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Summary

Linkage-disequilibrium mapping (LDM) recently has
been hailed as a powerful statistical method for fine-
scale mapping of disease genes. After reviewing its his-
torical background and methodological development,
we present a general, mathematical, and conceptually
coherent framework for LDM that incorporates multilo-
cus and multiallelic markers and mutational processes
at the marker and disease loci. With this framework, we
address several issues relevant to fine-scale mapping and
propose some efficient computational methods for
LDM. We implement various LDM methods that incor-
porate population growth, recurrent mutation, and
marker mutations, on the basis of a general framework.
We demonstrate these methods by applying them to
published data on cystic fibrosis, Huntington disease,
Friedreich ataxia, and progressive myoclonus epilepsy.
Since the genes responsible for these diseases all have
been cloned, we can evaluate the performance of our
methods and can compare ours with that of other meth-
ods. Using the proposed methods, we successfully and
accurately predicted the locations of genes responsible
for these diseases, on the basis of published data only.

Introduction

The recent successes of positional cloning have been
instrumental in elucidating the genetic mechanisms un-
derlying many human diseases. In essence, positional
cloning seeks to identify disease genes on the basis of
their chromosomal locations, in the absence of informa-
tion on the underlying biological defect (Collins 1992).
It is now well known that meiotic event-based linkage
analysis needs huge (sometimes too huge to be realistic)
sample sizes for fine-scale mapping of disease genes
(Lange et al. 1985; Bodmer 1986; Boehnke 1994). Link-
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age disequilibrium (LD) recently has emerged as a very
promising tool for fine-scale genetic mapping.
LD (Lewontin and Kojima 1960), or, more precisely,

gametic phase disequilibrium (Crow and Kimura 1970),
or gametic disequilibrium for short, refers to the nonran-
dom association of alleles at different loci into gametes.
It should be pointed out that the nonrandom association
of alleles also could arise for unlinked loci (Turner 1971;
Sinnock and Sing 1972; Smouse and Neel 1977; Weir
and Cockerham 1989). The discovery of LD dates back
to 1909, when Weinberg (1909) noted that, in a ran-
dom-mating population, the alleles at two loci approach
a random association only asymptotically. Shortly there-
after, Jennings (1917) and Robbins (1918) described the
actual mode of approach to equilibrium frequencies, for
the two-locus model. Since then, the population genetics
of LD has been studied extensively. It is now generally
understood that many factors, such as selection, admix-
ture, finite population size, migration and mutation,
coancestry, genetic hitchhiking, and growing population
size, can affect LD (e.g., see Kojima and Schaffer 1967,
Hill and Robertson 1968, Karlin 1969, Ohta and Ki-
mura 1969, Weir et al. 1972, Nei and Li 1973, Hill
1976, Thomson 1977, Hedrick 1980, and Slatkin 1994).
LD mapping (LDM) is based on the following phe-

nomenon (Hastbacka et al. 1992; Jorde 1995; Kaplan
et al. 1995). When a chromosome carrying a disease
allele is first introduced into a population as a result of
either mutation or migration, the mutant allele is on a
chromosome with a unique set of marker alleles (i.e.,
the haplotype). As the chromosome is propagated in the
following generations, the length of the characteristic
haplotype decreases monotonely and stochastically,
with each generation. As a result of recombination,
markers in the immediate vicinity of the disease locus
are more likely to remain in the same strand than those
farther away. Since the number of recombinations that
accumulate through many generations is far greater than
that observed in or inferred from any pedigree-based
linkage study, the mapping resolution achieved through
the analysis of LD patterns is much higher than that of
linkage studies. Thus, it is possible to map genes at a
scale finer than 1 cM by the identification of markers
that are in strong LD with the disease allele. The so-
called fineness of the map depends on how many genera-
tions have passed since the introduction of the mutation.
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LDM can be complicated by many factors. Mutations
at marker loci and recurrent mutations at the disease
locus can obscure the LD patterns observed in the neigh-
borhood of the disease locus. Other factors, such as
drift, selection, population stratification or admixture,
the unknown age of the mutant allele, and nonrandom
sampling, also can create difficulties in LDM.
Although Fisher (1947) had inferred decades ago the

locus order for the rhesus factor, on the basis of gametic
frequencies, the application of fine-scale mapping based
on LD is fairly recent, compared with traditional linkage
analysis. This is probably because the need for fine-scale
mapping becomes pressing only when coarse-scale map-
ping becomes routine. Furthermore, unlike linkage anal-
ysis, the methodological development of LDM also re-
quires profound knowledge of population genetics.
Bodmer (1986) appears to be the first to have advo-

cated the use of LD for fine-scale mapping of a human
population. Lander and Botstein (1986) proposed the
use of LDM for recent genetic isolates, in lieu of the use
of linkage analysis based on family data. Although some
researchers argued that LD could not be used for fine-
scale mapping (Weir 1989; Hill and Weir 1994), re-
markable successes in fine-scale mapping based on LD
quickly dispelled this view (Cox 1989; Snell et al. 1989;
Theilmann et al. 1989; Hastbacka et al. 1992, 1994;
MacDonald et al. 1992; Huntington's Disease Collabo-
rative Research Group 1993; A. Chakravarti, personal
communication).

These successes led gene mappers to embrace LDM as
a promising tool for fine-mapping and to develop better
theoretical methods. For example, Terwilliger (1995) pro-
posed a likelihood method for LDM, on the basis of one
or more marker loci, without assuming the evolutionary
history of the population. In contrast, Kaplan et al. (1995)
used a Poisson branching process to model a growing pop-
ulation. By simulating the evolutionary history of the pop-
ulation, they provided estimates for the location of the
disease gene, on the basis of a likelihood function. This
likelihood approach provides a more reliable estimate of
confidence limits for the recombination fraction than does
the Luria-Delbruck-type model used by Hastbacka et al.
(1992). The method also can evaluate the order of a disease
locus and two marker loci. On the basis of a similar model,
Kaplan and Weir (1995) investigated the effects of muta-
tion, at either the marker or the disease locus, on the upper
boundaries of the recombination-fraction estimate. Their
results showed that their approach is superior to the
method based on the Luria-Delbruck-type model.
However, the approach proposed by Kaplan et al.

(1995) is not without its shortcomings. It is difficult
for simulation methods (SIM) to provide solutions to
statistical inference problems, such as properties of esti-
mators and sample-size requirements, which are im-
portant for the practical use of the method. SIM also is

difficult for practitioners to use. Furthermore, there is an
added problem of sampling variations due to simulation,
which may demand a large number of replicates.

There are many other unresolved issues in LDM. Is
the assumption of exponential expansion of the popula-
tion, as made by Hastbacka et al. (1992) and Kaplan et
al. (1995), or any assumption about population growth,
indispensable for LDM? Under what circumstances can
apparently nonassociated marker alleles be lumped into
one group? In the neighborhood of the disease locus,
why do some markers show strong LD whereas others
do not? How can frequencies of alleles associated with
the disease be lower than those in the normal popula-
tion?
Without an appropriate framework, it is difficult to

answer these questions. It will be difficult to use LDM
to finely map disease genes, in the face of factors such
as marker mutation, recurrent mutations at the disease
locus, and unknown population growth rate. In fact, for
some recently developed methods for LDM, fine-scale
gene mapping for diseases like Huntington disease (HD)
and Friedreich ataxia (FA) still poses a challenge (Kaplan
et al. 1995) and raises the question of how useful the
LDM methods are (Jorde 1995). Indeed, if Kaplan et al.
(1995) are correct in their suspicion that LDM only
works for some simple monogenic diseases, then its util-
ity would be very limited.

In this paper, we present a general, mathematical, and
conceptually coherent framework for LDM that incorpo-
rates multilocus and multiallelic markers and mutational
processes at the marker and disease loci. Under this frame-
work, the issues raised above can be resolved readily. The
framework still assumes a homogeneous population, but
it is not limited to an exponentially growing population.
We show that our framework encompasses several existing
LDM methods as special cases.
We also propose some efficient computational meth-

ods for LDM. We then demonstrate these methods by
applying them to data published prior to cloning of the
genes for cystic fibrosis (CF), HD, FA, and progressive
myoclonus epilepsy (EPM1). The genes for these dis-
eases all have been cloned. Thus, the exact locations of
these genes are known, and these data provide a useful
benchmark for the evaluation and comparison of vari-
ous LDM methods, including ours.
We demonstrate that our proposed methods perform

remarkably well for these data. Thus, we believe that the
utility and scope of LDM, if carried out appropriately, is
wider than previously thought. Finally, we provide some
general considerations for LDM and describe areas for
further research.

The Likelihood Function for LDM
Consider a disease locus with two alleles, a disease

allele, d, and a normal allele, n. At the linked marker
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locus, there are m alleles Mi (i = 1, . . . , m). The recom-
bination fraction between the two loci is assumed to be
0. Following Kaplan et al. (1995), let k, and kd be sample
sizes from the normal and disease chromosomes, respec-
tively. Also, let pin and Pid (i = 1. m) be the marker
allele frequencies for allele Mi, for the normal and dis-
ease chromosomes, respectively. Note that YL=1 Pin = 1
and Et=1 Pid = 1. For relatively young diseases, marker
allele frequencies in normal chromosomes will be as-
sumed to be constant over time, but, within the disease
population, the frequencies will be assumed to change
over time. Therefore, frequencies Pid(t) (i = 1, ..., m)
are time dependent. For notational convenience, we sup-
press t. Here, time is measured in generations, with t
= G being the generation from which the samples are
taken. For simplicity, we assume that generations are
nonoverlapping. More methods of estimation of the age
of the mutant allele have been developed (S.-W. Guo
and M. Xiong, unpublished data).
With the random union of gametes, replacement from

the disease population, and random sampling, the condi-
tional probability of obtaining the sample, given the
marker allele frequencies P(t) = [Plds . . . pmd follows
the multinomial distribution

kd' (1)df[k1d, **,kmdIP(t)]H k i 1

where kid is the observed number of disease chromo-
somes carrying allele Mi (i = 1, . .. , m).

Marker-frequency changes between generations are
governed by a Wright-Fisher population-genetics model.
Evolutionary forces, such as random drift, mutation,
and recombination, will cause marker frequency Pid to
change stochastically. Therefore, frequency Pid at any
generation t is a random variable. Taking the expecta-
tion of equation (1) over P(t), we obtain the uncondi-
tional sampling distribution

f(kld ,k* d)Hnr (P(dH ) (2)

(Hill and Weir 1994). In general, E(Pid) is a function of
0. Therefore, f(tkd, ... X kmd) is the likelihood function
of 0. Ignoring the constant term, we define the likelihood
function l(0) as

l(0) = E( pd (3)

To obtain the maximum-likelihood estimate of 0, we
need to evaluate the likelihood function l(0). It should
be noted that the simple form of the above likelihood
function is deceptive. Since the expectation is taken over

P(t), which contains all the evolutionary history of Pid
prior to t, the likelihood function is actually very difficult
to evaluate. Kaplan et al. (1995) approached the prob-
lem by simulation. That is, they simulated the evolution-
ary history, given a set of population and genetic param-
eters, and let

(4)
m

k
J m

E n pikid E~,-Y n Piid ( i)
i=l

d

=l i-ld

where pid(j) is the jth simulated realization of random
variable pid in J realizations.

This is a standard maneuver of approximating an ex-
pectation by a sample mean, by use of the Monte Carlo
method (Hammersley and Handscomb 1964). With a
given population model (e.g., the Poisson branching pro-
cess), the likelihood can be evaluated approximately for
any given 0.
However, there are several problems associated

with this approximation. First, although in principle
any degree of accuracy of the approximation can be
achieved at the cost of more computation time, the
number of replicates needed for a desired accuracy is
hard to determine a priori for a specific problem,
since, in general, it depends on various factors. Sec-
ond, as a result of the Monte Carlo approach, the
estimate of 0 is subject to variations in the Monte
Carlo sampling, in addition to statistical uncertainty.
Similarly, the boundaries computed by the simulation
also are subject to variations in the Monte Carlo sam-
pling. Third, the simulation is subject to several con-
straints imposed by the data. For example, the simu-
lated evolutionary history that gives rise to values for
the total number of disease chromosomes in the popu-
lation has to be close to the estimated value. In addi-
tion, there is a nonnegligible chance that one or more
alleles at the marker locus could reach fixation or ex-
tinction in simulation. This problem may be more
acute for biallelic markers. In reality, of course, we
would not have used the nonpolymorphic marker in
the first place. Thus, the SIM of Kaplan et al. (1995),
which is basically a rejection sampling scheme, may
not be entirely realistic or computationally efficient.
Here we present a computationally economical ap-

proximation, which allows us to consider more complex
genetic models and provides more insight into LD
between the marker and the disease loci. Let gi(t)
=E(pJd (i = 1, , m), gl(t) = [gl(t)5 ...., gm_J(t)]TX

kid'[Pld(0) ..* Pm40t) =~1i- A~di and the Hessian matrix
of h[pld(t), * * * , Pmd(t)] be

H() = (3 02h
k9Pid89Pid P(t)=lI(t)I rn 1)X(rn 1)
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Noting that

E{[Po(t) - p(t)]TH(t)[Po(t) - p(t)]}

= tr[H(t)D(t)] - g(t)TH(t)p(t),

where D(t) = E[Po(t)pT(t)], Po(t) = (Pld, **, Pm-ld)T
and tr denotes the trace of the matrix, we obtain the first-
order approximation (FOA) to the likelihood function

m
1(0) H ikd (6)

iil

and the second-order approximation to the likelihood
function

1(0) Jikid + '/2{tr[H(t)D(t)] - piT(t)H(t)ji(t)) * (7)

When the marker has only two alleles-that is, when
m = 2-equation (7) becomes

1(0) gt kld(l - pl)k2d + i/2H(t)[E(pod) 1

where

H(t) = kld(kld - 1)pkl 2d2(1 - l)k2d
- 2kldk2dpl ld (1 - 1J)k2d1

+ k2d(k2d - 1*)1k d(1 - pl)k2d 2

We note that the above approximations hold in form
regardless of the population-genetics model considered.

FOA- and Second-Order Approximation

To evaluate the approximate likelihood functions (6)
and (7), it is necessary to calculate the first and second
moments of the marker frequencies Pid (i = 1, . ..,Im).
The marker frequency Pid is a random variable subject
to evolutionary forces, such as recombination, mutation,
and migration. In order to compute the first two mo-
ments, we need to specify a population-genetics model
for marker frequencies.

For simplicity, we assume that there is no substructure
in the population and that there is random mating in
the population. As Kaplan et al. (1995) pointed out,
although there may be a selective advantage for carriers,
for practical purposes all carrier individuals can be as-
sumed to be selectively equivalent. It is easy to see that
this assumption is reasonable for a recessive disease. For
a dominant disease, the assumption of selective equiva-
lence also may be reasonable for late-onset (postrepro-
ductive age) diseases.

Since microsatellite markers usually have high muta-

tion rates (from '-0'3 to -10-5) (Weber and Wong
1993), their use may obscure the LD patterns. Thus, it
is appropriate to consider the mutation at the marker
locus, in LDM. We assume that the mutations at micro-
satellite loci occur according to a stepwise mutation
model (SMM) (M. Xiong and S.-W. Guo, unpublished
data). The SMM stipulates that the repeat number
changes by a few, as a result of mutation (Ohta and
Kimura 1973; Shriver et al. 1993; Valdes et al. 1993;
M. Xiong and S.-W. Guo, unpublished data). For ease
of exposition, we consider a one-step SMM in which
there is only one repeat change in the event of a muta-
tion. Extension to a multistep SMM is straightforward
but may be more complicated.
We consider multiple alleles for the microsatellite

markers and assume that allele Mi, indexed according
to the number of repeats, can mutate to the next-larger
allelic state, Mi+1 (i.e., expansion), with probability u,
and to the next-smaller allelic state, Mi,1 (i.e., contrac-
tion), with probability v. Let M1 denote the allele with
the smallest number of repeats and Mm denote the allele
with the largest number of repeats. We assume that allele
M1 can mutate only to allele M2 and that allele Mm can
mutate only to allele Mm 1. For diallelic loci, let u be
the forward mutation rate for allele M1 mutating to M2
and v be the backward mutation rate.
We also assume that disease is due to mutations of a

normal allele to a disease allele. Backward mutation is
assumed to be negligible. Let Yd be a disease-allele muta-
tion rate and Pd be the disease-allele frequency. In gener-
ation t, suppose that there are Xi(t) disease chromosomes
carrying marker allele Mi, and XT(t) = S7i1 Xi(t) total
disease chromosomes in the population.
We consider a two-locus Wright-Fisher model for mu-

tation, recombination, and random genetic drift. The
joint evolutionary process of the marker allele frequency
Pid can be approximated by use of a diffusion process
(see Appendix A).

It can be shown (see Appendix B) that the first two
moments of Pid satisfy the following ordinary differential
equations:

dE[hd] = E[gi(t)] , i = 1, .. ., m;dt (8)

dE[pid(t)pjd(t)] - -E Pid(t)Pjd(t)
dt XT(t)

+ E[gi(t)pd(t)] + E[gj(t)pid(t)], (9)

and

d =E{Pid([ - Pid(t) } + 2EIgi(t)pid(t)] (10)
dt

I ~~XT(t) 0
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wheregc(t) is defined in Appendix A. Note that equation
(8) can be rewritten in a matrix form as follows:

d(t) - Au(t) + B,
dt

(11)

where A is a matrix that depends on 0, disease-allele
frequency, recurrent-mutation rate, and marker muta-
tion rates (see Appendix C) and where B = (b1, ....
bm)T with b, = (1 - u)ctpl, + Vap2", bi = uapi-ln + [1
- (u + v)]api, + vcxpi+1n, in which i = 2, ..., m - 1,
and bm = UaPm in + (1 - V)QPmn, where a is a function
of 0, disease-allele frequency, recurrent-mutation rate,
and marker mutation rates (see Appendix C).

Solving equation (11) for p(t) (see Appendix C) yields

p(t) = eAtg1(0) + A l(eAt - I)B, (12)

where ji(0) = [P1d(O), ..., PMd(0)IT is a vector of the
initial values for Pid' I is an identity matrix, and exp(At)
denotes an exponential matrix defined by eAt = I
+ 1 (At)k/k!. Equation (12) provides a nice explana-
tion of the dynamics of marker allele distribution in the
disease population. The expected marker allele frequen-
cies at generation t is a function of two components: the
first is the initial distribution of marker alleles and its
evolution through cumulative recombination and muta-
tion, and the second involves the evolution of marker
allele frequencies in the normal population, as a function
of time, recombination, and mutation. Thus, as t in-
creases, the expected marker allele frequency in the dis-
ease population approaches that in the normal popula-
tion, that is, eventual equilibrium.
To see this more clearly, we assumed that initially

there is complete LD between the marker and the disease
loci-that is, Pld(0) = 1, Pid(°) = 0, / = 1, ... , m, and
/ * 1 -and that there is no mutation at either the marker
locus or the disease locus (i.e., u = v = yd = 0). Then,
equation (12) can be simplified to E(p1d) = emOt + (1
- e-et)pi, and

E(Pid) = (1 -e-")Piv (13)

j= 1,...,mand J 1.

We point out that the result obtained by Cox et al.
(1989) is a special case of equation (13).

It is interesting to note that the first moments of Pid
can be computed regardless of how the disease popula-
tion or the normal population changes with time. This
feature has an important implication: If we have little
knowledge of how a population of interest changes with
time, we just may use the FOA to the likelihood of
equation (3) for fine-mapping purposes. The computa-

tion of second moments is similar to that of first mo-
ments and is outlined in Appendix C.

Extensions to Multiple Marker Loci

The above approach can be extended to include multi-
ple marker loci. For ease of exposition, we only discuss
the extension to two-locus haplotype data and the com-
posite likelihood for multilocus LDM based on multilo-
cus nonhaplotype data. Extensions to multilocus haplo-
type data are straightforward but more complicated.

Two-Locus Haplotype Data
For two-locus haplotype data, there are three possi-

ble orderings-marker1-disease-marker2, marker1 -
marker2-disease, and disease-marker1-marker2. We
only discuss the case of marker1-disease-marker2, since
the other two cases can be dealt with in a similar fashion.
We denote piid as the conditional frequency of haplo-

type C,-C1 in disease chromosomes. Let 0k be the 0 be-
tween the disease locus and the kth (k = 1, 2) marker.
By use of a similar argument as that used for one

marker locus, the evolutionary process of the marker
frequency pijd (i = 1, . .. , m and j = 1,... , m) also can
be approximated by use of a diffusion process (see Ap-
pendix D). It can be shown that the expectation of the
haplotype frequency in the disease population, Pihd' satis-
fies

(Pd) = E[gii(t)] , (14)

where gi(t) is defined in Appendix D. If there is no muta-
tion at either the marker locus or the disease locus
that is, u = v = yd = 0-then equation (14) reduces to

dE(P,,d) =- (01 + 02)E(piid) + OlPif.E(P.,d)dt

+ 02P.iE(Pi.d)X

i= 1l....ml andj= 1, . , M2.,

(15)

where the dot subscript indicates summation over all
values of the corresponding index. Solving the above
equations for E(Pijd) yields

E(Pijd) = [Pid() - PI - 02 - pp.]e (01+2)t

+ Ple-Olt + P2e-02 + PiP

where Pi = P.An[Pi.d(o) - Pin] 02 = Pi.n[P.jd(0) - P.in], and
piid(O) is a set of initial values of the conditional haplo-
type frequencies.
The second moment of marker frequencies also can
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be derived. In particular, if there is no mutation at either
the marker locus or the disease locus-that is, u = v
- Yd = O-it can be shown that

dE(Ptd) _ [ 1 + 20, + 2021 E(ph-d LX'rt) j ild

+ E(p.d) + 20,pi.fE(P.,dPiid) (16)
XT(t) id

+ 202p.&,E(Pi~dPqd)
and that

dE(PiidPkld)
dt

- + 20, + 202 E(PiidPkld)
XT(t)

+ 0j[pif.E(p.dPkld) + Pk.fE(P.Idpiid)I (17)
+ 02[P.fIlE(Pi.dPkld) + P.lflE(Pk.dPiid)I

Multilocus Nonhaplotype Data
Whereas multilocus haplotype data may be difficult to

obtain in some cases, single-locus data can be relatively
easier to obtain for multiple loci. Analogous to the loca-
tion score in multipoint-linkage analysis (Ott 1991), we
also can compute the location score for multipoint
LDM, using Haldane's (1919) map function,

0 = 1/2(1 - e-21) . (18)

Suppose that k + 1 markers are located at chromo-
somes that are in accordance with the order Co, C1,
... , Ck. Let Ii denote the map distance between markers
Ci and C,_1 (i = 1, ..., k). Let x denote the distance
between the disease locus and marker Co. Then, from
equation (18), 0,, between marker Cj (1 S j S k) and
the disease locus, is given by

0, = 1/2(l - e I2x- ) * (19)

We define the likelihood function Li of 0j as L
= H 'dpi7(i), where PS,,d denotes the frequency of allele
Mi at C,, in the disease population, and kid(j) denotes
the observed number of allele Mi at C,, sampled from the
disease population. Then, the logarithm of the overall
likelihood function L across all markers is defined as

k

I=,log Li. (20)

Let ,i(j) = E[pid(j)]. From the previous discussion, when
mutations can be ignored,

gi(i) = pijd(0)e-Hi' + (1 - -0t)pij,,

where pijd(O) is an initial value of the frequency of allele
Mi at Cj and where pii,,, is the frequency of the allele Mi
at C,, in the normal population. Thus, the FOA to I is
given by la = Xj~l1i-1 ki(j)log gi(j).

Similarly, we can determine the second-order approxi-
mation to 1. Because the extension of previous results is
straightforward, we omit details.

It should be pointed out that, strictly speaking, equa-
tion (20) is not a likelihood, because it implicitly as-
sumes that marker frequencies at different loci are inde-
pendent. For markers that are closely linked, this clearly
is not true. Without knowing the exact dependencies in
marker frequencies among the markers, equation (20)
is at least an FOA to the true, yet unknown, likelihood.
For this reason, we will call the likelihood expressed in
equation (20) the "composite likelihood."

Some Implications of the Proposed Model

We point out two immediate implications of our pro-
posed model: First, most investigators have concentrated
on the simplest cases, in which there are two types of
alleles at the marker locus-associated and nonassoci-
ated alleles. This may be reasonable if there is a single
ancestral mutation in the population. However, if there
are multiple disease mutations or multiple founders car-
rying different mutations, then focusing on the simplest
case no longer may be sufficient. One way to deal with
this situation is to specify initial values for pid(O), where
i = 1, . .., m. Of course, these values usually are un-
known. However, since all disease alleles are assumed
to be selectively neutral, the marker frequencies in the
current population may be an approximation to the fre-
quencies at the time the mutation(s) was introduced.
Suppose that there are r alleles with disease mutations,
indexed by i1d ... ird. Let pi, ,... , Pird be the observed
marker frequencies within the disease population. Let
PO = 4=1 Piud. Then, we may simply specify pid(0) as
pid(0) = P'jd /po, wherej = 1,.. . , r, and, for other alleles,
let their initial values be 0. After specifying initial values
pid(0) we obtain, by solving equation (8) for E(Pid),

E(Pid) = pid(0)e + (1 - et)pin
i= 1,...,m.

(22)

That is, the current frequency of the associated allele
consists of two parts: one is the attenuation of the initial
frequency (owing to recombination) and the gradual at-
tainment to the frequency of the same allele in the nor-
mal population.

Second, in the disease population, the frequency of
the associated marker allele usually is assumed to be
higher than in the normal population. Both Kaplan et
al. (1995) and Terwilliger (1995) build this assumption
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into their models. Indeed, in most cases this assumption
is true. This assumption also is sensible because, if it
was observed to be otherwise, the marker would not be
identified as in LD with the disease locus. However, in
many practical situations, it is often the case that, in a
region that is supposedly linked to the disease locus,
some markers show strong LD with the disease locus
whereas others do not, despite the fact that they all may
be linked to the disease. One can find such examples in
an FA data set considered by Pandolfo et al. (1990).
We offer three explanations of why this may happen

sometimes. The first is that the inequality E(pld)
> Pi, where allele 1 is associated with the disease, is
stochastic in nature. It may be violated in some observed
samples. The second is that there may be early recombi-
nations between the marker locus and the disease locus
or that recurrent mutations may have occurred in the
past. If either of these events happens, then it is possible
that Pld(0) < pi,, which implies that E(Pld) = Pin
+ e [Pld(O) - Pi] < Pin.
A third explanation is that there may be unequal mu-

tation rates at the marker locus. If this happens, the
frequency of a marker allele associated with the disease-
allele mutations is no longer required to be higher in the
disease population than in the normal population. To
see this, suppose that there are two alleles at the marker
locus. For the sake of argument, suppose also that there
is no recurrent mutation and no backward mutation
(which is equivalent to Yd = v = 0 but u > 0). Suppose
further that the mutant disease allele initially is in com-
plete LD with M1. Thus, Pld(O) = 1 and P2d(0) = 0. In
this situation, equation (8) is reduced to

d= -[a + u(1 - a)]E(pld) + (1 - u)ap1.
dt

When this equation is solved for E(pld),

E(pld) = e-[a+u(1 -a)lt

+ (1- )a Pi [1 - e [a+u(l a)] . (
U +(1- U)a

It is clear that in this case [(1 - u)a]/[u + (1
- u)a]p1n < Pin. Thus, for a t that is large enough, it is
possible that E(p1d) < Pin. Intuitively, when marker allele
M1, associated with the disease allele, mutates to marker
allele M2, both mutation and recombination will reduce
marker frequency Pld. Reduction of E(pld) owing to re-
combination will have lower boundary Pin) but reduction
owing to mutation will not be restricted by Pine

Connections among Existing LDM Methods
On the basis of the results we have obtained so far,

it is possible to relate some existing LDM methods. Re-

writing equation (13), we have 1 - E(p1d) = (1 - eCt)(1
- pi") 1 -eOte provided pln ; 0. Now, if we replace
E(Pid) by its sample estimate, fAds obtained from the
current population, we have 1 - Pld - 1 - e' t, which
was used by Hastbacka et al. (1992) as one way to
estimate 0. Obviously, this estimate is very crude if Pin
is nonnegligible. It is somewhat surprising that the same
formula can be derived without the assumption of expo-
nential population growth.
The method proposed by Terwilliger (1995) also is a

special case of our FOA to the likelihood. To see this,
we define X, using Terwilliger's notation, to satisfy q1
= pt + X(1 - Pi) and qi = pi - Xpi (i * 1), where q1
and qi (i.e., Pld and Pid in our notation), are the condi-
tional frequencies of the putative ancestral allele and of
other nonancestral alleles, respectively, in the disease
chromosomes, and where Pt and pi (i * 1) are the popu-
lation frequencies of the progenitor allele and of other
alleles, respectively, which are approximately equal to
pin and Pin in our notation (assuming that the disease is
rare). Denoting ri = pin, Terwilliger (1995) proposed the
following likelihood function for 0:

m

L = J qjkd k,
j= '

If we let X = eit, then

ql Pln + eet(1 P n) = e 0t + (1 - et)P

qi (1 - &t)pin * 1

which is exactly our FOA to the likelihood in equation
(3), in the absence of marker mutation and recurrent
mutation and when there is initially complete LD. Ter-
williger did point out that X should be roughly propor-
tional to (1 - 0)t (Terwilliger 1995, p. 780), which
equals e7it when 0 is small, just as we showed above.

Terwilliger (1995) introduced an additional parame-
ter, a, which can be thought of as the proportion of
disease chromosomes that are identical, by descent from
a common founder chromosome (p. 780). In this case,
X = a(l - 0)t ; ae- t. Thus,

q, ; ae-ot + (1 -ae-Ot)pl,;
qi - (1 - ae-0t)pi,, i * 1 .

(24)

To incorporate this heterogeneity, we let q1(0) < 1;
that is, there is an incomplete LD initially. Replacing q1
with E(pld) in equation (22), we have

q1 - e-Otq,(0) + (l - e-et)pl,;
(25)

qi t e-Otqi(O) + (1-e-et)pie, i # 1,
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which is somewhat different from equation (24). It also
can be shown that our result is different from equation
(24), even if there are mutations at the marker locus
and/or the disease locus. We note that equation (25) has
a very nice interpretation. The current pool of disease
chromosomes comes from two sources: one is descended
from the common ancestral chromosome that under-
went no recombination between the marker locus and
the disease locus, and the other is descended from nor-
mal chromosomes that recombined with the disease
chromosomes. We also note that the likelihood derived
by Terwilliger (1995) can be embedded in our composite
likelihood, which is an approximation. Since qi(0) has
a much clearer meaning in our model and because the
derivation of equation (25) was based on a dynamic
population-genetics model, we expect that our method
should perform better.

Numerical Examples

To illustrate our proposed LDM methods, we applied
them to four genetic diseases, CF, HD, FA, and EPM1,
for which the genes all have been cloned. Since the physi-
cal distance between the disease loci and their sur-
rounding markers now are known, LD data published
prior to cloning provides an opportunity to evaluate
the performance of our methods and to compare our
methods with that of others.
We chose the CF data set because it has been well

analyzed by different researchers and can serve as a
yardstick for comparison. The HD and FA data were
chosen because the LD patterns for these two diseases
were quite complicated, and no LDM method has been
shown to be satisfactory.
Throughout our analysis, we used the empirical con-

version rate of 1 cM z 1,000 kb. We used the FOA and
the second-order approximation, assuming a constant
population size (SCP) and assuming an exponentially
growing population (SEG). However, since the FOA
works remarkably well, we used the SEG and SCP only
for the CF example. When applicable, the results were
compared with those obtained by the SIM of Kaplan et
al. (1995), the Luria-Delbruck-type method (LDT) used
by Hastbacka et al. (1992, 1994), and the method of
Terwilliger (1995).

CF
The CF gene was cloned in 1989. The most common

mutation, AF508, accounts for >70% of Caucasian CF
cases and was identified in a region flanked by markers
10-1x.6 (HaeIII) and T6/20 (Kerem et al. 1989). Follow-
ing Kaplan et al. (1995), we assumed that the CF muta-
tion occurred -200 generations ago (G = 200).

For the SEG model, following Kaplan et al. (1995),
we assumed that the current number of disease chromo-

somes is XT(G) = 2 X 107 and, hence, that the popula-
tion growth rate is X = 0.078.

Table 1 summarizes the results. It can be seen that
the results using FOA and SEG are almost identical in
most cases and are in broad agreement with the true
distance. SCP tends to overestimate the distance,
whereas LDT tends to underestimate. For markers
within 80 kb from the CF locus, however, LDT gives
slightly better estimates. Table 2 shows the largest, the
smallest, and the average absolute estimation errors of
the four methods, for 19 markers. It can be seen that,
for this data set, the accuracy of the estimations by FOA
and by SEG is almost identical and is fairly satisfactory.
The accuracy of the estimation by SCP is compatible
with that of LDT but has a higher variation.
The nearly identical results obtained by FOA and SEG

suggest that the assumption of exponential population
growth is not critical to the accuracy of the estimation.
With our proposed framework, the population size only
affects the variance and covariance of allele frequencies
in the diffusion process. Inappropriately specified popu-
lation size, however, may affect the accuracy of the Tay-
lor expansion. For this example, the FOA is good
enough, and little is gained by the use of the second-
order approximation. LDT, in general, is not as good as
our two likelihood methods, although it is quite accurate
when the markers are very close (-70 kb) to the CF
locus. The formulation of Hastbacka et al. (1992) for
estimation of 0 involves the marker allele frequency in
the disease population only but does not involve the
marker allele frequency in the normal population, and,
hence, it loses some information. Therefore, the accu-
racy of LDT may not be very satisfactory if the markers
used are not very close to the disease locus.

It also is interesting to compare the support intervals
obtained by use of the four methods. Following custom-
ary methods, we established support intervals for 0 by
decreasing the log likelihood by 2 units from its maxi-
mum value. For this example, the proportions of upper-
support boundaries that are smaller than the actual dis-
tance are 16%, 10%, 10%, and 78% for FOA, SEG,
SCP, and LDT, respectively. Since the second-order ap-
proximation more closely resembles the curvature of the
true likelihood, it is not surprising that the support
boundaries obtained by either SEG or SCP are better
than those obtained by FOA. The boundaries obtained
by FOA are not as good as those obtained by the second-
order approximation, but they are reasonable. However,
the upper boundaries obtained by LDT are somewhat
disappointing. Similar conclusions were reached by
Kaplan et al. (1995) and by Kaplan and Weir (1995).
We also used the multilocus composite likelihood, on

the basis of information on the genetic distance among
23 markers (fig. 1). It can be seen that the composite
likelihood reached its peak at 0.8 cM (or 800 kb) from
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Table 1

Estimates of Genetic Distance between the CF Locus and Various Marker Loci, by Four LDM Methods

ESTIMATED DISTANCE (kb), BYa
ACTUAL DISTANCE

MARKER (kb) FOA SEG SCP LDT

E6 350 360 [180-740] 350 [110-510] 620 [480-990] 130 [120-150]
E7 340 340 [170-710] 340 [110-490] 580 [460-990] 130 [120-160]
pH131 320 350 [230-530] 350 [190-610] 480 [170-640] 240 [210-280]
W3D1.4 305 370 [240-560] 370 [190-650] 520 [310-690] 240 [210-280]
XV2C 280 220 [100-450] 210 [70-560] 380 [150-650] 110 [90-130]
HincII 260 80 [30-160] 75 [50-180] 140 [50-230] 60 [50-70]
BglII 240 90 [40-180] 90[60-220] 150[60-240] 74 [70-90]
KM19 220 100 [50-190] 100 [30-230] 160 [70-240] 80 [70-90]
E2.6 190 90 [30-220] 90 [20-270] 180 [60-300] 60 [50-80]
H2.8A 165 110 [50-210] 110 [70-260] 190 [20-290] 90 [80-100]
E4.1 130 130 [50-270] 120 [30-340] 220 [10-370] 70 [60-80]
J44 95 80 [30-180] 80 [10-230] 150 [50-260] 50 [50-60]
AccI 15 140 [80-240] 140 [60-310] 470 [230-730] 120 [110-140]
HaeIII s 130 [70-230] 130 [50-310] 210 [50-290] 120 [110-140]
T6/20 15 250 [10-670] 40 [20-100] 110 [50-160] 70 [60-80]
H1.3 25 80 [30-180] 80 [50-120] 140 [50-230] 60 [50-70]
CE1.0 75 290 [50-1,000] 240 [10-490] 140 [30-260] 23 [20-30]
J3.11 660 730 [430-1,660] 740 [340-1,000] 1,310 [320-2,000] 280 [250-330]
J29 760 670 [400-1,260] 670 [330-890] 440 [310-860] 290 [250-340]

a The numbers in brackets are the estimated lower and upper support boundaries. In all calculations, a generation time of 200 and a conversion
rate of 1 cM t 1,000 kb were assumed. Data were taken from the study by Kerem et al. (1989).

marker metD (BanI), as compared with the actual physi-
cal distance of -875 kb. Thus, the error is only -75
kb. This agreement suggests that the composite likeli-
hood gives a more reliable estimation of the disease locus
than the use of individual markers. Terwilliger (1995)
applied his method to the same data set, yielding an
estimate of 770 kb. Thus, in this sense, our method
gives a somewhat more accurate estimate of the CF-gene
location than that of Terwilliger.
We also investigated the impact of the choice of popu-

lation-growth models by using SCP for the estimation
of the location of the disease gene for marker E6. We
found that the model assuming a large, constant popula-
tion size is approximately equivalent to the model as-
suming an exponential growth (data not shown).

Table 2

Errors in the Estimation of the Location of the CF Gene,
by Different LDM Methods

Largest Error Smallest Error Average Error
Method (kb) (kb) (kb)

FOA 240 0 90
SEG 240 0 90
SCP 650 10 170
LDT 470 45 160

One common opinion holds that LDM can be applied
only to genetic diseases without recurrent mutations
(e.g., Kaplan et al. 1995). Without recurrent mutations
and with the barring of marker mutations, there is usu-
ally a predominant ancestral marker allele with a higher
frequency in the disease population. However, this fre-

E6 T6/20

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.0

Genetic distance

Figure 1 Composite log likelihood for estimation of the location
of the CF locus, on the basis of 19 markers from E6 to J29. Marker
metD (BanI) is used as a reference point. The true location of the gene
is marked by an "X."
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Table 3

Estimates of Genetic Distance bertween the CF Locus and
Various Marker Loci, by the FOA and SIM Methods,
for the Finnish-Population Data

ACTUAL ESTIMATED DISTANCE (kb), BYa
DISTANCE

MARKER (kb) FOA SIMb

XV2C 280 170 [30-510] 300 [?-900]
KM19 220 370 [140-8501 600 [?-1,4001
Mp6d-9 130 250 [80-630] 400 [?-1,110]
G2 -70 220 [25-950] 400 [?-1,700]
J3.11 660 1,080 [540-2,490] ... [?->2,000]

a The numbers in brackets are the estimated lower and upper sup-
port boundaries.

b Estimates are from the article by Kaplan and Weir (1995).

quency differential and its magnitude are determined by
the distance between the marker and the disease locus.
Markers close to the disease locus tend to have a pre-
dominant allele associated with the disease. This may
not be true for markers farther away from the disease
locus.
Kaplan et al. (1995) estimated, by using SIM, the

distances between the CF gene and markers XV2C and
KM19. They used data collected from several European
populations and assumed that 200 generations was the
age of the AF508 mutation in all the populations. These
data sets may not be appropriate for the comparison of
different LDM methods, because it is very likely that
the age of the AF508 mutation is different in different
populations. The likelihood that the same 3-bp deletion
occurred more than once in different populations is
much smaller than the likelihood that the AF508 muta-
tion was introduced, by gene flow, at different times.
Kaplan and Weir (1995) selected 5 of 11 markers
(XV2C, KM19, Mp6d-9, G2, and J3.11) in the Finnish
population to demonstrate their method. Using the same
data set, we can compare our method with theirs, assum-
ing 100 generations as the age of the CF disease muta-
tion in the Finnish population (table 3). It can be seen
that, in general, SIM considerably overestimates the dis-
tances. For markers, such as J3.1 1, that are not very
close to the CF locus, SIM even failed to give a sensible
estimation of the CF-gene location. We point out that
estimates obtained by our method can be improved con-
siderably if the age of mutation is estimated simultane-
ously, rather than fixed.

HD
In 1983, the gene responsible for HD was mapped to

chromosome 4, by use of linkage analysis (Gusella et
al. 1983). Haplotype analysis using multiallelic markers
indicated that a 500-kb segment between D4S180 and

D4S1 82 is the most likely site of the mutation (MacDon-
ald et al. 1991). Subsequent work by the Huntington
Disease Collaborative Research Group (1993) identified
in this region a large gene, IT15, spanning -210 kb,
with an expandable unstable trinucleotide repeat, which
is responsible for HD.

In the published HD data (MacDonald et al. 1991),
marker allele frequencies have several patterns. There
seem to be multiple ancestral haplotypes, but no single
haplotype is predominant. Some markers show strong
allelic associations with HD, but they are interspersed
with intervening markers that show no association.
Some markers that are linked to HD do not show any
LD at all.

Following Kaplan et al. (1995), we assumed the age
of the HD mutation to be G = 200 generations. This
number agrees broadly with our estimate based on
marker data (S.-W. Guo and M. Xiong, unpublished
data). Because HD is a dominant disease and affects -1/
10,000 people of European descent, the frequency of
the disease chromosomes is -1/20,000.

It is now known that IT15, with an expandable unsta-
ble trinucleotide repeat, lies within the region between
D4S180 and D4S182 or is 240 kb, 110 kb, and 250 kb
away from D4S180, D4S95, and D4S182, respectively
(D. A. Tagle, personal communication). Both D4S95/
AccI and D4S95/MboI show strong LD with the HD
locus, but a nearby marker (TaqI) does not. Assuming
no mutation at either the marker locus or the disease
locus, our method placed the HD gene to be -260 kb
and -290kb away from D4S95/MboI and D4S95/AccI,
respectively, which are -150 kb and -180 kb from the
true location.
MacDonald et al. (1991) noted that the most common

haplotypes on HD chromosomes differ in their D4S95/
TaqI alleles. One factor that causes the lack of a predom-
inant allele in the HD chromosomes could be the muta-
tion at marker loci. Such a mutation process would de-
crease the frequency of the progenitor allele and increase
the frequency of the other allele, in HD chromosomes.
To examine this scenario, we estimated the distance be-
tween the marker D4S95/TaqI and the HD locus and
the marker mutation rates. The mutation rate was esti-
mated to be -2 x 10', and the distance was -330 kb,
as compared with the true distance of 110 kb. When
this model was extended to D4S180/BamHI, D4S180/
XmnI, and D4S182/EcoT23, the mutation-rate esti-
mates were within the range of 0-3.0 X 10' (table 4).
Although marker mutation is a factor, recurrent muta-
tions at the CAG repeat in the HD locus may be a more
plausible explanation for the lack of a predominant al-
lele.
We considered a model that incorporated the marker

mutation and the recurrent disease mutations. Three pa-
rameters, 0, the mutation rates at the marker loci, and
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Table 4

Estimates of Genetic Distance between the HD Locus and Various Marker Loci, by FOA with and without Recurrent Mutations

Mutation Rate Mutation Rate Estimated Distance Error Lower Boundary Upper Boundary
Marker at Marker Locusa at HD Locusb (kb) (kb) (kb) (kb)

D4S180/BamHI 3.0 0 320 80 3 3,390
3.0 50.0 220 20 4 3,290

XmnI 0 0 1,518 -1,278 ... ...

0 40.0 240 -0 4 990
D4S95/MboI 0 0 260 150 130 480

0 3.0 200 90 80 440
Taql 2.0 0 330 220 40 910

2.0 10.0 220 110 40 990
AccI 0 0 290 180 90 > 10,000

0 1.4 260 150 60 1,030
D4S182/EcoT23 0 0 500 240 260 990

0 12.0 260 10 50 850

NOTE.-The searching-grid sizes of 0 and the mutation rates at the marker locus and the HD locus were 10-5, 10-5, and 10-9, respectively.
a x 10o.
b x 10 8

the mutation rate at the disease locus, were incorpo-
rated, and their corresponding estimates, by use of FOA,
also are listed in table 4. The estimated recurrent-muta-
tion rates vary from marker to marker. At some loci, for
example D4S95/MboI and D4S95/AccI, the estimated
mutation rate Yd is small, suggesting that the effect of
mutation on these markers is negligible. It also can be
seen that, after the incorporation of marker mutations
and recurrent mutations at the disease locus, the accu-
racy of the location estimates improved substantially.
The overall average error of the estimation, by use of
the model with mutations at both the marker and disease
loci, is 89 kb, which is almost as accurate as our reanaly-
sis of the CF data.

It may seem a bit strange that the estimate of the
mutation rate at the disease locus varies from marker
to marker. We point out that this is perfectly reasonable,
since all marker data are subject to sampling errors. In
fact, the magnitude of the estimated mutation rates
(10-i for the markers and from _10-8 to _10-9 for the
HD locus) seems to be reasonable.
The composite likelihood involving D4S180/BamHI,

D4S95/MboI, and D4S182/EcoT23 peaked at the point
-250 kb away from the marker D4S180, as compared
with the actual distance of -240 kb (fig. 2). The error
of the estimation is only - 10 kb!

FA
The cloning of the FA gene, called "X25," was re-

ported early last year (Campuzano et al. 1996). Five
exons of X25 were found to be spread over 40 kb. There
are two point mutations, T-G in exon 3 and A-GG in
exon 4, but an unstable GAA trinucleotide expansion

in the first X25 intron appears to be the predominant
mutation site (Campuzano et al. 1996).
The FA gene, mapped to chromosome 9 in 1988

(Chamberlain et al. 1988), was found to be tightly linked
to D9S15 and D9S5 (Fujita et al. 1990). In addition, LD
analysis suggested that the FA gene was located within a
1-cM region bounded by these two tightly linked mark-
ers. Fujita et al. (1990) estimated that the Os between
the FA gene and D9S15 and between the FA gene and
D9S5 are 0.5 cM and 0 cM, respectively. Using the data
in Fujita et al. (1990), Kaplan et al. (1995) applied SIM,
hoping to finely map the gene. However, they got results
no better than those of Fujita et al. (1990).

3
Genetic Distance

Figure 2 Composite log likelihood for estimation of the location
of the HD locus, across markers D4S180, D4S127, D4S95, and
D4S182. The true location of the gene is marked by an "X."
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Table 5

Estimates of Genetic Distance and the Lower and Upper Boundaries, between the FA Locus and Two Marker Loci, by Different Methods

Mutation Rate Mutation Rate Estimated Distance Lower Boundary Upper Boundary
Marker at Marker Locus at FA Locus (kb) (kb) (kb)

D9S15 0 0 620 400 1,000
D9S5 2.5 x 10-3 4.0 x 10-5 480 220 1,220

Since there is no information on the age of the FA
gene, Kaplan et al. (1995) assumed the age to be G
= 200. Using the same data, we took a different ap-
proach, estimating simultaneously the age of the FA mu-
tation and the location. By maximizing the composite
likelihood based on D9S15 and D9S5 over the age of
the FA mutation and 0, we estimated the age to be 180
generations, for the Italian population (Pandolfo et al.
1990). In the discussion below, we use this figure and
assume the frequency of the FA gene to be V1/50,000
- .0045.

Fujita et al. (1990) found that D9S15, a six-allele
microsatellite marker, is in strong LD with the FA locus.
Kaplan et al. (1995) did not report their estimate of 0
for this marker but only reported an upper boundary
for 0 of -2 cM, which they admitted was too large to
be useful. Here we assume a six-allele model with no
mutation at the marker loci and consider the allele A2,
the most common in the disease chromosomes, as the
putative ancestral allele. With this model, the distance
between D9S15 and the FA gene is estimated to be 620
kb (table 5), which is -50 kb away from the true loca-
tion (Campuzano et al. 1996). Note also that our upper
boundary is only half that of Kaplan et al. (1995).
D9S5 is a bit problematic because no single allele has

a predominant frequency in the FA population. We sus-
pect that there may have been an early recombination
between the marker and the disease locus, after the dis-
ease mutation occurred or that there may have been
recurrent mutations. Therefore, we incorporated muta-
tions at both loci into our model and designated the
allele with the highest frequency in the disease sample
as the common ancestral allele. The resultant estimation
precisely placed the FA gene in the first X25 intron,
where there is an unstable GAA trinucleotide expansion
(table 5). These estimations suggest the order of D9S15-
D9S5-FA, which agrees with the actual locations of
these markers and the FA gene.
We also used the two-locus composite likelihood with

the fixed mutation rates 0, 2.5 x 10-3, and 4 x 10' at
D9S15, D9S5, and the FA locus, respectively, for which
the mutation rates were estimated from previous analy-
ses (table 5). This yielded the distance of 690 kb between
D9S15 and the FA gene, which again placed the FA gene

20 kb away from F8101, that is, exactly in an exon of
X25.

EPM 1
The EPM1 gene was mapped to chromosome 21q22.3

by use of linkage analysis and was narrowed further to
a 0.6-cM region around markers D21S25 and PFKL, by
use of LD (Lehesjoki et al. 1993). Recently, the EPM1
gene was cloned and was found to be 2.5 kb in length
and -30 kb away from marker D21S2040 (Pennacchio
et al. 1996). The EPM1 gene consists of three small
exons. The first base-pair mutation (G--C) and the sec-
ond (G-*C) were found at the last nucleotide of intron
1 and at amino acid position 68 of the cystatin B gene,
respectively.
We assumed, as did Lehesjoki et al. (1993), the age

of the disease mutation to be 100 generations and esti-
mated that EPM1 is -350 kb away from marker
D21S25 (support interval 150 kb-750 kb; see table 6).
The true location of the EPM1 gene now is known to
be -393 kb away from D21S25, which is remarkably
close to our prediction.
On the basis of the marker-distance information that

recently has become available (Stone et al. 1996), we
applied our methods to data for markers PFKL and
D21S25, published in Lehesjoki et al. (1993). We found
that the age of the disease mutation is approximately i
= 74 generations and that the EPM1 gene is 610 kb
away from PFKL. The error of our estimate is only
-30 kb.

Recently, Virtaneva et al. (1996) generated new data
at D21S1885, D21S2040, D21S1259, D21S1912, and
PFKL. Using this data set, we calculated the composite
likelihood for these markers (fig. 3). Again, the age of
mutation is -70 generations, and the distance between
D21S1885 and the EPM1 locus is estimated to be 370
kb, which is only 40 kb away from the true location
(fig. 3).
The results of the likelihood-based multipoint LD

analysis, according to Terwilliger (1995), placed the dis-
ease gene in the region between D21S1259 and
D21S1912 and estimated the EPM1 gene to be 80 kb
away from D21S1259 (Virtaneva et al. 1996). The error
(220 kb) of their estimate is almost six times higher than
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Table 6

Estimates of Genetic Distance between the EPM1 Locus and Two Marker Loci, by Different Methods

ESTIMATED DISTANCE (kb), BYa

MARKER FOA SIMb LDT Modified LDT

PFKL 360 [210-570] 500 [?-100] 280 [230-360] 360 [?-490]
D21S25 350 [150-750] 600 [?-1,300] 140 [110-180] 350 [?-480]

a The numbers in brackets are the estimated lower and upper support boundaries.
b Data and estimates from tables 2 and 3 in the article by Kaplan and Weir (1995).

ours. This demonstrates again that our method provides
a more accurate estimate than that of Terwilliger (1995).

Discussion

To make efficient inferences in LDM, it is necessary to
base the inference on the maximum-likelihood principle,
which requires an explicit expression for the expectation
of the conditional likelihood function, that is, the uncon-
ditional likelihood. The unconditional likelihood is de-
ceptively simple in form, but it can be very difficult to
evaluate, even in the single-marker case. In contrast to
SIM, proposed by Kaplan et al. (1995), we have approx-
imated the likelihood using the Taylor expansion. The
approximations require the computation of the first and
second moments of the marker allele frequency in the
disease population. The first moments of the allele fre-
quencies can be derived regardless of the population
model considered. The derivation of the second mo-
ments, however, does require the specification of a popu-
lation model. Through derivation of the first and second

0.003 0.004 0.005 0.006 0.007

Genetic distance

Figure 3 Composite log likelihood for estimation of the location
of the EPM1 locus, on the basis of markers D21S1885, D21S2040,
D21S1259, D21S1912, and PFKL. The true location of the gene is
marked by an "X."

moments of the marker allele frequencies in the disease-
causing chromosomes, we have presented a general,
mathematical, and conceptually coherent framework for
LDM, which incorporates multilocus and multiallelic
markers and mutational processes, at both the marker
and disease loci. This framework provides many new
insights into the patterns of LD and the mathematical
links between seemingly unrelated methods for LDM.
The methods for LDM can be classified roughly into

two groups. One is simple disequilibrium mapping
(Weir 1989; Jorde et al. 1994; Devlin and Risch 1995),
which is based solely on the magnitude of the disequilib-
rium measures. The other group is what we called
"model based," which is represented by the work of
Hastbacka et al. (1992), Hill and Weir (1994), Kaplan
et al. (1995), Kaplan and Weir (1995), Risch et al.
(1995), and Terwilliger (1995). The latter group can be
distinguished further, depending on whether one im-
poses a population model (e.g., an exponentially grow-
ing population).

Like most population-genetics models of LD, Hill and
Weir's (1994) model assumes a constant effective popu-
lation size Ne. With that model, 0 unfortunately is con-
founded with an unknown Ne. This makes it difficult
to estimate 0. Moreover, the model has the problem that
once the allele frequencies of disease-causing chromo-
somes reach the state of equilibrium, all information
about 0, generated by LD, will be lost. The major contri-
bution of Hastbacka et al. (1992) was to consider the
nonequilibrium (i.e., a rapid-growing population) situa-
tion of a so-called young and isolated population. In
this kind of model, all information on recombination
events accumulated throughout the entire history of the
population is manifested by LD. As a result, 0 is con-
founded only with the age of the disease mutation,
which sometimes can be estimated approximately
through other sources. In fact, when multilocus data are
used and interlocus genetic distances are known, the
composite likelihood can be used to estimate simultane-
ously the age of the mutation and the location of the
disease locus.
Kaplan et al. (1995) recognized that one does not
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need to model the evolutionary history of the whole
population. Instead, one can model only the dynamics
of the disease-causing chromosomes. Since the disease
of interest is usually rare, the proportion of disease-
causing chromosomes in the entire population is typi-
cally very small. Once information on the marker allele
frequencies of the normal chromosomes is gathered, all
information on 0 is in the disease-causing chromosomes.
However, this is true only when the disease under study
is rare.
Does this mean that we always have to know or to

assume the growth rate of a population, for LDM? This
question is important, since determination of the growth
rate for a particular population for the last 20 or more
generations can be difficult, despite the fact that most
human populations have expanded considerably in the
last century. Our results challenge this notion, on two
grounds. First, the results derived with the assumption
of an exponentially growing population, obtained by
Hastbacka et al. (1992) and Lehesjoki et al. (1993),
also can be derived with our framework without any
assumptions about population growth. In fact, the equa-
tions for the estimation of 0, proposed by the two
groups, were derived without respect to growth rate.
Second, our numerical results suggest that FOA likeli-
hood function (6) performs remarkably well. As we
pointed out before, the FOA is valid regardless of which
population model is used.
The framework that we proposed also has broadened

the scope of LDM. Several methods assume that the
frequency of the associated allele in disease-causing
chromosomes always should be higher than that in the
normal chromosomes. Terwilliger's (1995) method im-
plicitly assumes that this is the case (i.e., X - 0). The
assumption that Pexcess - 0, made by Lehesjoki et al.
(1993), also explicitly assumes so. Kaplan et al. (1995)
noted that, in the case of FA and HD, some markers
show LD with the disease locus, but for these markers,
the allele frequencies in the samples of disease-causing
chromosomes are lower than those in the normal sam-
ple. Kaplan et al. (1995) and Kaplan and Weir (1995)
thought that these observations were not consistent with
their evolutionary theory. Assuming that sampling error
can be ignored, however, we know from the above dis-
cussions that this phenomenon can be accommodated
within our model, owing either to random drift (since
the inequality is stochastic in nature) or to mutations at
the marker locus.
Kaplan et al. (1995), Kaplan and Weir (1995), and

we found that the upper boundaries estimated by the
LDT method were too restrictive and missed the true
location of the disease locus in almost 80% of cases.
This clearly is unacceptable. We also found, however,
that support intervals estimated by SIM were too conser-
vative to be useful.

One potential source of inaccuracy in SIM is the simu-
lation itself. By necessity, SIM generates a prespecified
number of replicates, according to some parameters and
to population-dynamics models. Because of their Monte
Carlo nature, sampling variations are introduced into
the parameter estimate, in addition to noise in the data
and to intrinsic statistical variations in the estimation.

For HD and FA, for which no single marker allele has
a predominantly high frequency in disease chromo-
somes, SIM and other methods do not work at all. It
should be noted that the analysis of HD and FA data
was based on data collected from large continental pop-
ulations whose histories are not well understood. It is
likely that there are multiple disease-causing mutations
on different alleles. For this class of so-called multimu-
tant diseases, a single allele with a predominantly high
frequency among disease chromosomes may not exist.
Mutations at marker loci also can cause the same prob-
lem. To deal with these possibilities, we incorporated
mutations at both marker and disease loci. For the same
data sets used by Kaplan et al. (1995), our method
mapped the HD gene with remarkable accuracy: the
average error of the estimation was only -89 kb. On
the basis of limited published data, we predicted, prior
to cloning, that the FA gene is -690 kb away from
D9S15, which is exactly the location of the FA gene.
We are convinced that, given the right population and
data, it is technically feasible to fine-map disease genes
by use of LDM.
On the basis of our experiences with LDM, using

published data, we offer some general considerations
for the fine-scale mapping of disease genes. First and
foremost, it is important to understand the disease and
the population. Is the disease rare in the population?
This question should be examined carefully before an
LDM analysis is launched. If the disease is heteroge-
neous, it may be a good idea to select one specific sub-
type of the disease, for LDM. It also may be ideal to
have a genetically isolated population for LDM, with
the additional requirements that the disease mutation
(not necessarily the population) is old enough for recom-
bination to narrow the region of disequilibrium but not
so old as either to reach linkage equilibrium or to accu-
mulate many new mutations. Second, it is useful to
know the locations of the markers to be saturated, in
the region of interest. If we know the interlocus distances
among the markers, we can use the composite likelihood
and can extract information on the disease locus, from
multiple markers. Third, it also is worthwhile to place
the markers carefully. For example, assigning markers
approximately equally to both sides of the disease locus
would allow more accurate localization of the disease
locus. This can be done, for example, by the even place-
ment of markers in the region of interest. Fourth, it
may be efficient to saturate the region of interest with
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markers, in two steps. At the first step, the region would
be saturated with markers spaced at -500 kb apart.
Once a narrower region is identified, the region would
be saturated with markers spaced at -60- 100 kb. Ow-
ing to the inherent limitations, a map that is too dense
may be a waste.
Throughout this article, we have used a one-step

SMM to describe the mutation process at microsatellite
loci. Although the model is simple and seems to work
well, it may not work well in all cases. If this is true, a
multistep SMM should be used.
Although allelic heterogeneity can be handled in LDM

by the introduction of recurrent mutations, locus hetero-
geneity may be more difficult to deal with. Also, the
assumption of the constant allele frequency in the nor-
mal population may not hold when the mutation rate
at the marker is very high and the age of the disease
mutation is old. Population substructure, incomplete
penetrance, phenocopies, and nonrarity of the disease
also can pose problems. Thus, there is room for im-
provement for LDM methodology.
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Appendix A
Let NG be the current (t = G) size of the normal

.population, with an exponential growth rate p. The
amount of mutation at the disease locus in each genera-
tion depends on the Yd as well as on NG.
There are three ways to obtain the disease chromo-

somes carrying marker allele Mi, in generation t + 1:

1. The disease chromosomes carrying Mi in generation
t do not recombine with other chromosomes during
the time period (t, t + 1).

2. Disease chromosomes recombine with the normal
chromosomes carrying the marker allele Mi.

3. Mutations occur on normal chromosomes carrying
the marker allele Mi.
Given Xi(t), the number of disease chromosomes car-

rying marker allele Mi in generation t, if mutation at the
marker locus is ignored, then

Xi(t + 1) = (1 - 0)Xi(t)
+ [OXT(t) + Yd2NG(l + p) (G)]pin

where pin is the frequency of the allele Mi in the normal
population. It is easy to see that XT(t + 1) = XT(t)
+ yd2NG(1 + p)-(G-t). Recall that Pid(t) is the frequency
of the marker allele Mi in the disease population. Let
pid(t + 1) be the frequency of the allele Mi in the disease
population, after recombination and mutation, during
the time period (t, t + 1). Furthermore, let Pd be the
disease-allele frequency, that is, Pd = XT(t)12N(t), where
N(t) is the size of the population in generation t. Assume
that Pd is constant over time. Then p,'(t + 1) is given
by

(1 - 0)X,(t) + [OXT(t) + Yd2NG(l + p)Gt)]pin
id+ 1) = XT(t) + yd2NG(l + P) (G t)

1
(1 - O)Pid(t) r + apin

+ Yd
Pd

t (1 - a)pid(t) + api", (Al)

where a = 0 + YdlPd.
Under the one-step SMM, marker allele Mi can mutate

to the next-larger allelic state Mj+l, with probability u,
and to the next-smaller allelic state Mi,1, with probabil-
ity v. Clearly, M1 can mutate only to the allelic state
M2, and Mm can mutate only to the allelic state Mmi-.
Given p,'(t + 1), after meiosis the frequency Pid(t + 1)
at the (t + 1)th generation has a multinomial distribu-
tion with parameters

(A2)
7 +i(t)= [1 u (u + 1)pit + 1 )

+ Up,-ld(t + 1 ) + VP*'+ldt+1)

(Ohta and Kimura 1973; M. Xiong and S.-W. Guo,
unpublished data).

It follows from equations (Al) and (A2) that

gi(t) = E[Pid(t + 1) - Pid(t) I P(t)]
-[a + (u + v)(1 - a)Ipid
+ u(l - a)pjid + v(l - a)pi+ld + uapil,
+ [1 - (u + v)]apjn + vap,+i,

i= 2,...,5m - 1
gl(t) = E[pid(t + 1) - Pid(t) I P(t)]

-[a + u(1 - a)IPld + v(1 - a)P2d
+ (1 - U)apl, + vap2 i,

gm(t) = E[Pmd(t + 1) - Pmd(t)IP(t)]

-[a + v(1 - a)]Pmd + u(1 - a)Pm-d
+ (1 - v)apm. + uapm-ln
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and

w,1(t) = E{[pid(t + 1) - Pid(t)][Pid(t + 1) - Pid(t)] I P(t))

Pd(t)[6i - Pid(t)]

XT(t)

Therefore, the joint evolutionary process Pid(t) (i = 1,
... , m) at the disease and marker loci can be approxi-
mated by a diffusion process with a generator given by

1m Pid(t)[8,i - PNd(t)] 02 m 0
L = I I F Y. ~~~~~g,(t)02 .=1 .j1 XT(t) 0PidaPid i=1 aPid

(Revuz and Yor 1994).

amm = -[a + v(1 - a)]
aim= O;j= 1, ...,m - 2

It is easy to see that

de -At-~= -Ae At

dt

and that

-As X ( )kt+l
e ds = tIX .
0 k=1~~~(k + 1)!

= -A-1[e -At _- I

Appendix B
Let f be a function of Pid (i = 1, ... , m). By the Hille-

Yosida theorem (Ethier and Kurtz 1986), we have dE(f)/
dt = E[L(f)], where L is the generator of the diffusion
process. In particular, if f = Pid(t), then 02flOPidapjd = 0
and af/OPid = 1. Thus, d[Pid(t)]/dt = E[gi(t)], where
i = 1, ..., m. Similarly, if f = Pid(t)Pjd(t), then
02flPidop d = 1 and OfiOpid = Pid, and, hence,

dE[pid(t)Pjd(t)I [Pid(t)Pid(t) 1
dt l XT(t) j

+ E[gi(t)pd(t)] + E[g,(t)pid(t)]

Clearly, p2?p/0dp = 2 and ap2 /0pid = 2pid. By the same
argument, we obtain

d =] E Pid(t)(1 - + 2E[gi(t)pid(t)]
dt =E[ XT(t) J

Appendix C
The matrix A has the following elements:

all = -[a + u(1 - a)]

a12 = v(1 - a)

aij= 0; j 3, . . . m

aiij1 = u(1 - a)

aii = -[a + (u + v)(1 - a)]

ai~i+1 = v(1- a); i = 2, ... ., m

aid = 0; j * i - 1, i, i + 1

am-1,m = u(1 a)

Thus, we have

d[e-Atl(t)] -At
dt

(Cl)

When both sides of equation (Cl) are integrated,

e-At(t) - L(0) = -A-l(e-At - I)B . (C2)

Thus, it follows from equation (C2) that !(t) = eAt(O)
+ A l(eAt - I)B.
To apply the second-order approximation, it is neces-

sary to compute the second moments of the marker allele
frequencies, which depends on (1) the recurrent-muta-
tion rate Yd at the disease locus, (2) the mutation process
at the marker locus, and (3) the population-growth
model. There are an infinite number of choices for all
of these variables. Here, we only consider some simple,
yet reasonably realistic, models.

For ease of exposition, we consider a two-allele
marker. Let p be the rate of population expansion. Then,
XAt) = 2NdeP(t-G) (O - t £ G). Equation (10) can be
rewritten as

dE(p [)+ le p(t-G) 1
Id -+ aIE(p2d

dt [2Nd 1id) 3

e-p(t-G)
+ + a2)E(pld)

where a, = 2[a + u(l - a) + v(l - a)] and a2 = 2v(1
- a) + 2(1 - u)apln + 2vap2n. When E(pld) is substi-
tuted into equation (C3),

E(p2d) = Pld(O)e alt+(ePG/2Ndp) (ePt- 1)

+t
+ e-a1t+(e-P(t-G)12Nd P) h(s)ds

(C4)
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where + u[(1 a)pi, d + Olpi,,pi- d

b
Pld(O) + -

Ph(s ) + =X e(al+X-p)s+pG-(1/2Ndp)e-p(s-G)h(s) e
2Nd

bX~ e(a, p)s+pG..(1/2Ndp)e-p(s-G)

+ a2LPld(O) + ] e(al+x)s (1/2NdP)e-p(s-G) (CS)

a2b ea1s-(1/2Ndp)e-P(s-G)

. = -[a + u(1 - a) + v(1 - a)]

b = (1 - u)ap1l + Vap272 + v(1 - a)

As long as we know the population growth rate p, the
expectations of the second moments of Pid can be ex-
pressed as a function of u, v, 0, t, and Yd. The case of
multiallelic markers can be considered similarly if an
SMM is assumed.

Appendix D

+ 62P.j-l72Pid + Yd Pii-ln
Pd

+ v[(1 a)pij+ld + (lPi.nP-i+ld

02P.,+l7Pid p Pii+d n

and

a = 01 + 02 + Yd
Pd (D2)

and, for i = 1, m1, j = 1, and M2, where mi is the number
of alleles at locus i, we need to consider corresponding
boundaries for u and v. Using the Hille-Yosida theorem,
we obtain a system of differential equations with regard
to the expectations of marker frequencies in a disease
population:

dE(Pijd) = E[g,,(t)]
dt (D3)

From equation (14) it follows that

L = - Y. I I aijkl(t)2 i i k 1 l9PijdOPkld

+ IIS gij apg

E(Pid) = [Pi.d(O) - pi.j]e0't + pi.(Dl)

E(P.,d) = [P-id(O) - p.7I2]e02t + p j

where

a,,kl(t) Pijd(t)(Sik6jl Pkld)
XT(t)

gij(t) = -apiid (u + v)(l -a)pjj

+ [1 - (u v)I(0lPnPid (2PjinPi.d + P
Pd

+ u[(l -a)pi-ld + 0lPi-1._Pid

+ 02P ,iPi- .d + p Pi-ld,

+
v[(1 a)pi+ld (lPi+l nP-id

+ (2p-jn pi+1.d + p Pi+l in]Pd

Substituting E(Pid) and E(P.;d) from equation set (D4)
into equation (15), we obtain

dE(Phd) = XE(pijd) + ale-Olt
dt

+ a2e02t + + (2)Pi.,P.i172

where X = -(0l + 02), a, = 02P.jn[Pi.d(0) - pin], and a2

= OlPinP.jid(O) pjj. Thus,

d[e E(piid)] -XeE(PId) + e dE(Pid)
dt dt

= - xe-)tE(pjjd) + et R[E(piid)
+ aie-&lt + a2e-02t + (01 + 02)Pi.2P.j,,] (D5)

= ale-(X+01)t + a2e-(X+02)t

+ (01 + 02)pj7np.72e t.

When both sides of equation (D5) are integrated,

(D4)
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eltE(Pijd) - Pihd(°) - - [e(x+ol)t - 1]
x + 01

a2 [e-(X+2)t - 1] (D6)2. + 02

(01 + 02)Pi,pi_,

After some algebra is performed, it follows from equa-
tion (D6) that

E(Pijd) = etpiid(O) - a (eolt - e )x +01

a2 (e-02t ext)
2.+ 02

_(01 + ()iPI
2.

nPi(1 - ext)
[Piid(O) - 01 - P2]ei(0l+02)t
+ P13e-1t + P2e02t + pi n in 9

where IB1 = P.Ai[Pi.d(o) - Pi "] and P2 = Pi n[P-id(o)
- p.].
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