivalent to minimization of N + (no + ni + n2) CG/
Cp. Thus, the genotyping-to-phenotyping cost ratio is
needed in the algorithm, and the sampling method will
determine the value of N. In reality, the algorithm
should be tailored to suit the actual situation. For exam-
ple, if partial phenotypic data that yield less power than
desired already have been collected, an optimum design
then would need to maximize the power of the already-
collected data and to minimize the cost of the collection
of additional data.

Example
We now illustrate the application of the above algo-

rithm to a hypothetical study of a moderately heritable
trait, in which genotyping and phenotypic screening cost
the same per subject. Assuming the underlying trait to
be additive, dominant, or recessive, with various values
of p, we fix H = .3. For each of the models, we require
that the optimum design retain a power of 80% at a
= .001. The following three sampling methods were
considered: (1) selecting probands from the high-ex-
treme tail of the trait distribution and screening their
siblings, to form HC and ED pairs; (2) selecting pro-
bands from both extreme tails and the screening their
siblings, to form HC, LC, and ED pairs; and (3) ran-
domly selecting sib pairs, to screen for ESPs. Methods
(1) and (2) are referred to as "selective sampling," and
method (3) is referred to as "random sampling," in this
article.
The set of thresholds that trichotomize the trait values

for the optimum design is searched for over a grid of
possible percentiles spaced 5% apart. In theory, one can
search for the thresholds continuously over all possible
values, but that would require too many estimates of
the corresponding V's, as well as unrealistic computer
time. For each selected set of thresholds, the best combi-
nation of the various types of ESPs required for genotyp-
ing and for phenotypic screening is derived by compari-
son of the six possible ESP designs (depending on the
sampling scheme), namely, the ED, the HC, the LC, the
ED + HC, the ED + LC, and the ED + HC + LC
designs. The cost of a design is measured by the sum of
the number of unselected sib pairs needed for screening
and the number of ESPs to be genotyped. The optimum
design will minimize the cost for a given model.
A graphic illustration for the optimization of the com-

bination of HC and ED pairs (by use of selective sam-
pling from the upper-extreme tail), for the thresholds
(50%, 5%), under an additive model with p = .2, p = .4,
and H = .3, is given in figure 1. Contours consisting of
ED + HC combinations with 70%, 80%, 90%, and

95% power are plotted as solid curves. Cost lines (C
= max[Ned, NhCI + ned + nfh) are plotted as various types
of dashed lines. When the cost is fixed, maximization
of power is equivalent to the search for the power con-
tour that intersects the cost line at just one point. Simi-
larly, when the power is preset, minimization of cost is
equivalent to the search for the cost line that intersects
the power contour at just one point. The value C repre-
sented by the cost line will give the minimum cost, and
the point of intersection will be the optimum combina-
tion (e.g., the combination of 33 ED and 46 HC pairs
is optimum for the preset power of 80%).
We summarize the optimization results in tables 8-

10, under the categories of additive, dominant, and re-
cessive models and for various values of p. We want to
clarify here that, although the results are presented this
way, the optimization process does not require prior
knowledge of the underlying models per se. All it needs
are sets of estimated values of the X's corresponding to
the sets of thresholds over which one wishes to optimize
the study design.
As a general pattern, we see that, in far more cases,

the EDAC design combining different types of ESPs
works more efficiently than those designs utilizing only
one type of ESP. This is true more so when the random-
sampling scheme is used for selection of the ESPs, for
which all the optimum designs correspond to the EDAC
design. Only when selective sampling from the high end
of the distribution is used does the EDSP design become
the choice for the optimum design, for dominant traits
and for recessive traits with very high values of p.
A smaller allele frequency, as well as the presence of

positive residual correlation among sibs, requires opti-
mum designs to choose more liberal thresholds. For ran-
dom sampling, it results in less-restricted thresholds on
both ends, whereas, for selective sampling (either for one
tail or for both tails), it results in a restricted threshold at
one end and a somewhat liberal threshold at the other
end. Most often, p > 0 reduces the cost of the optimum
design, because EC pairs are more readily available and
ED pairs become more powerful.

For additive traits, when p < .5, EDAC designs com-
bining ED and HC pairs, together with liberal lower
thresholds, are optimum. As the frequency increases and
becomes >.5, if ESPs are sampled randomly or selected
from both ends of the distribution, the results for p
correspond to that of 1 - p, with the positions of the
HC and LC pairs switched; so, these results are not
displayed in tables 8 and 9. For those cases, the optimum
design combines LC pairs with ED pairs by use of less-
restrictive upper thresholds. If we select ESPs from only
the upper tail of the trait distribution, the optimum de-
sign turns out to be the EDSP design. The lower thresh-
old depends on the magnitude of p.

For dominant traits, the patterns of extreme thresh-
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Table 8

Optimization of Study Designs under Various Additive and Dominant Models (H = .30), with the Assumptions of Random Sampling and
Equal Unit Cost for Genotyping and Phenotyping

STUDY DESIGN, FOR P = 0 STUDY DESIGN, FOR P = .40

Thresholdsa Thresholdsa
P (%, %) (no, ni, n2)b Costc (%, %) (no, nn2 )b Cost'

Additive Model

.05 (50, 10) (0, 76, 41) 1,468 (60, 10) (0, 67, 41) 1,292

.10 (45, 15) (0, 128, 77) 1,831 (45, 15) (0, 80, 79) 1,567

.20 (30, 20) (0, 129, 133) 2,198 (35, 20) (0, 92, 131) 1,837

.30 (30, 20) (0, 136, 141) 2,364 (35, 20) (0, 96, 139) 1,952

.40 (30, 25) (126, 169, 151) 2,369 (35, 20) (180, 92, 127) 2,020

.50 (25, 25) (169, 121, 169) 2,248 (25, 25) (193, 78, 97) 2,098

Dominant Model

.05 (55, 10) (0,79,38) 1,356 (60, 10) (0, 61, 39) 1,205

.10 (45, 15) (0, 118, 70) 1,680 (50, 15) (0, 88, 71) 1,430

.20 (30, 25) (0, 157, 169) 2,095 (35, 25) (0, 117, 162) 1,749

.30 (30, 30) (199, 176, 105) 2,049 (30, 25) (221, 92, 94) 1,923

.40 (25, 30) (169, 163, 0) 2,121 (25, 40) (163, 147, 0) 1,781

.50 (20, 40) (109, 165, 0) 1,900 (20, 45) (109, 127, 0) 1,635

.60 (15, 50) (64, 139, 0) 1,637 (15, 50) (67, 96, 0) 1,435

.70 (10, 60) (32, 96, 0) 1,339 (10, 55) (35, 63, 0) 1,243

.80 (5, 60) (14, 43, 0) 1,158 (5, 55) (15, 32, 0) 1,136

.90 (5, 55) (61, 321, 0) 8,888 (5, 50) (101, 205, 0) 10,082

.950 (5, 55) (649, 4387, 0) 119,566 (5, 40) (1409, 1909, 0) 150,589

NOTE.-The results for additive models with p > .5 and those for recessive models are not displayed, since they can be derived from the
corresponding results for additive or dominant models (see the Example section in Methods and Results).

a (X%, y%) defines the trait values below the xth percentile as extremely low and those above the (100 - y)th percentile as extremely high.
b Also indicates which type of ESP test (EDSP or EDAC) was used for the optimum design, since no denotes the no. of LC pairs, nj the no.

of ED pairs, and n2 the no. of HC pairs used.
c Measured by the sum of the no. of sib pairs to be screened and the no. to be genotyped.

olds in optimum designs are similar to those of the addi-
tive case, except that the optimum designs switch from
HC + ED to LC + ED earlier than those of the additive
case, as p increases. Again, when selecting from the up-
per tail only, EDSP designs become the choice for the
optimum design, as p increases.

For recessive traits, if ESPs are sampled randomly or
selected from both tails of the distribution, the results
for p are symmetric to those of 1 - p, for the dominant
trait with HC and LC switched. So, we skip displaying
the results for these cases. When ESPs are selected only
from the upper tail of the distribution, HC designs be-
come favorable when p is small and when p = 0.

Finally, it should be noted that this example was lim-
ited to the case when the unit costs are the same for
genotyping and for phenotyping. In reality, the pheno-
typing costs can be much larger. However, phenotypic
studies often collect information on a number of pheno-
types, and it may be desirable to perform linkage analy-
sis for several (if not all) of the phenotypes. Looked at

in this light, the unit cost per phenotype may not be
grossly different from the unit cost of genotyping. There-
fore, the results presented in this example may have a
greater degree of validity than may appear at first.

Discussion

When the method of ESPs is applied to quantitative
traits, the setting of the thresholds to define extreme
trait values and the choice of the right combination of
ED and EC sib pairs to pool poses an important practical
challenge. We have demonstrated here how these two
factors affect the cost effectiveness of an ESP-study de-
sign and how an optimum choice can be achieved via
use of the X method. The overwhelming power of and
the relative lack of a sufficient number of ESPs generate
a dilemma for any investigator searching for the best
study design. The following three types of compromises
were suggested here: (1) relax the criterion of ex-
tremeness so that more ED sib pairs will be available in
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Table 9

Optimization of Study Designs under Various Additive and Dominant Models (H = .30), with the Assumptions of Selective Sampling,
from both the Upper and Lower Tails, and Equal Unit Cost for Genotyping and Phenotyping

STUDY DESIGN, FOR P = 0.0 STUDY DESIGN, FOR P = 0.40

Thresholds Thresholds
p (% %) (no, ni, n2) Cost (%, %) (no, ni, n2) Cost

Additive Model

.05 (55, 5) (0, 38, 25) 183 (60, 5) (0, 23, 28) 148

.10 (40, 5) (0, 47, 28) 266 (60, 5) (0, 32, 35) 210

.20 (25, 5) (0, 44, 34) 371 (50, 5) (0, 33, 46) 285

.30 (20, 5) (0, 48, 40) 489 (50, 5) (0, 42,55) 355

.40 (20, 5) (0, 62, 46) 627 (45, 5) (0, 44, 65) 434

.50 (5, 15) (54, 61, 0) 795 (5, 45) (79, 54, 0) 525

Dominant Model

.05 (55, 5) (0, 37, 24) 178 (70, 5) (0, 28, 26) 144

.10 (35, 5) (0, 55, 31) 338 (55, 5) (0, 34, 39) 242

.20 (35, 5) (0, 130, 0) 669 (50, 5) (0, 58, 67) 458

.30 (5, 25) (0, 132, 0) 887 (5, 45) (97, 74, 0) 671

.40 (10, 25) (77, 92, 0) 688 (5, 50) (67, 61, 0) 466

.50 (10, 35) (57, 86, 0) 479 (5, 55) (46, 49, 0) 320

.60 (5, 40) (25, 57, 0) 287 (5, 60) (31, 38, 0) 212

.70 (5, 55) (18, 39, 0) 160 (5, 65) (21, 28, 0) 136

.80 (5, 5) (21, 0, 0) 105 (5,60) (19, 23, 0) 111

.90 (5, 5) (40, 0, 0) 425 (5, 55) (130, 155, 0) 915

.950 (5, 5) (241, 0, 0) 4090 (5, 55) (1,805, 2,185, 0) 13,403

NoTE.-See footnotes to table 8.

the sampling pool; (2) combine EC sib pairs with ED
sib pairs, to enhance the power by use of the EDAC
design; and (3) both of the above choices. By applying
the X method, we have shown that it is possible to strike
a balance between these choices and to arrive at an
optimum design. It should be noted that "optimization"
of study designs is always relative in practice; namely,
the result may be only relatively optimum, given all the
available data and prior information. For instance, in
the example discussed, we searched on a 19 x 19 grid
of percentiles to identify the optimum trait thresholds.
This search requires 361 sets of estimates of the corre-
sponding X's, which are hardly available in reality. What
is more practical is to search for the optimum design
over a much smaller number of thresholds (e.g., 5%,
10%, 20%, and 30%).
From our investigation, it appears that the use of an

EDAC design and the selection of siblings from a
broader interval at the lower end and from a restricted
range at the higher end provide a more cost-effective
design. Of course, a much larger p will reverse the situa-
tion, as we have seen in the example. When ESPs are
selected from randomly sampled sib pairs, cost is notice-
ably larger, and EC pairs from both ends of the distribu-

tion should be collected for analysis when p is close to
.5. When ESPs are sampled from the tails of the distribu-
tion, cost is reduced substantially. Which type of EC
pairs should be combined depends on p. However, as
we have shown, as long as one has estimates of the X's,
one can search for the optimum design without knowing
the actual frequency. Finally, as discussed by Zhang and
Risch (1996), the parental phenotypic status also is rele-
vant when dealing with EC sib pairs, which is an issue
not discussed here.
The sampling scheme is another important factor

affecting the choice of optimum study designs and
certainly deserves a separate investigation. We simply
point out here that selection of ESPs from extremely
high-risk or from extremely low-risk populations
likely would result in better designs and that applica-
tion of the X method enables us to decide which selec-
tive-sampling scheme may be more suitable for a
study.
We should clarify two points here. First, although the

proposed optimization may involve all three types of
extreme sibpairs (LC, ED, and HC), it does not require
the genotyping of all the sib pairs available in the sample.
On the contrary, what the optimization achieves is either
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Table 10

Optimization of Study Designs under Various Additive, Dominant, and Recessive Models (H = .30), with the Assumptions of Selective
Sampling, from the Upper Tail, and Equal Unit Cost for Genotyping and Phenotyping

STUDY DESIGN, FOR P = 0.0 STUDY DESIGN, FOR P = 0.40

Thresholds Thresholds
p (% %) (no, ni, n2) Cost (%, %) (no, ni, n2) Cost

Additive Model

.05 (55, 5) (0, 38, 25) 183 (60, 5) (0, 23, 28) 148

.20 (25, 5) (0, 44, 34) 371 (50, 5) (0, 33, 46) 285

.40 (20, 5) (0, 62, 46) 627 (45, 5) (0, 44, 65) 434

.60 (25, 5) (0, 140, 0) 971 (40, 5) (0, 55, 97) 643

.80 (15, 5) (0, 122, 0) 1,350 (35, 5) (0, 93, 0) 1,078

Dominant Model

.05 (55, 5) (0, 37, 24) 178 (70, 5) (0, 28, 26) 144

.20 (35, 5) (0, 130, 0) 669 (50, 5) (0, 58, 67) 458

.40 (20, 5) (0, 152, 0) 1,203 (40, 5) (0, 112, 0) 983

.60 (10, 5) (0, 132, 0) 1,939 (25, 5) (0, 104, 0) 1,617

.80 (5, 5) (0, 144, 0) 3,885 (5, 25) (0, 61, 0) 2,724

Recessive Model

.05 (5, 5) (0, 0, 241) 4,090 (55, 5) (0, 2,185, 1,805) 13,403

.20 (5, 5) (0, 0, 21) 105 (60, 5) (0, 23, 19) 111

.40 (40, 5) (0, 57, 25) 287 (60, 5) (0, 38, 31) 212

.60 (25, 10) (0, 92, 77) 688 (50, 5) (0, 61, 67) 466

.80 (20, 5) (0, 143, 0) 1,167 (40, 5) (0, 105, 0) 950

NOTE.-See footnotes a, b, and c in table 8.

to minimize the genotyping of sib pairs as much as possi-
ble, for a preset power, or to determine the numbers of
various types of sib pairs to be genotyped, so as to attain
as high a power as possible. Second, the use of neither
HC pairs nor ED pairs should be regarded as the tradi-
tional affected-affected or affected-unaffected design for
dichotomous traits. The extremeness resulted from a
trichotomy of the trait values that enhances power in
ways that a simple affected/unaffected dichotomy of the
trait cannot.
When a genomewide search using a dense map is per-

formed, estimation of the expected identity-by-descent
(IBD) proportion is possible from the X's (Gu and Rao
1997). Therefore, the placement of markers also may
be incorporated into the optimization process, to accom-
modate a genomewide mapping project.
We note that both the ESP test and the EDAC test

deal with only ESPs. Some linkage information is dis-
carded by the trichotomization and by the throwing
away of sib pairs falling in the middle interval. It will
be interesting to see if a test utilizing this information
would lead to an even better study design. Such an en-
deavor will involve weighting of the IBDs of sib pairs

with not-so-extreme trait values and certainly is out of
the scope of this article.
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